Monolithic Compiler Experiments Using C++ Expression Templates*

Lenore R. Mullin**
Edward Rutledge
Robert Bond

HPEC 2002
25 September, 2002
Lexington, MA

* This work is sponsored by the Department of Defense, under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.

** Dr. Mullin participated in this work while on sabbatical leave from the Dept. of Computer Science, University of Albany, State University of New York, Albany, NY.
Outline

• Overview
 – Motivation
 – The Psi Calculus
 – Expression Templates

• Implementing the Psi Calculus with Expression Templates
• Experiments
• Future Work and Conclusions
Motivation: The Mapping Problem

Mathematics of Arrays
- Math and indexing operations in same expression
- Framework for design space search
 - Rigorous and provably correct
 - Extensible to complex architectures

Example: “raising” array dimensionality

x: < 0 1 2 ... 35 >

Map:
- L1 Cache
- L2 Cache
- Main Memory
Combining Expression Templates and Psi Calculus yields an optimal implementation of array operations

Basic Idea

Implementation

- **Expression Templates**
 - Efficient high-level container operations
 - C++

- **Psi Calculus**
 - Array operations that compose efficiently
 - Minimum number of memory reads/writes

Theory

Benefits

- Theory based
- High level API
- Efficient

PETE Style Array Operations
Psi Calculus1 Key Concepts

Denotational Normal Form (DNF):
- Minimum number of memory reads/writes for a given array expression
- Independent of data storage order

Operational Normal Form (ONF):
- Like DNF, but takes data storage into account
- For 1-d expressions, consists of one or more loops of the form:
 \[x[i] = y[\text{stride} \times i + \text{offset}], \quad l \leq i < u \]
- Easily translated into an efficient implementation

Some Psi Calculus Operations

<table>
<thead>
<tr>
<th>Operations</th>
<th>Arguments</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>take</td>
<td>Vector A, int N</td>
<td>Forms a Vector of the first N elements of A</td>
</tr>
<tr>
<td>drop</td>
<td>Vector A, int N</td>
<td>Forms a Vector of the last (A.size-N) elements of A</td>
</tr>
<tr>
<td>rotate</td>
<td>Vector A, int N</td>
<td>Forms a Vector of the last N elements of A concatenated to the other elements of A</td>
</tr>
<tr>
<td>cat</td>
<td>Vector A, Vector B</td>
<td>Forms a Vector that is the concatenation of A and B</td>
</tr>
<tr>
<td>unaryOmega</td>
<td>Operation Op, dimension D, Array A</td>
<td>Applies unary operator Op to D-dimensional components of A (like a for all loop)</td>
</tr>
<tr>
<td>binaryOmega</td>
<td>Operation Op, Dimension Adim. Array A, Dimension Bdim, Array B</td>
<td>Applies binary operator Op to Adim-dimensional components of A and Bdim-dimensional components of B (like a for all loop)</td>
</tr>
<tr>
<td>reshape</td>
<td>Vector A, Vector B</td>
<td>Reshapes B into an array having A.size dimensions, where the length in each dimension is given by the corresponding element of A</td>
</tr>
<tr>
<td>iota</td>
<td>int N</td>
<td>Forms a vector of size N, containing values 0 . . N-1</td>
</tr>
</tbody>
</table>

- = index permutation
- = operators
- = restructuring
- = index generation
Convolution: Psi Calculus Decomposition

Definition of \(y=\text{conv}(h,x) \)

\[
y[n] = \sum_{k=0}^{M-1} h[k] x'[n-k]
\]

where \(x \) has \(N \) elements, \(h \) has \(M \) elements, \(0 \leq n < N+M-1 \), and \(x' \) is \(x \) padded by \(M-1 \) zeros on either end.

