High Application Availability for HPEC

On Board for Mission Success
High Application Availability

- Percentage of time primary application is available

\[\frac{MTBF}{MTBF+MTTR} \]

- Common requirement is “5-9’s” - 99.999%
 - About 5 minutes down time per year
- Failures caused by hardware, software or user
- Large HPEC system may have an MTBF of a few weeks
System Design

- Total system - hardware, system software and application - must be designed for HAA
- Typically n+m design in HPEC
 - For each resource, n required for application
 - m additional provided for redundancy
 - Resources must be carefully identified - processors, memory, fans, power supplies, fabric connections, ...
- Recovery MUST be “automatic”
- Don’t have time for human involvement
Maximize MTBF

- Prevent failures
 - Careful electrical design
 - ECC/CRC error detection/correction
 - Good mechanical design including cooling
 - Good software design
 - Exhaustive test/debug

- Preempt failures
 - Online testing
 - Health monitoring
 - Temperatures, fan speeds, voltages
 - Opportunity to repair system before actual failure

© SKY Computers, Inc. All Rights Reserved 4/17/00 Slide 5
Fault Management

- Detection - determine that fault exists
- Diagnosis - identify failing component
- Isolation - protect rest of system from failures
- Recovery - get application running again
- Repair - replace or restart failing component
Fault Management

- **Detection**
 - Hardware detected - ECC/parity errors, link status change, …
 - Software detected - timeouts, inconsistent answers, …
 - Must be detectable by reliable resource

- **Diagnosis**
 - Identify failed resource(s)
 - Repair not needed if n resources still available
Fault Management

Isolation
- InfiniBand “automatic path migration” to use alternate path through fabric
- Software re-configuration of routing tables in InfiniBand switches
- Remove processors from CORBA scheduler
- Other application specific choices

Recovery
- Restart/resume the application with reduced configuration
- Detection to Recovery can be accomplished in a fraction of a second, perhaps milliseconds depending on failure
Fault Management

- **Repair**
 - Since most likely root cause is software fault, reset/restart may be all that is required
 - Run detailed diagnostic
 - Verify failure and locate Field Replaceable Unit (FRU)
 - Return still functional resources to use
 - Technician replaces FRU
 - InfiniBand supports “Live Insertion”
 - Return repaired component to use
Some Resources

- **Service Availability Forum**

- **Linux High Availability Project**
 http://linux-ha.org

- **Real-time CORBA, Dynamic Scheduling**
 http://www.omg.org

- **Telco oriented High Availability**
 http://www.goahead.com/products/products.htm
 http://www.ccpu.com/telco_products/middleware.html
 http://www.mvista.com/cge/index.html
Conclusion

- HAA requires careful SYSTEM level analysis/design - hardware, system software and application must ALL cooperate
- Emerging fabrics like InfiniBand enable HAA capabilities not available previously for HPEC applications
- 5 step fault management process useful for design of HAA applications