A Parallel Data Mining Package Using MatlabMPI

Parna Khot
Ashok Krishnamurthy
Stan Ahalt
John Nehrbass
Juan Carlos Chaves
The Ohio State University
Outline

• Motivation
 – Why parallel data mining toolbox?
• MatlabMPI
 – What is MatlabMPI?
• Parallel data mining toolbox
 – K-Means Clustering
 – CART
• Results of MatlabMPI implementation
• Conclusions
• Future Work
Today, the amount of data that is collected from sensors and computerized transactions is huge.

Data Mining algorithms arise in many different fields and typically are used to search through this data to look for patterns.

Parallel data mining algorithms can help handle the huge datasets in a timely manner.
Typical Data Mining Tasks

- Clustering.
- Classification.
- Association Rules.
- Regression.
- Pattern Recognition

We will consider only Clustering and Classification in this presentation.
MatlabMPI Overview

The latest MatlabMPI information, downloads, documentation, and information may be obtained from:

http://www.ll.mit.edu/MatlabMPI
Parallelization using MPI

- The Message Passing Interface (MPI) is a general method of parallelization by including explicit calls within the code to a library for exchanging messages between the processing elements.
 - MPICH
 - MatlabMPI
 - A Matlab implementation of MPI.
MPI & MATLAB

• **Message Passing Interface (MPI):**
 – A message-passing library specification.
 – Specific libraries available for almost every kind of HPC platform: shared memory SMPs, clusters, NOWs, Linux, Windows.
 – Fortran, C, C++ bindings.
 – Widely accepted standard for parallel computing.

• **MATLAB:**
 – Integrated computation, visualization, programming, and programming environment.
 – Easy matrix based notation, many toolboxes, etc
 – Used extensively for technical and scientific computing.
 – Currently: mostly SERIAL code.
What is MatlabMPI?

- It is a MATLAB implementation of the MPI standards that allows any MATLAB program to exploit multiple processors.
- It implements, the basic MPI functions that are the core of the MPI point-to-point communications with extensions to other MPI functions. (Growing)
- MATLAB look and feel on top of standard MATLAB file I/O.
- Pure M-file implementation: about 100 lines of MATLAB code.
- It runs anywhere MATLAB runs.
- Principal developer: Dr. Jeremy Kepner (MIT Lincoln Laboratory)
General Requirements

- As MatlabMPI uses file I/O for communication, a **common file system** must be visible to every machine/processor.

- **On shared memory platforms:** single MATLAB license is enough since any user is allowed to launch many MATLAB sessions.

- **On distributed memory platforms:** one MATLAB license per machine / node.

- Currently **Unix** based platforms only, but **Windows** support coming soon.
Basic Concepts

• **Basic Communication:**
 - **Messages**: MATLAB variables transferred from one processor to another
 - One processor sends the data, another receives the data
 - **Synchronous transfer**: call does not return until the message is sent or received
 - **SPMD model**: usually MatlabMPI programs are parallel SPMD programs. The same program is running on different processors/data.
• Receiver waits until it detects the existence of the lock file.

• Receiver deletes the data and lock file, after it loads the variable from the data file.
Possible modifications/customizations

- ssh vs rsh.
- Path variables.
- System dependent information required to run MATLAB.
Data Mining Toolbox: Clustering

- Clustering divides the data into disjoint subsets based on a similarity measure.
- Each subset (cluster) is characterized by its centroid.
 - Training data is used to estimate the centroids.
- K-Means is a commonly used clustering algorithm.
 - The number of clusters is assumed to be known apriori.

Voronoi Diagram
K-Means Clustering

1. Read data
2. Assign random centroids
3. Find closest centroid for each training data
4. Update centroids
5. Centroid change < threshold?
 - No: Go back to step 3
 - Yes: End
Parallel K-Means Clustering

- We have considered two approaches:
 - **Master-Slave Method** – The rank-0 processor determines when clustering is done.
 - **Peer-to-Peer Method** – All the processing elements communicate among themselves to decide when clustering is done.
Master – Slave Method

- Read data
- Generate centroids

- Send data

- Send centroids

- Receive local centroids

- Update centroids

- Change threshold?
 - Y: Send stop bit
 - N: Continue

- Send stop bit

- End

- Receive data

- Assign each training data to a centroid

- Send local centroids

- Receive data

- Data = Stop Bit?
 - Y: End
 - N: Continue
Peer-to-Peer Method

Rank–n Processor

Receive data and centroids

Assign local data to each centroid

Send local centroids

Receive local centroids

Update Centroids

Centroid change < threshold

Y

End

N

Other Processors

Send local centroids

Receive local centroids

MPI_Send

MPI_Recv

MPI_Send

MPI_Recv

MPI_Recv

MPI_Recv
Consider clustering of N vectors of dimension D into K clusters. Assume that clustering takes L iterations through the data, and P processors are used.

