Custom Reduction of Arithmetic in Linear DSP Transforms

S. Misra, A. Zelinski, J. C. Hoe, and M. Püschel
Dept. of Electrical and Computer Engineering
Carnegie Mellon University
Research Overview

Linear DSP transforms
- e.g. DFT, DCTs, WHT, DWTs, ….
- ubiquitously used, often in computation intensive kernels
- comprised of additions and multiplication-by-constant
- applications: multimedia, bio-metric, image/data processing

Light-weight hardware implementations
- fixed-point data format
- multiplierless: mult-by-constant as shifts and adds
- **problem 1**: output quality reduced by cost-saving measures (reducing the bitwidth of data and constants)
- **problem 2**: different applications have vastly different quality metric and requirements

? need application specific tuning

Our Goal: automatic, custom reduction of arithmetic (additions) w.r.t. a given application’s requirements
Our Automatic Flow

- **DSP transform**
- **Algorithm selection** (robust, structure)
- **Algorithm manipulation** (robustness)
- **Search for cheapest const. reduction satisfying Q**
- **Custom low-cost algorithm**

Example

- **DCT, size 32, in MPEG decoder**
- **Rotation based algorithm**
- **Expansion into lifting steps**
- **Search: constant reduction**
- **Custom low-cost algorithm**

Quality constraint

MPEG compliance test
Related Work

 - examined arithmetic cost reduction for DCT size 8
 - steps performed by hand, exhaustive search

 - efficient static analysis of output error (hard and probabilistic)
 - range of input values used/needed
 - analysis assumes a common global bitwidth

- Püschel/Singer/Voronenko/Xiong/Moura/Johnson/Veloso/Johnson, “SPIRAL system”, www.spiral.net
 - automatic generation of custom runtime optimized DSP transform software
 - provides implementation environment for our approach (in particular algorithm generation and manipulation)
Outline

- DSP transform algorithms
- Algorithm manipulation for robustness
- Multiplication by constants
- Search Methods
- Results
DSP Algorithms as Formulas:
Example DFT size 4

Cooley/Tukey FFT (size 4):

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & i & i & i \\
1 & 1 & i & i \\
1 & i & 1 & i \\
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Fourier transform
Diagonal matrix (twiddles)
Kronecker product
Identity
Permutation

allows for computer generation/manipulation
(provided by SPIRAL)
Example: DCT size 8

\[(2,5)(4,7)(6,8),8\]
\[?\text{diag}(1,1/\sqrt{2})?\ R_{3?}/8\ ?\ R_{15?}/16\ ?\ R_{21?}/16\ \]
\[?(2,4,7,3,8),8?((\text{DFT}_2\ ?\ I_3\)\ ?\ I_2\)?\ (5,6),8\]
\[?(I_4\ ?\ 1/\sqrt{2}\ ?\text{DFT}_2\ ?\ I_2\)?\ (2,3,4,5,8,6,7),8\]
\[?(I_2\ ?\ ((\text{DFT}_2\ ?\ I_2\)?\ (2,3),4?\ (I_2\ ?\ \text{DFT}_2))\)\]
\[?(1,8,6,2)(3,4,5,7),8\]

as formula
(generated by SPIRAL)

as data flow diagram

Basic building blocks:
- 2 x 2 rotations, DFT_2’s (butterflies), permutations, diagonal matrices (scaling)

Algorithm is orthogonal = robust to input errors (from fixed point representation)
Outline

- DSP transform algorithms
- Algorithm manipulation for robustness
- Multiplication by constants
- Search Methods
- Results
Fixed Point Error: Data vs. Transform

Implementing a transform $x \mapsto Tx$ in fixed point arithmetic produces two type of errors:

- **Error in input x:** $\| x \triangleq \tilde{x} \|
 - from rounding of the input coefficients x to the fix-point data representation \tilde{x}
 - for robustness: choose orthogonal algorithms

- **Error in transform:** $\| T \triangleq \tilde{T} \|$
 - from finite precision multiplication by constants
 - further approximation is a source of savings in multiplierless implementations
 - for robustness: translate algorithm into lifting steps
Lifting Steps

Lifting step (LS):

- invertible (det = 1) independent of approximation of x, y
- inverse of LS is also LS (with −x, −y)

\[\text{if LS is cheap, then so is its inverse} \]