Algorithm and Psi Calculus Decomposition

<table>
<thead>
<tr>
<th>Algorithm step</th>
<th>Psi Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial step</td>
<td>(x = \langle 1 \ 2 \ 3 \ 4 \rangle \ \ h = \langle 5 \ 6 \ 7 \rangle)</td>
</tr>
<tr>
<td>Form (x')</td>
<td>(x' = \text{cat(reshape(<k-1>, <0>), cat(x, reshape(<k-1>,<0>)))} = \langle 0 \ 0 \ 1 \ldots \ 4 \ 0 \ 0 \rangle)</td>
</tr>
<tr>
<td>rotate (x') ((N+M-1) times)</td>
<td>(x'_{\text{rot}} = \text{binaryOmega(rotate,0,iota(N+M-1), 1 x')})</td>
</tr>
<tr>
<td>take the “interesting” part of (x'_{\text{rot}})</td>
<td>(x'{\text{final}} = \text{binaryOmega(take,0,reshape(<N+M-1>,<M>),1,x'{\text{rot}})})</td>
</tr>
<tr>
<td>multiply</td>
<td>(\text{Prod} = \text{binaryOmega (*,1, h,1,x'_{\text{final}})})</td>
</tr>
<tr>
<td>sum</td>
<td>(Y = \text{unaryOmega (sum, 1, Prod)})</td>
</tr>
</tbody>
</table>

Psi Calculus reduces this to DNF with minimum memory accesses
Typical C++ Operator Overloading

Example: A=B+C vector add

1. Pass B and C references to operator +
2. Create temporary result vector
3. Calculate results, store in temporary
4. Return copy of temporary
5. Pass results reference to operator =
6. Perform assignment

Additional Memory Use
- Static memory
- Dynamic memory (also affects execution time)

Additional Execution Time
- Cache misses/page faults
- Time to create a new vector
- Time to create a copy of a vector
- Time to destruct both temporaries

2 temporary vectors created
C++ Expression Templates and PETE

- **Expression**
 - `A = B + C`
 - **Expression Templates**
 - **Parse Tree**
 - `BinaryNode<OpAdd, Reference<Vector>, Reference<Vector>>`
 - **Expression Type**

- **Main**
 1. Pass B and C references to operator +
 2. Create expression parse tree
 3. Return expression parse tree
 4. Pass expression tree reference to operator
 5. Calculate result and perform assignment

- **Reduced Memory Use**
 - Parse tree only contains references

- **Reduced Execution Time**
 - Better cache use
 - Loop fusion style optimization
 - Compile-time expression tree manipulation

- **PETE, the Portable Expression Template Engine**, is available from the Advanced Computing Laboratory at Los Alamos National Laboratory

- **PETE provides**:
 - Expression template capability
 - Facilities to help navigate and evaluating parse trees

PETE: http://www.acl.lanl.gov/pete
Outline

• Overview
 – Motivation
 – The Psi Calculus
 – Expression Templates

• Implementing the Psi Calculus with Expression Templates
• Experiments
• Future Work and Conclusions
Implementing Psi Calculus with Expression Templates

Example:
A = \text{take}(4, \text{drop}(3, \text{rev}(B)))

B = <1 2 3 4 5 6 7 8 9 10>
A = <7 6 5 4>
Example:
A = take(4, drop(3, rev(B)))

B = <1 2 3 4 5 6 7 8 9 10>
A = <7 6 5 4>
Implementing Psi Calculus with Expression Templates

Example:
A = take(4, drop(3, rev(B)))

B = <1 2 3 4 5 6 7 8 9 10>
A = <7 6 5 4>
Implementing Psi Calculus with Expression Templates

Example:
A = take(4, drop(3, rev(B)))

B = <1 2 3 4 5 6 7 8 9 10>
A = <7 6 5 4>

1. Form expression tree
2. Add size information
Implementing Psi Calculus with Expression Templates

Example:
A = take(4, drop(3, rev(B)))
B = <1 2 3 4 5 6 7 8 9 10>
A = <7 6 5 4>
Example:
A = take(4, drop(3, rev(B)))

B = <1 2 3 4 5 6 7 8 9 10>
A = <7 6 5 4>
Implementing Psi Calculus with Expression Templates

Example:
A = take(4, drop(3, rev(B)))

B = [1 2 3 4 5 6 7 8 9 10]
A = [7 6 5 4]

1. Form expression tree
 - take
 - drop
 - rev

2. Add size information
 - take: size=4
 - drop: size=7
 - rev: size=10
 - B: size=10

3. Apply Psi Reduction rules
 - size=10
 - A[i] = B[i]
Implementing Psi Calculus with Expression Templates

Example:
A = take(4, drop(3, rev(B)))

B = <1 2 3 4 5 6 7 8 9 10>
A = <7 6 5 4>

1. Form expression tree
2. Add size information
3. Apply Psi Reduction rules
Implementing Psi Calculus with Expression Templates