Serial Method
- Communication Time – N/A
- Communication Data Size – N/A
- Compute Time – $O(NKL)$

Master Slave Method
- Communication Time – $(N-1)(P+1) T_{MPI_{Send}} + (N-1)P T_{MPI_{Recv}}$
- Communication Data size
 - Initial – $(N+K)/(P-1)$
 - Per loop = K
- Compute Time / Processor – $O((N/(P-1))K)$

Peer-to-Peer Method
- Communication Time – $(N)(P) (T_{MPI_{Send}} + T_{MPI_{Recv}})$
- Communication Data size
 - Initial – $(N+K)/(P-1)$
 - Per loop = K
- Compute Time / Processor – $O((N/P)K)$
Parallelization Effectiveness

- We studied the effects of following parameter variations on the Master-Slave parallel K-means algorithm
 - Number of data points.
 - To observe the effect of increase in total data size.
 - Number of centroids.
 - Scalability.
 - To observe the effect of change in number of processing elements.
Effect of varying number of data points

- **Data Set**
 - Number of data points: 1M – 16M
 - Number of centroids: 30
 - Number of processors: 16
 - Dimensionality of data: 3
- As number of data points is increased, speed up of parallel process over serial process increases.

Tested on SUN E10000 - 64 Ultrasparc II
Effect of varying number of centroids

• Data Set
 Number of data points – 0.4M
 Number of centroids – varied
 Number of processors – 16
 Dimensionality - 8

• Effect of increase in number of centroids with constant number of data points
 • The number of data points per process is constant.
 • Speed up observed since compute time is of the order of NK.

OSC IA32 Cluster distributed/shared memory, 64 compute nodes with two 1.533 GHz AMD Athlon MP processors
Scalability Results

- As number of processors is increased the time taken decreases
 - number of data points: 0.2M
 - number of clusters: 30
 - Dimensionality: 3

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC
Dependence on data size

- The decrease in time as the number of processors is increased is not true for all cases.

- Data Set for figure:
 - Number of data points: 1M
 - Number of clusters: 16
 - Dimensionality: 8

- For 32 processors increase in time taken to send data is greater than the decrease in computation and receive time.
 - Rank-0 needs to write 31 files to send data to other processors.

- Using MPI_Bcast instead of MPI_Send shows scalability for 32 processors also, but overall time taken is more.

OSC IA32 Cluster distributed/shared memory, 64 compute nodes with two 1.533 GHz AMD Athlon MP processors
Effect of MPI_Bcast

- Time taken for parallel process decreases as number of processors is increased.
- For 3M the time taken decreases as number of processors is increased.
- Observe for ~1M
 - time taken by 48 processors > time taken by 32 processors

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC
Why this behavior with MPI_Bcast?

- Time taken to read data from 47 processors is reduced.
- Time taken to distribute the data is modestly increased.
- But Rank-0 processor receives data from 47 processors and this time increases significantly.

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC.
Conclusion

• For K-Means Clustering
 – Speedup is observed as number of data points is increased.
 – Speedup is observed as number of centroids is increased
 – For given data size as the number of processors is increased time taken decreases only to the point that the increase in communication cost overshadows the decrease in computation cost

• The advantage of using MatlabMPI is observed if data size is large.
Data Mining Toolbox: Classification

Classification and Regression Tree (CART)

- **Classification Tree**
 - A tree structured classifier obtained by systematic splitting of training data samples using attribute values.

- **Regression Tree**
 - A tree structured model to predict values (get function description) of a continuous valued variable based on values of other variables.
Classification Tree

• A tree structured classifier is built in two phases:
 1) **Growth Phase** : In this the tree is built by recursively partitioning the data until a threshold condition is reached.
 2) **Prune Phase** : If the tree obtained in the growth phase is too large or too small then the misclassification rate will be high as compared to the right sized tree. The pruning of the tree is done to obtain a right sized tree.

