pMatlab Takes the HPCchallenge

Ryan Haney, Hahn Kim, Andrew Funk, Jeremy Kepner, Charles Rader, Albert Reuther and Nadya Travinin

HPEC 2004

* This work is sponsored by Defense Advanced Research Projects Administration, under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.
Motivation and Goals

• Motivation
 – The DARPA HPCS program has created the HPCchallenge benchmark suite in an effort to redefine how we measure productivity in the HPC domain
 – Implementing the HPCchallenge benchmarks using pMatlab allows a unique opportunity to explore the merits of pMatlab with respect to HPEC

• Goals
 – Compare traditional C/MPI with pMatlab. Measurements of productivity include:
 • **Maximum problem size**: Largest problem that can be solved or fit into memory
 • **Execution performance**: Run-time performance of the benchmark
 • **Code size**: Software lines of code (SLOC) required to implement the benchmark
HPCchallenge Relevance to HPEC

- HPCchallenge benchmarks encompass key embedded signal processing operations
 - FFT: Distributed corner turn and FFTs important in multi-sensor signal processing
 - RandomAccess: Random data accesses typical of “post detection” operations
 - Top500: Matrix-matrix multiplies typical of multi-element beamforming
 - STREAM: Distributed vector operations common to signal processing
FFT Results

![Graphs showing FFT results for different algorithms and software code sizes.](image)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>C/MPI</th>
<th>pMatlab</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOC</td>
<td>2509</td>
<td>72</td>
<td>35</td>
</tr>
</tbody>
</table>

- pMatlab memory scalability comparable to C/MPI (128x on 128 CPUs)
- pMatlab execution performance comparable to C/MPI (55x on 128 CPUs)
- pMatlab code size is 35x smaller than C/MPI