Motivation
- The DARPA HPC Challenge program has created the HPC Challenge benchmark suite in an effort to redefine how we measure productivity in the HPC domain.
- MATLAB® is the primary high level language used within the signal processing community; increasingly used for:
 - large system simulations
 - processing data in the field
- pMatlab implements global array semantics in MATLAB
 - Global array semantics allow indexing and general element access for distributed data
- Implementing the HPC Challenge benchmarks using pMatlab allows a unique opportunity to explore the merits of pMatlab with respect to high performance embedded computing.

Goals
- Implement and analyze the performance of HPC Challenge benchmarks using pMatlab
- Optimize and add functionality to the pMatlab toolbox
- Compare traditional C/MPI with MATLAB using global array semantics.
- Measurements of productivity include:
 - Maximum problem size: Largest problem that can be solved on fit into memory.
 - Execution performance: Run-time performance of the benchmark
 - Code size: Software lines of code (SLOC) required to implement the benchmark

Benchmark Platform
- Top500 (High Performance Computing)
- STREAM
- GEMM (matrix multiply)
- TRID
- RandomAccess
- FFT

HPCC Challenge
- Four key benchmarks have significant relevance to HPEC:
 - FFT: Distributed corner turn and FFT is important in multi-sensor signal processing
 - RandomAccess: Random data accesses typical of "past detection" operations
 - Top500: Matrix-matrix multiplies typical of multi-element beamforming
 - STREAM: Distributed vector operations common to signal processing
- Multiple implementations:
 - C/Fortran, C/Fortran+MPI, MATLAB, pMatlab

Conclusions
- Memory scalability comparable to C/MPI on nearly all of HPC Challenge for 128 CPUs
- Allows MATLAB users to work on much larger problems.
- Execution performance comparable to C/MPI on nearly all of HPC Challenge (for 128 CPUs). Allows MATLAB users to effectively exploit parallel computing, and can achieve performance comparable to C/MPI.
- Code size much smaller. Allows MATLAB users to write programs much faster than C/MPI.
- pMatlab allows MATLAB users to effectively exploit parallel computing, and can achieve performance comparable to C/MPI.

Top500 Results
- **Algorithm**: pMatlab
- **Software Code Size**: C/MPI
- **Ratio**: 3x
- **Maximum Problem Size**: 128x
- **Execution Performance**: comparable to C/MPI
- **RandomAccess (v0.5) Results**
- **Algorithm**: pMatlab
- **Software Code Size**: C/MPI
- **Ratio**: 3x
- **Maximum Problem Size**: 128x
- **Execution Performance**: comparable to C/MPI