A Java based web interface to Matlab

Siddharth Samsi, Ashok Krishnamurthy, Stanley Ahalt, John Nehrbass, Marlon Pierce
Outline

• Motivation and Goals
• Matlab Web Server from MathWorks
• The OSU Matlab Application Portal
• Steps for creating a typical portal application
• An example Matlab application using the portal
• Advantages and Limitations
• Future work
Motivations

- Matlab is a widely used computational environment for research and development.
- Many large applications continue to be developed and deployed using Matlab.
- Researchers from geographically distributed locations want to share applications and data.
- Users want to run Matlab applications without having to buy licenses for all toolboxes.
- Solution: A secure, web based Matlab application portal that allows researchers to upload code, run applications and visualize results.
Goals

• Create a portal capable of running Matlab applications over the web
• Provide the ability to interactively zoom and examine 2-D and 3-D plots
• Provide the ability to upload Matlab code for testing and benchmarking on common data
• Provide secure access to the Matlab application portal through user authentication and encrypted communication
Goal

Network

User 1
User 2

Database
Sensor data

https

IPS LAB.
THE OHIO STATE UNIVERSITY
Benefits of Research Portal

- Provides common platform for sharing data
- Enables easier sharing of code and results with the entire research community
- Single web based environment can provide easy access to all analysis tools
- Web interface can also be used to perform batch processing tasks more easily
Matlab Web Server

- Interface between the web and Matlab
- Uses Common Gateway Interface (CGI) to provide web based communication
- Provides helper functions for creating output HTML from result data
- Enables any Matlab application to be accessed over the web
Limitations of Matlab Web Server

- Matlab workspace is not retained
 - All variables and data generated by an application is lost upon completion of the program
 - Results need to be recomputed for subsequent analysis by other applications

- Does not provide interactivity with Matlab graphical output

- Difficult to track users
 - The system does not have a concept of sessions

- Does not provide network security
 - No data encryption provided
 - User authentication not provided
The OSU Matlab Portal

- Based on standard open source industry components: Apache, Tomcat, Linux, MySQL
- Java technology used to build a web interface to Matlab
 - Matlab includes a Java Virtual Machine (JVM), providing access to Java objects
- Java servlets enable web based communication
- Kerberized Java sockets facilitate communication between Matlab and a servlet
- Secure socket layer (SSL) used for encryption of all communication over the web
System Overview

Matlab 1 \rightarrow \cdots \rightarrow \text{Matlab portal running Tomcat servlet container}

Servlet Thread 1 \rightarrow \cdots \rightarrow \text{Kerberized sockets}

Servlet Thread n

User 1 \quad User n

https connections over the web
Java Servlets

- Java servlets perform the following functions
 - Authenticate users
 - Start a new Matlab process for each new user
 - Communicate with user’s browser using the https protocol
 - Communicate with user’s Matlab process using kerberized sockets
 - Track users through sessions
Kerberos, Java Sockets and Servlet

- The Kerberos mechanism is used for secure message exchanges using sockets
- The OSU Matlab portal uses Kerberos V5 mechanism for secure communication
- Kerberos ticket required for establishing credentials and secure communication
- Kerberos tickets expire when user logs out of the portal
Kerberos based communication

• Once a user is authenticated and logged in, a unique Kerberos ticket is generated
• Communication process:
 – Connection is established between Java socket and Servlet
 – Socket and Servlet instantiate a new security context for communication
 – Using the Kerberos ticket the Socket and Servlet mutually authenticate and exchange tokens for encryption
 – All communication between them is now encrypted using previously exchanged tokens
Database Access using JDBC

- Matlab provides the ability to access Java objects
- Custom Java classes and Java Database Connectivity (JDBC) are used to access databases
- Matlab can extract data from JDBC compliant databases using these classes
- Provides independence from the Matlab Database Toolbox
User Login Process

- New Matlab process
- Matlab
- Kerberized Java Socket
- Java Servlet
- Internet
- https protocol
- Kerberos based encryption

The Ohio State University
IPS LAB.
Designing Portal Applications

- Create necessary Matlab m-files
- Input to Matlab
 - Obtained from user, over the web
 - HTML forms can be used
- Output from Matlab
 - Results are displayed in the user’s browser
 - Necessary HTML can be created in Matlab as a string
 - Can use templates for generating output HTML
- Modification of configuration file
 - New applications should be registered with the server
Input from user to Matlab

