Requirements for Scalable Application Specific Processing in Commercial HPEC

Presented by:
Steve Miller
Chief Engineer

Silicon Graphics, Inc.
The 3 Single-Paradigm Architectures

<table>
<thead>
<tr>
<th>Scalar</th>
<th>Vector</th>
<th>App-Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Itanium</td>
<td>Cray X1</td>
<td>Graphics - GPU</td>
</tr>
<tr>
<td>SGI MIPS</td>
<td>NEC SX</td>
<td>Signals - DSP</td>
</tr>
<tr>
<td>IBM Power</td>
<td></td>
<td>Prog’ble - FPGA</td>
</tr>
<tr>
<td>Sun SPARC</td>
<td></td>
<td>Other ASICs</td>
</tr>
<tr>
<td>HP PA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paradigms to Applications

Diagram showing the relationship between compute intensity, data locality, and application-specific, vector, and scalar operations.
Microprocessors & Heat

Chip Maximum Power in watts/cm²

Thermal Density

- Not too long to reach Nuclear Reactor
- Itanium – 130 watts
- Pentium 4 – 75 watts
- Pentium III – 35 watts
- Pentium II – 35 watts
- Pentium Pro – 30 watts

Surpassed Heating Plate

- Pentium – 14 watts
- 1386 – 1 watt
- 1486 – 2 watts

Year

1985 1995 2001

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ
Architectural Challenges

• **Ease of Use**
 – Languages
 – Compilers
 – Debuggers
 – APIs

• **Performance**
 – Bandwidth to/from System
 – Scalability