• Only the Growth Phase of CART has been parallelized.
Example

- We explain the steps to build a classification tree using a smaller example.

- Training data
 - Classes – 3
 - Attributes – 3

- Size of training data (Elements per class)
 - Class 1 = 3
 - Class 2 = 5
 - Class 3 = 7

<table>
<thead>
<tr>
<th>Attr1</th>
<th>Attr2</th>
<th>Attr3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Sequential Classification tree

• Steps:
 1. The selection of the splits.
 2. The decisions when to declare a node terminal or to continue splitting it.
 3. The assignment of each terminal node to a class.
Selection of Splits

- Split Question (X-attribute, C-integer value)
 - continuous attributes: \{Is X<C?\}
 - categorical attributes: \{Is X=C?\}
 - In above example Q- \{Is X=0?\}
- Split Criterion:
 Best split minimizes impurity at a node
 - eg: Gini index is given by:

\[
i(t) = 1 - \sum p_j^2
\]

where \(p_j \) is the proportion of class ‘\(j \)’ at node ‘\(t \)’.
- At a node with ‘\(n \)’ elements if split ‘\(S \)’ divides the data into \(S_1 \) (\(n_1 \) elements) and \(S_2 \) (\(n_2 \) elements)

\[
gini_{split}(S) = \frac{n_1 (gini(S_1)) + n_2 (gini(S_2))}{n_1 + n_2}
\]
- The split that maximizes \(\Delta i(s, t) \) is selected to be the best split.
Splitting the main node

- **Gini Index at root node**
 - Count matrix for each attribute
 - If attribute value – 0 then data goes to left node
 - Attribute –1

Value	C-1	C-2	C-3
0	3	5	0
1	0	0	7

 - Attribute - 2

Value	C-1	C-2	C-3
0	0	5	7
1	3	0	0

 - Attribute – 3

Value	C-1	C-2	C-3
0	3	5	7
1	0	0	0

- The best splitting attribute is 1 since it has minimum gini index.
Split Tree

Complete Training Data Set

Attribute 1 = 0
Attribute 1 = 1

Class
Count

X1

Attribute 2 = 0
Attribute 2 = 1

Class
Count

X3

Class
Count

X4

Class
Count

X2

Class
Count
Serial Growth Phase - contd.

• Decision to stop splitting
 – A node is decided to be a terminal node if the Gini index is lower than a threshold.
 – Splitting is stopped at node ‘t’ if
 \[\max_{s \in S} \Delta i(s, t) < \beta \]
 Or if the node is pure (as in above example.)

• Assign class to each terminal node.
 – Class \(j \) is assigned to terminal node \(t \in \widetilde{T} \) if
 \[j = \arg \max_i p(i \mid t) \]
Parallel CART
(For Categorical Attributes)

1. Suppose the size of the given data set is N and number of processors is P.

2. The rank-0 processor
 - Reads the training data
 - Distributes the data equally among all the processors.

3. All other processors
 - Calculate and send the count matrices for all attributes.

4. Rank-0 processor
 - Receives count matrices
 - Finds best splitting attribute
Parallel CART – contd.

5. Rank-0 process
 - Stops if all terminal nodes are pure.
 - Else sends best splitting attribute to all other processors.

6. All other processors
 - Split the data into the left and right node using the best splitting attribute.
 - Steps 3-6 are repeated for each of the leaves.
Effects Of Parallelization of categorical CART

- We studied the performance of the parallel algorithm with the variation in number of processing elements.
 - As the number of processors is increased the number of training samples per processor decreases.
 - Time taken per processor decreases hence total time taken decreases.
Scalability Results

- Time taken to get classification tree using 0.3M and 0.1M training data points.
 Number of attributes: 7
 Number of classes: 10
- Serial process takes very long.
 For 0.3M data points with 32 processors, speedup is about 845
- But for number of processors greater than 32 time taken increases

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC
Increase in time taken to send messages is greater than decrease in computation time.

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC.
Conclusions

• Parallel processing takes less time than serial process
• For large data sizes the increase in communication cost is less than the decrease in calculation cost.
• Parallel CART using MatlabMPI can be used with very large data sets.
Future Work

- Optimize the use of MPI_Bcast.
- Generalize CART algorithm for continuous type of attributes.
- Parallelize Prune Phase.
- Add Support Vector Machines to the parallel data mining toolbox.