Digital Signal Processing at 1GHz in a Field-Programmable Object Array

Dirk Helgemo
Chief Architect
MathStar, Inc.

24 September 2003
Contents

• Driving Philosophy
• Architecture
 – Communication
 – Object Types
• DSP Algorithms in Objects
• Tools
• Applications
• Roadmap
Driving Philosophy

• FPGA time to market
 – Programmable/configurable silicon
• Lower unit cost than FPGA
 – Coarser programming → higher density
• ASIC-like performance (1GHz)
 – Custom logic
• Lower risk and easier design
 – All analog problems are solved (timing, place & route)
 – Just digital design (program = resource allocation)
 – Use proven COTS chips with adequate resources or
 – Assemble custom chips with very low risk
Decisions

• Everything is globally synchronized
 – No analog timing closure!

• Configured instructions (instead of streaming)
 – Massive parallelism without massive instruction buses

• Uniform interconnect and object size
 – Mix and match functions for different application spaces
 – Scripted object placement, power, clocking
Architecture

• Package functions into Silicon Objects (SOs)
 – Homogeneous communication
 – Heterogeneous functions
 • Processors, memory, I/O

• Tile objects into an array
 – Choose the mix of functions (including I/O) to match the application space
 • Lots-o-multipliers for DSP FFT and FIR
 • Add high-speed I/O and CAM processors for networking

• Fabricate the object mix
• Program the application
Sample Mix

• $21 \times 21 = 441$ SOs
 – $6 \times 16 = 96$ MAC
 – $6 \times 8 = 48$ RF
 – rest = 297 ALU

• Periphery
 – 12×7KB int. RAM
 – 2×72b ext. RAM
 – 2×16b LVDS
 – 192 GPIO
Communication

• Uniform bus structure: 21 bits
 – 16-bit data value \((R) \)
 – 1-bit “valid” indicator \((V) \)
 – 4 bits of control \((C) \)

• Configuration granularity
 – \(R+V \) are handled as a unit
 – Each C bit is configured independently

• Usage
 – \(V \) can be used for event-driven (wave)
 – \(C \) provides arbitrary sideband control
 • Examples: sign, carry, start of packet
Communication Routing

• Nearest Neighbors (NN)
 – Range = 1 (Manhattan + diagonals)
 – Same speed as local registers

• Party Lines (PL)
 – Range = Manhattan hop to 3 (skip 2)
 – Extra clock cycles for digital retiming
 • 1 extra C* 25-object neighborhood
 • 2 extra C* 85-object neighborhood
 • More clock cycles C* entire chip
Silicon Object Types

- Arithmetic/Logic Unit (ALU)
- Multiply-Accumulate (MAC)
- Register File (RF)
- Truth Function (TF)
- CRC Generator (CRC)
- Pattern Processor (CAM)
- Internal RAM (IRAM)
- External RAM (XRAM)
- General-purpose I/O (GPIO)
- High-speed parallel I/O (Rx, Tx)
Object Type: ALU

neighbors

NW
K0
"0"
"1"

K1

& | ^ ? + -

>> <<

neighbors

state machine

instructions

NE

EW1

EW2

party lines

SW
NS1
NS2
NS3
SE

neighbors

party lines

neighbors
ALU Details

• Arithmetic-Logic Unit
 – 16-bit data path
 • Add/subtract, shift/rotate, AND/OR/XOR/mux
 • Cascade larger words via status bit (SB)
 – Decode, execute, retire in 1 cycle (1 ns)
 – 8 configured instructions per object
 – State is guided by control inputs
 • Expressions of up to four C/V/SB/R bits
 • Instruction offers four “next states”
 • Branch expression selects one of the four
 • Additional controls for conditional execution
Object Type: MAC

\[a \times b \rightarrow 32 \rightarrow \text{Accumulate} \rightarrow 40 \rightarrow \text{result} \]
MAC Details