Rotation as lifting steps

Rotation based algorithms can be automatically expanded into LS
Error Analysis

- rounding error in the first lifting step (third LS analogous)

\[\tilde{R}_\gamma \quad \tilde{R}_\gamma \quad ?^{1} \quad ?^{?1} \quad 0^{??1} \quad p^{?} \quad ?^{?\sin} \quad ?^{?\cos} \quad ? \]

- rounding error in the second lifting step

\[\tilde{R}_\gamma \quad \tilde{R}_\gamma \quad ?^{1} \quad p^{??1} \quad 0^{??1} \quad p^{?} \quad ?^{?\tan \frac{?}{2}} \quad ?^{?\tan \frac{?^2}{2}} \frac{?}{2} \]

? is magnified, unless ? in [0, ?/2] or [3?/2, 2?]

Solution: angle manipulation

\[R_\gamma \quad ? \quad R_\gamma \quad ?^{??/2} \quad ?^{R_\gamma/2} \quad ?^{R_\gamma??/2} \quad ?^{?0} \quad 1^{?} \quad ?^{??1} \quad 0^{?} \]
Ensuring Robustness

Steps to ensure robustness

- Choose algorithms based on rotations
- Manipulate angles of rotations
- Expand into lifting steps

Done automatically as formula manipulation
Outline

- DSP transform algorithms
- Algorithm manipulation for robustness
- Multiplication by constants
- Search Methods
- Results
Multiplication by Constants

Operations in transforms:

\[y \oplus x_1 \oplus x_2 \] additions

\[y \oplus cx \] multiplication by constant

Example:

- simple \[c = 0.10111011 \] = 5 adds (5 shifts)
- SD recoding 1 \[c = 0.1100\overline{1}10\overline{1} \] = 4 adds (3 shifts)
- SD recoding 2 \[c = 0.11000\overline{1}0\overline{1} \] = 3 adds (3 shifts)

SD recoding is not optimal
Addition/Subtraction Chain

Provide optimal solution for constant mult using adds and shifts

Finding the optimal addition chain is a hard problem

A near optimal table of solutions can be computed using dynamic programming methods*

For all constants up to 2^{19}
- only 225 constants require more than 5 additions
 (214@6, 11@7)

*Sebastian Egner, Philips Research, Eindhoven
SD recoding vs. Addition Chains

Histogram of addition cost for all constants between 1 and 2^{19}
Outline

- DSP transform algorithms
- Algorithm manipulation for robustness
- Multiplication by constants
- Search Methods
- Results
Optimization Problem

Given a linear DSP transform and quality measure Q

1. Find the multiplierless implementation with the least arithmetic cost C (number of additions) that satisfies a given Q threshold

2. Find the multiplierless implementation with the highest quality Q for a given arithmetic cost C threshold
Quality Measures of Transforms

For an approximation \tilde{T} of a transform T.

- **Transform independent Q**
 - $\| T - \tilde{T} \|$ for some norm $\| \cdot \|$

- **Transform dependent Q**
 - coding gain for DCT
 - convolution error for DFT

- **Application-based Q**
 - MPEG standard compliance test
Search Space: approximating multiplicative constants

For each multiplication-by-constant in the transform choose custom bitwidth i? $[0 \leq k \leq 1]$
- Given n constants, k^n configurations are possible

But, for a given constant, not all k configurations lead to different cost,

e.g., given 5-bit constant 0.11101, SD recoding gives
- 5-bit = .11101 = 1.00\overline{1}01 \text{ ? 2 adds}
- 4-bit = .1110 = 1.00\overline{1}0 \text{ ? 1 adds}
- 3-bit = .111 = 1.00\overline{1} \text{ ? 1 adds}
- 2-bit = .11 = 0.11 \text{ ? 1 adds}
- 1-bit = .1 = 0.1 \text{ ? 0 adds}
- 0-bit = 0 = 0 \text{ ? 0 adds}

Recall all constants up to 19-bits can be reduced to 5 adds
Search Methods

مصطلح البحث

   ...
Outline

- DSP transform algorithms
- Algorithm manipulation for robustness
- Multiplication by constants
- Search Methods
- Results
Interaction between Transforms, Q and Search

- Goal: given a transform and a required Q threshold, find an approximation to the transform that requires the fewest additions
- Transforms and Q tested

