Learning Automata

• Learns the unknown nature of an environment
• Variable structure stochastic learning automaton is a quintuple \{ \varphi, \alpha, \beta, A, G \} where:
 – \varphi(n), state of automaton; \varphi=\{\varphi_1, \ldots, \varphi_s\}
 – \alpha(n), output of automaton; \alpha=\{\alpha_1, \ldots, \alpha_r\}
 – \beta(n), input to automaton; \beta=\{\beta_1, \ldots, \beta_m\}
 – A, is the learning algorithm;
 – G[\cdot], is the output function; \alpha(n) = G[\varphi(n)]

 \(n \) indicates the iteration number.
Learning Automaton Schematic

Environment

Action $\alpha(n)$

Response $\beta(n)$

Automaton $<\phi, \alpha, \beta, A, G>$

<states, actions, input, learning algorithm, output function>
Probability Vector

• $p_j(n)$, action probability; the probability that automaton is in state j at iteration n.

• Reinforcement scheme

 If $\alpha(n) = \alpha_i$ and for $j <> i; (j=1 \text{ to } r)$

 $p_j(n+1) = p_j(n) - g [p_j(n)]$ \hspace{1cm} \text{when } \beta(n)= 0.

 $p_j(n+1) = p_j(n) + h [p_j(n)]$ \hspace{1cm} \text{when } \beta(n)= 1.

• In order to preserve probability measure,

 $\Sigma p_j(n) = 1, \text{ for } j = 1 \text{ to } r$.
contd ...

- If $\alpha(n) = \alpha_i$

 $$p_i(n+1) = p_i(n) + \sum_{j=1, j<>i}^r g(p_j(n))$$
 when $\beta(n) = 0$

 $$p_i(n+1) = p_i(n) - \sum_{j=1, j<>i}^r h(p_j(n))$$
 when $\beta(n) = 1$

- $g(.)$ is the reward function
- $h(.)$ is the penalty function
Schematic of Proposed Automata Model for Mapping/Scheduling

Automaton for task s_i

$<\alpha^s_i, \beta^s_i, A^s_i>$

$<\text{machines, environment response, learning algorithm}>$
Model Construction

• Every task s_i associated with an S-model automaton (VSSA).

• VSSA represented as $\{\alpha_{si}, \beta_{si}, A_{si}\}$, since $r = s$

 – α_{si} is set of actions $\alpha^si = m_0, m_1, ..., m_{|M|-1}$

 – β_{si} is input to the automaton, $\beta^si \in [0, 1]$

 closer to 0 – action favorable to system;
 closer to 1 – action unfavorable to system

 – A^si is reinforcement scheme

• $p_{ij}(n)$ - action probability vector

 – probability of assigning task s_i to machine m_j
• Automata model for Mapping/Scheduling
 – S-model VSSA is used
 – Each automaton is represented as a tuple
 \(\{ \alpha^{si}, \beta^{si}, A^{si} \} \)
 – \(\alpha^{si} = m_0, m_1, \ldots, m_{|M|-1} \)
 – \(\beta^{si} \in [0, 1] \)
 (closer to 0 - favorable, 1 - unfavorable)
 – If \(c_k(n) \) is better than \(c_k(n-1) \)
 \[E^k_{resp} = 0 \quad \text{else} \quad E^k_{resp} = 1 \]
 – Translating \(E^k_{resp} \) to \(\beta^{si}(n) \) requires two steps
Translating E_k^{resp} to β^{s_i}
contd …

• Step 1: Translate E^k_{resp} to $\mu^{s_i}_k(n)$, where
 – $\mu^{s_i}_k(n)$ - input to automaton s_i with respect to cost metric c_k
 – achieved by the heuristics

• Step 2: Achieved be means of Lagrange's multiplier

\[
\beta^{s_i}(n) = \sum_{j=1}^{\mid C \mid} \lambda_k * \mu^{s_i}_k(n), i=1 \text{ to } |S|-1; \quad \sum_{j=1}^{\mid C \mid} \lambda_k = 1, \lambda_k > 0
\]

where λ_k is the weight of metric c_k
Schematic of Proposed Automata Model for Architecture Trades

Automaton for component s_i

$<\alpha^{s_i}, \beta^{s_i}, A^{s_i}>$

<components, performance evaluation, learning algorithm >
Model Construction

• Every component of the HW system s_i associated with a P-model automaton (VSSA).

• VSSA represented as \{ α^{si}, β^{si}, A^{si} \}, since $r = s$

 – α^{si} is set of component types $\alpha^{si} = c_0, c_1, \ldots, c_{|M|-1}$

 – β^{si} is input to the automaton, $\beta^{si} = 0, 1$
 0 – performance favorable to system; 1 – unfavorable to system

 – A^{si} is reinforcement scheme

• $p_{ij}(n)$ - action probability vector

 – probability of choosing component s_i from component type c_j
Automata model for Architecture Trades
- P-model VSSA is used
- Each automaton is represented as a tuple
 \(\{ \alpha^{si}, \beta^{si}, A^{si} \} \)
 - \(\alpha^{si} = c_0, c_1, \ldots, c_{|M|-1} \)
 - \(\beta^{si} \in 0, 1 \)
 (0 - favorable, 1 - unfavorable)
 - If \(c_k(n) \) is better than \(c_k(n-1) \)
 \[P_{eval} = 0 \quad \text{else} \quad P_{eval} = 1 \]
Conclusions

• Adaptive Framework for Mapping and Architecture trades
• Automata models allow optimization of multiple criteria
• Efficient / gracefully degradable solutions
• Framework construction suitable for tool integration
 – Mapping algorithm integrated with SAGE™
• Provides a basis for systems design from application to the embedded HW