Example:
A = take(4, drop(3, rev(B)))
B = [1 2 3 4 5 6 7 8 9 10]
A = [7 6 5 4]

Recall:
Psi Reduction for 1-d arrays always yields one or more expressions of the form:
\[x[i] = y[\text{stride}*i + \text{offset}] \]
\(l \leq i < u \)

1. Form expression tree
2. Add size information
3. Apply Psi Reduction rules

Size info
Reduction
Example:
\[A = \text{take}(4, \text{drop}(3, \text{rev}(B))) \]
\[B = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10] \]
\[A = [7 \ 6 \ 5 \ 4] \]

Recall:
Psi Reduction for 1-d arrays always yields one or more expressions of the form:
\[x[i] = y[\text{stride}\ast i + \text{offset}] \]
\[l \leq i < u \]

1. Form expression tree

2. Add size information

3. Apply Psi Reduction rules

4. Rewrite as sub-expressions with iterators at the leaves, and loop bounds information at the root

- Iterators used for efficiency, rather than recalculating indices for each \(i \)
- One “for” loop to evaluate each sub-expression
Outline

- Overview
 - Motivation
 - The PSI Calculus
 - Expression Templates
- Implementing the PSI Calculus with Expression Templates
- Experiments
- Future Work and Conclusions
Experiments

Results

- Loop implementation achieves good performance, but is problem specific and low level.
- Traditional C++ operator implementation is general and high level, but performs poorly when composing many operations.
- PETE/Psi array operators perform almost as well as the loop implementation, compose well, are general, and are high level.

Execution Time Normalized to Loop Implementation

(vector size = 1024)

Test ability to compose operations
Experimental Platform and Method

Hardware
• DY4 CHAMP-AV Board
 – Contains 4 MPC7400’s and 1 MPC 8420
• MPC7400 (G4)
 – 450 MHz
 – 32 KB L1 data cache
 – 2 MB L2 cache
 – 64 MB memory/processor

Software
• VxWorks 5.2
 – Real-time OS
• GCC 2.95.4 (non-official release)
 – GCC 2.95.3 with patches for VxWorks
 – Optimization flags:
 -O3 -funroll-loops -fstrict-aliasing

Method
• Run many iterations, report average, minimum, maximum time
 – From 10,000,000 iterations for small data sizes, to 1000 for large data sizes
• All approaches run on same data
• Only average times shown here
• Only one G4 processor used

• Use of the VxWorks OS resulted in very low variability in timing
• High degree of confidence in results
Experiment 1:
$A = \text{rev}(B)$

- PETE/Psi implementation performs nearly as well as hand coded loop, and much better than regular C++ implementation
- Some overhead associated with expression tree manipulation
Experiment 2:
\[a = \text{rev}(\text{take}(N,\text{drop}(M,\text{rev}(b)))) \]

- Larger gap between regular C++ performance and performance of other implementations → regular C++ operators do not compose efficiently
- Larger overhead associated with expression-tree manipulation due to more complex expression
Experiment 3:
\[a = \text{cat}(b+c, d+e) \]

- Still larger overhead associated with tree manipulation due to `cat()`
- Overhead can be mitigated by “setup” step prior to assignment
Outline

• Overview
 – Motivation
 – The PSI Calculus
 – Expression Templates
• Implementing the PSI Calculus with Expression Templates
• Experiments
• Future Work and Conclusions
Future Work

- **Multiple Dimensions:** Extend this work to N-dimensional arrays (N is any non-negative integer)
- **Parallelism:** Explore dimension lifting to exploit multiple processors
- **Memory Hierarchy:** Explore dimension lifting to exploit levels of memory
- **Mechanize Index Decomposition:** Currently a time consuming process done by hand
- **Program Block Optimizations:** PETE-style optimizations across statements to eliminate unnecessary temporaries
Conclusions

• Psi calculus provides rules to reduce array expressions to the minimum of number of reads and writes
• Expression templates provide the ability to perform compiler preprocessor-style optimizations (expression tree manipulation)
• Combining Psi calculus with expression templates results in array operators that
 – Compose efficiently
 – Are high performance
 – Are high level
• The C++ template mechanism can be applied to a wide variety of problems (e.g. tree traversal ala PETE, graph traversal, list traversal) to gain run-time speedup at the expense of compile time/space