• Multiply-accumulate
 – 16x16 fixed-point multiplication
 – 40-bit accumulator (8-bit overflow)
 – Rate = every cycle, latency = 2 cycles
 • 100 products in 101 cycles
 – Number formats: integer (16.0) and Q15 (1.15)
 – Signed and unsigned multiplication
 • Extended precision (32x32=64) in four MACs
 – Control bit inputs effect optional
 negation, accumulation, rounding
 – 8-bit embedded counter (inner loop)
Object Type: RF

- Register File is a fast, small memory:
 - 64 words of 20 bits (16R+4C)
 - Three modes of operation
 - Dual-ported RAM
 - FIFO
 - Sort: random write, sequential read
 - More control inputs to request read, request write
 - More control outputs indicate read valid, FIFO status
 - Rate = every cycle, latency = 2 cycles
Object Type: TF

• Truth Function generates four C bits
 – Four C/V/SB/R input bits per C bit output
 – Arbitrary functions via 4:1 lookup tables
 – Cascade large control expressions across multiple objects
 – Rate = every cycle, latency = 1 cycle

• Integrate TF with ALU object
 – ALU-TF is most general purpose
 – Fine-grained control for state machines and flow control (span clock domains, etc.)
Object Type: CRC

• CRC = cyclic redundancy code generator
 – Single-cycle CRC-32 and CRC-16
 – Processes 8, 16, or 18 bits of data per clock
 • 18b for HyperTransport
 – Rate = every cycle, latency = 3 cycles

• Integrate with RF object
 – CRC is a very small circuit
 – Choose RF or CRC function
 – Span applications gracefully
 • Applications with no CRC are not impeded
 • Capacity for applications needing many CRCs
 (e.g., multichannel POS Ethernet)
Object Type: CAM

- **CAM** = pattern recognition
 - Input 20C or 16R+4C bits
 - Sixteen 20-bit patterns with wildcards
 - Each pattern bit is 0/1/x (x=wildcard)
 - On row match, indicate “hit” on V, update 20-bit result
 - Output 20C or 16R+4C bits
 - Rate = every cycle, latency = 2 cycles
 - Uses:
 - Bit-field parsing (variable- or fixed-width fields)
 - State machines (up to 16 transitions)
Object Types: IRAM, XRAM

- **IRAM = Internal RAM**
 - Single-ported block RAM
 - Spans two object columns, north or south
 - Address and control via pl_ns3
 - Data in/out via pl_ns1, pl_ns2
 - Capacity = 768 lines of 76 bits = 57Kb = 7.125KB
 - Rate = read or write at 500MHz, latency = 9 cycles

- **XRAM = External RAM**
 - Single-ported SRAM or DRAM memory controller
 - Same north/south object interface as IRAM (above)
 - 72-bit data path * 21-bit address = 144Mb = 18MB
 - Up to 250MHz DDR = 18Gb/s throughput
Object Types: GPIO, Rx/Tx

- **GPIO = General-purpose I/O**
 - 2.5V CMOS, up to 100MHz
 - Synchronized internally or externally
 - 48 read/write pins to 2 object columns (or rows)
 - 32 to R, 16 to C, configurable

- **Rx,Tx = High-speed parallel I/O**
 - Configurable for 16-bit LVDS or 32-bit HSTL
 - Up to 800MHz DDR LVDS (25Gb/s)
 - Receive into 2,4,8 object rows (configurable demux)
 - Transmit out of 2,4,8 object rows (configurable mux)
DSP Algorithms in Objects

- Complex Multiplication
- Radix-2 DIT Butterfly
- Radix-4 DIF Dragonfly
- Fast Fourier Transform (FFT)
Complex Multiplication

Clock cycle #1:

\[a + bj \quad c + dj \]

Clock cycle #2:

\[\text{MAC} \quad \text{MAC} \]

Clock cycle #4:

\[\text{MAC} \quad \text{MAC} \]

\[ac - bd \quad (ad + bc)j \]