<table>
<thead>
<tr>
<th>Transform</th>
<th>Quality Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pt. DCT-II</td>
<td>8.82 dB coding gain (cg)</td>
</tr>
<tr>
<td>16-pt. DFT</td>
<td>Convolution error = 1</td>
</tr>
<tr>
<td>32-pt. DCT-II</td>
<td>Limited Compliance (LC) MP3 decoder?</td>
</tr>
<tr>
<td>18x36 IMDCT</td>
<td>LC MP3 decoder?</td>
</tr>
</tbody>
</table>

- 3 searches methods were compared
- entire framework implemented as part of SPIRAL (www.spiral.net)

"MAD Decoder by Robert Mars, http://www.underbit.com/products/mad"
Example: Evolutionary Search

Evolutionary Search DCT of size 8 with 12 constants
- \(Q = cg > 8.82 \), exact DCT has 8.8259
- constant bit length in [0..31]

Choosing 31 bits for all constants: 126 additions

After 20 generations:
Solution with 36 additions

Choosing 31 bits for all constants: 126 additions
Summary of Search Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>8 pt. DCT-II (8.82 dB cg)</th>
<th>16 pt. DFT (conv. err = 1)</th>
<th>32 pt. DCT-II (LC MP3)</th>
<th>18x36 IMDCT (LC MP3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial (31 bits)</td>
<td>126</td>
<td>500</td>
<td>1222</td>
<td>643</td>
</tr>
<tr>
<td>global</td>
<td>40</td>
<td>168</td>
<td>408</td>
<td>182</td>
</tr>
<tr>
<td>evol.</td>
<td>36</td>
<td>185</td>
<td>490</td>
<td>212</td>
</tr>
<tr>
<td>greedy (top-down)</td>
<td>56</td>
<td>158</td>
<td>417</td>
<td>170</td>
</tr>
<tr>
<td>greedy (bottom-up)</td>
<td>57</td>
<td>154</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

One search method alone is not sufficient — each search performs differently depending on transform and quality measure.
Approximation of DCT within JPEG

- Approximate DCT-II inside JPEG while retain images of reasonable quality

 - $Q =$ Peak Signal to Noise Ratio (decibels) of decompressed JPEG image against the original uncompressed input image.

 $$\text{PSNR} \geq 20 \log_{10} \frac{255}{\text{RMSE}}$$

 $$\text{RMSE} = \sqrt{\frac{1}{512 \times 512} \sum_{i=0}^{512} \sum_{j=0}^{512} D(i, j) - O(i, j)^2}$$

- Q Threshold
 - Test Image: Lena, 512x512 pixel, 8-bit grayscale
 - PSNR must be at least 30 decibels or image becomes noticeably lossy).
Before approximating, the original DCT requires 261 additions and produces a Lena image with a PSNR of 37.6462 dB.

<table>
<thead>
<tr>
<th>Method</th>
<th># Additions</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>37</td>
<td>30.0354</td>
</tr>
<tr>
<td>evolutionary</td>
<td>67</td>
<td>36.5323</td>
</tr>
<tr>
<td>greedy (t-d)</td>
<td>28</td>
<td>32.4503</td>
</tr>
</tbody>
</table>

Compare constants global vs. greedy search:
- Global: [3/2, 3/2, 3/2, 3/2, 3/2, 3/2, 3/2, 1/2, -1/2, 1, -1/2, -1/2, 1/2, -1/2, -1, 1, -1, -1/4, 1/2, -1/4]
- Greedy: [3/2, 1, 1, 1, 1, 1, 1, 1/2, -1/2, 1, -1/2, 0, 1/2, 0, -1, 1, -1, 0, 1/2, -1/4]
- Greedy succeeds in zeroing 3 constants that affect the high frequency (HF) outputs ‘thrown away’ by JPEG

Base on source from Independent JPEG Group (IJG), http://www.iijg.org
Summary

- Application specific tuning yields ample opportunities for optimization
- The optimization flow can be automated
 - algorithm selection and manipulation
 - arithmetic reduction through search
 - arbitrary quality measures supported
- Details of the arithmetic reduction is non-trivial
 - non-monotonic relation between Q and C
 - different search methods succeed in different scenarios
- The results of this study needs to be combined with other aspects of DSP domain-specific high-level synthesis