• Input parameters to Matlab obtained from the web

• Standard HTML forms can be used to obtain user input

• HTML forms support input in the form of
 – Plain text
 – Pull down menus
 – Boolean operators (e.g.: HTML Radio buttons)
Sample Input HTML

```html
<form method="POST" action="/matkern/clientServlet">
Channel: <select name="channel">
  <option value="1702">Ctrl1_Arm_V
  <option value="1703">Lac_Accel
  <option value="1704">Brake_ON
  <option value="1705">Inter_Accel_V
  <option value="1706">Rear_Accel_V
</select>

Start time (0 to 999):<input type="text" size="5" maxlength="4" name="start" />
End time (0 to 999):<input type="text" size="5" maxlength="4" name="stop" />

<input type="hidden" name="channel" value="channel" />
<input type="hidden" name="exit" value="false" />
<input type="submit" value="Submit" name="channel start stop" />
<input type="reset" name="Reset" />
</form>
```

Call servlet to send request to Matlab

Name of application m-file to run

List of parameters for the specified application m-file
Output from Matlab

- Results from Matlab are displayed in the user’s browser
- Output HTML can be created as a Matlab string
 - Application m-file responsible for adding necessary HTML tags
 - Data from Matlab should be converted to appropriate form
- Use of HTML templates
 - Helper functions are provided to substitute the appropriate data into a template
 - Simpler to change the way results are displayed
Sample Output HTML using templates

```html
<html><head><title>Matlab over the web</title></head><body>
<br>x = #x#
<br>y = #y# <br>
<image src="#image1"> 
</body></html>
```

The ‘#' sign is used to enclose the output variables in HTML template.

- Use Matlab function `gethtml`, for creating the output HTML:

  ```matlab
  html = gethtml (‘template.html’, ‘x’, randn(1), ‘y’, -100, ’image1’, ’logo.jpg’ );
  ```

```html
<html><head><title>Matlab over the web</title></head><body>
<br>x = 0.84622
<br>y = -100 <br>
<image src="http://eepc107.eng.ohio-state.edu/logo.jpg”>
</body></html>
```
Interacting with Matlab graphics

• Java Applets are provided to enable interaction with Matlab generated graphics

• Applets facilitate:
 – Displaying of images at desired location
 – Capturing mouse events and mouse pointer coordinates
 – Drawing lines and rectangles to show the “zoom area”

• Applets also give the ability to play .wav and .au files
Interacting with Matlab graphics

- JavaScript is used to access mouse coordinates from the Java Applet
- Used to set parameter values to be sent to Matlab
- JavaScript can also be used to generate web pages
Example of graphical interaction

Result of zoom
- Zooming achieved by replotting data with appropriate axes

• “Zoom” area drawn by Applet.
• Zoom co-ordinates are read using JavaScript and sent to Matlab
Sample Application

- Video Query System:
 - User selects an input cloud cover image
 - Available cloud cover images are in the form of animated gifs
 - User chooses the weights to be assigned to the color feature and the motion feature
 - Based on user input, Matlab returns the images most similar to the test image
Video Query: Input HTML page
Video Query: Output HTML page
Deploying OSU Matlab Portal

• Core OSU Matlab components
 – Java Servlets and classes
 – Matlab m-files
 – Basic HTML web pages

• Software and Libraries required
 – Virtual Network Computing (VNC): Needed for providing Matlab with a virtual X-display
 – Kerberos clients
 – Tomcat servlet container
 – Java SDK
 – Apache Ant: Needed for compilation of Java source
 – C compiler
Installing the OSU Matlab Portal

• Shell scripts are provided to aid the installation of the portal

• Shell script performs following functions:
 – Creating the necessary directory structure
 – Reading environment variables and modifying the Java source code accordingly
 – Compilation of all source code
 – All class files, Matlab m-files and configuration files are put into appropriate directories
 – Cleanup: Removal of intermediate files
Registering Portal Applications