- **Two MACs**: one real, one imaginary
- **Rate** = every other cycle
- **Latency** = 3 cycles
Radix-2 DIT Butterfly

- 2 MACs, 2 ALU, 1 RF (W^k phase factors)
- Rate = every other cycle
- Latency = 5 cycles
Radix-4 DIF Dragonfly

• Data = 3 sets of 4 complex numbers
 – Input values, phase factors (twiddle), output values

• Algorithm (roughly)
 – Output.r,i = \(\sum (+/- \text{phase}.r/i) \times \text{input}.r,i = \sum 8 \) products
 • Sequence of sign and phase.r vs. phase.i varies for each output

• Processors = 4 MACs (one per output), 2 RFs
 – Each MAC calculates out.real then out.imaginary
 • Route the complex output value to RF in next stage
 – One RF streams the 4 complex inputs twice (8 integers)
 – Other RF sends control sequence (16 clock cycles)
 • Start (zero), choose positive/negative, choose phase.r/phase.i
Dragonfly in Pictures

• Structure of one dragonfly tile

- objects = data flow = control flow =

• Inter-dragonfly (inter-stage) routing

Stage 1

Stage 2
64-point FFT

- Fully pipelined ∗ 16 ns throughput
 - 16 cycles per dragonfly, 48 pipelined dragonflies
 - Out-of-order input and output
1024-point FFT

• 1024-point FFT in 160ns
 – 64 butterflies (128 MAC, 128 ALU, 64 RF)
 – Several options for data movement between butterfly stages
 • Many DSP solutions use memory for data routing
 • FPOA has a variety of options
 – Use party lines to route: two options per hop, add as many levels of indirection as needed
 – Use ALUs to route: four NN and four PL options per ALU, add as many levels of indirection as needed
 – Use ALUs to track stride of each butterfly stage, generate address into RF or IRAM
 – Store address sequence in an RF or IRAM
Tools

- **Object HDL (OHDL)** is the assembly language for the chip configuration
 - Verilog structural modules and wires
 - Object-specific assembly
- **Design in SystemC** (translates to OHDL) or code directly in OHDL
 - Cycle-accurate simulation either way
- **Assign chip resources via Floorplanner GUI**
- **Compile to bit stream via Assembler**
Applications

• General-purpose mix
 – Processors = ALU-TF, RF
 – Periphery = IRAM, XRAM, GPIO

• DSP FFT and FIR
 – Processors = ALU-TF, MAC, RF
 – Periphery = Narrow IRAM, Narrow XRAM, GPIO and/or LVDS
 – Future processor: FEC

• Networking
 – Processors = ALU-TF, CAM, RF-CRC
 – Periphery = Wide IRAM, Wide XRAM, LVDS, SerDes
Roadmap

• **First chip is a mixed mix**
 - Demonstrate both DSP and networking applications
 • MACs for high-performance DSP FFT, FIR
 • ALU-TF and RF-CRC for both DSP and networking
 • 12 banks of IRAM (total 85.5KB)
 • One bi-directional 16-bit LVDS interface (one Rx, one Tx)
 • 192 CMOS GPIO pins (four GPIO objects)

• **Next two chips are specialized**
 - DSP FFT, FIR
 • More MACs, more fine-grained memory
 - Networking
 • SerDes I/O (4Gb/s), more bulk memory
Conclusions

• The “object” approach (FPOA) enables
 – High-speed programmable COTS silicon
 • 20x20 processors = 10x10mm die = 400G ops/s at 20W
 – Field upgrades via programming (PROM or JTAG)
 • Program is loaded into embedded SRAM
 • PROM can be AES-encrypted; FPOA can be copy-protected
 • Field debug via AES-authorized JTAG
 – High-performance alternative to FPGA
 • FPOA is more coarse-grained
 – Fewer “electron decisions” → higher performance
 – Low-risk alternative to ASIC
 • Proven objects, just tile a new mix: Tape-out < 1 month!