Software Architectures for Morphing in Polymorphous Computing Architectures

Dan Campbell, Mark Richards
Georgia Institute of Technology

Dennis Cottel, Randall Judd
USN SPAWAR Systems Center, San Diego

Development Process
- Two-stage compile process enables portable performance across PCA architectures

Morphware Stable Interface Architecture
- Two intermediate representations
 - Stable API: application code in C/C++ and a stream language such as Brook or Streamit
 - Stable Architecture Abstraction Layer: PCA virtual machine code

SAPI and SAAL
- Stable APIs (SAPI)
 - Streamit
 - C/C++
 - Brook
 - Others...
- Virtual Machine API
 - UVM
 - SVM
 - TVM-HAL

Machine Models
- Used to optimize VM output for different target platforms
 - Coarse grain mapping of application to target resources
- Describes target platform using common dictionary of virtual resources and attributes
 - Processors
 - Memories
 - Net links

The Morphware Stable Interface
- Standard PCA Application Environment
 - Defined by a set of open standards documents
- Based on a virtual machine (VM) abstraction layer with standardized metadata and programming languages

Morphing in the MSI
- MSI assumes component-based architecture
 - natural and intuitive boundaries for compilation and run time reconfiguration
 - natural support for multiple SWEPT-variant implementations of units of functionality
- Morphing implies changing ...
 - component implementations in use;
 - resources assigned to components;
 - or both
- Implies a taxonomy of morph types
- Morphing will be implemented at various levels of MSI
 - compiler
 - run time system
 - resource manager

Machine Models
- User accesses User level VM for thread code, Stream VM for stream code
- TVM HAL abstracts low level hardware to UVM

VM Layers
- User accesses User level VM for thread code, Stream VM for stream code
- TVM HAL abstracts low level hardware to UVM

Morph Taxonomy

For more information: www.morphware.org