• Any new Matlab application to deployed must be registered with the portal
• For this, a configuration file is provided: *deploy.xml*

deploy.xml contains:
 – Application name
 – Input parameters expected and their names
 – Database to used, if needed
 – Application m – file name
Sample Configuration file deploy.xml

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
<webapps>
  <application>
    <name>dbvisual</name>
    <num-args>2</num-args>
    <args>
      <param>channel</param>
      <param>stop</param>
    </args>
    <db>
      <name>atcdata</name>
    </db>
    <mfile>dbvisual</mfile>
  </application>
</webapps>
```

- **Application name**
 - `dbvisual`
- **List of input parameters**
 - `channel`
 - `stop`
- **Database to be used**
 - `atcdata`
- **Application m-file**
 - `dbvisual`
Limitations

- **Matlab memory requirements**
 - Each Matlab process uses 50 Mb RAM on startup
 - Memory used increases as more variables are created

- **JavaScript and Applets needed for interacting with graphics**
 - Disabling JavaScript removes all graphics interactivity

- **Currently limited to Unix/Linux platforms**
Future Work

- Provide ability to upload and download data as well as Matlab code
- Provide bulletin board for exchange of ideas, problem discussion, etc.
- Develop administrator tools for portal
 - Make provisions for adding/removing users
 - Tools for portal administration
- Provide comprehensive documentation for the portal
Conclusion

• The OSU Matlab Portal has more flexibility than the Matlab Web Server from MathWorks
• Possible to create more interactive applications, e.g: zooming into images
• Eliminates the need for each user to buy Matlab and all toolboxes
• Less expensive alternative since it is based on freely available software/libraries
Additional Slides
Matlab Display Issues

• When run as a background process, Matlab runs in the terminal emulation mode

• Problems:
 – No X-Display available for Matlab
 – Cannot produce JPEG images directly
 – Representation of result data severely limited

• Solution:
 – Use Virtual Network Computing (VNC)
 – Matlab uses this X display for generating graphics
Virtual Network Computing (VNC)

- Remote display system
- Used to create a virtual desktops
- This virtual desktop can be accessed from a variety of platforms (Unix/Linux, Windows, MacOS)
- Has very small memory requirements
- Web site: http://www.uk.research.att.com/vnc/
Input to Matlab from the Web

• All Matlab applications deployed through the portal get input parameters from the user over the web
• Names of parameters are specified in deploy.xml
• The parameters are returned in the form of a structure paramStruct
• All applications have access to this variable in the workspace
• Applications must convert parameters from a string to appropriate format
Example: Accessing input parameters

• Consider an application with the following input parameters:
 – channel : string
 – start_time: integer
 – stop_time: integer

• User input over the web:
 – channel=‘engine_speed’
 – start_time=10
 – stop_time=40
Example (continued)

• In Matlab, the parameters can be accessed as:

```matlab
channel_name = paramStruct.channel ;
start = str2num(paramStruct.start_time) ;
end = str2num(paramStruct.stop_time) ;
```

• All parameters obtained over the web are available are accessed as strings in Matlab
Java Socket used by Matlab

• Matlab uses Java sockets for communicating with the Servlet
• Data obtained over the web and results to be sent back to the browser are obtained by Matlab using this socket
• This socket uses Kerberos for secure communication with the Servlet
Sending Results to Browser

- Applications are responsible for generating HTML required to display results in the user’s browser.
- Applications need only create the HTML in the form of a variable named `html`.
- This string will be sent back to the user’s browser by the Java socket.
Generating Images from Matlab plots

- Images to be displayed in the browser should be in the JPEG format.
- The Matlab ‘print’ function is used to print figures to JPEG images.
- Helper functions are provided for creating filenames, generating JPEG images and creating necessary HTML tags for displaying images.
Example: Creating and Displaying Images

- Following code illustrates the use of helper function for creating images:

```matlab
y = linspace(-2*pi,2*pi) ;
x = exp(y).*cos(y) ;
figure ;
handle = plot(x,y) ; axis tight ; grid ;
file_name = getFileName ;
makejpeg (file_name, handle) ;
html = addImage ( file_name ) ;
```

- `getFileName`: Returns a randomly generated filename
- `makejpeg`: Prints the figure to JPEG format
- `addImage`: Creates HTML `` tags with appropriate file name and path to file