An Efficient Architecture for Ultra Long FFTs in FPGAs and ASICS

- Architecture optimized for Fast Ultra Long FFTs
- Parallel FFT structure reduces external memory bandwidth requirements
- Lengths from 32K to 256M
- Optimized for continuous data FFTs
- Architecture reduces the algorithm to two smaller manageable FFT engines
Ultra Long FFTs

- An FFT length that exceeds the internal memory requirements of the FPGA or ASIC
- System cost can be reduced in moderate length FFTs in designs where the FPGA/ASIC size is driven by the memory requirements.
- This architecture puts most of the storage for the FFT off chip in relatively inexpensive SRAM, reducing the system cost.
- Ultra Long FFTs have a similar structure to 2D FFTs
- Cooley-Tukey algorithm
- Minimizes external memory IC count and bandwidth
What Ultra Long FFTs Need

The following shows the execution unit (logic) and memory requirement for continuous data FFTs of two lengths:

<table>
<thead>
<tr>
<th></th>
<th>1K</th>
<th>1M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterflies</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Memory</td>
<td>2K</td>
<td>2M</td>
</tr>
</tbody>
</table>

- The logic requirements for a 1M FFT are only double a 1K FFT, while the memory requirements are 1000 times.
- Logic for 1M FFT easily fits into large FPGA
- Memory requirements exceed what is available even in a large FPGA
Computing $N = N_1 \times N_2$

The $N_1 \times N_2$ FFT can be computed as:

$$X[k_1N_2+k_2] = \sum_{n_1=0}^{N_1-1} e^{-j \frac{2\pi n_1 k_2}{N_1}} \left(\sum_{n_2=0}^{N_2-1} x[n_2N_1+n_1] e^{-j \frac{2\pi n_2 k_2}{N_2}} \right) e^{-j \frac{2\pi n_1 k_1}{N_1}}$$

Computing this for:

$$0 \leq k_1 \leq N_1-1 \quad \text{and} \quad 0 \leq k_2 \leq N_2-1$$

Results in:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} \quad \text{for} \quad 0 \leq k \leq N-1, \quad \text{as desired}$$
N = N₁ x N₂ Architecture

- Three banks of external QDR Memory (single copy each)
- Two continuous data FFTs (N₁, N₂) inside FPGA
- Twiddle Multiply provides vector rotation between N₂ and N₁ FFTs.
- Final matrix transpose for normal order output.
QDR SRAM

- Simultaneous read/writes (separate address/data bus) allow single bank of memory per memory transpose.
- DDR Style I/O so dual clock edge transfer with FPGA results in narrower data path.
- Single copy can be kept at each stage while maintaining continuous data flow.
- Special address sequence employed so data isn't overwritten in continuous data application. Reduce IC count.
- QDR with Virtex II Pro I/O up to 150MHz (read/write)
- QDR II with Virtex II Pro I/O up to 200MHz (read/write)
CORDIC For Twiddle Factors Generation

- Almost N/2 twiddle factors required.
- Very large ROM for FPGA or ASIC.
- CORDIC a natural fit, use coordinate product as input.

\[F_{N_2}[n_1,n_2] \]

CORDIC produces the sin/cos terms for angle input.
Matrix Transpose Address Sequence

- Allows single copy for each matrix transpose.
- Operates on continuous data, one point read/written per clock cycle.
- Reduces memory IC count.
- Simple logic for sequence generation.
- Works for square or rectangular matrices.
- Sequence repeats after $\log_2(N)$ sets.
- Write always follows read.
- Simple $N = N_1 \times N_2 = 8$ example:

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>1st</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

- First and last matrix transpose go left to right in table, second right to left.
Fixed vs. Floating Point

- Numbers in radix-2 FFT can grow by $\log_2(N)$, or 1 bit per butterfly rank.
- A 1M FFT can have 20 bits of growth. With 16 bit inputs results would be 36 bits.
- Scaling always required in fixed point versions.
- Fixed point scaling should be limited to every to every other rank, so 10 times for a 1M FFT producing 26 bit results from 16 bit input.
- Floating point FFT maintains precision without overflowing.
- Floating Point FFT uses approximately 8 times the logic of a similar precision fixed point version.
Virtex II Pro Performance – 512K FFT

- 80MHz Continuous Data
- 1K FFT Engine – 4 butterflies
- 512 FFT Engine – 4 butterflies
- FFT Engines at 160MHz
- QDR memory at 80MHz
- Real 14 bit input, complex 24 bit output

Virtex II Pro – Device Usage
- Slices - 12,500
- BlockRAM - 144
- MULT18x18 – 88

Fits in XC2VP40
Other Uses of Architecture

- 2D FFT – Remove first matrix transpose and twiddle multiply.
- Variable Length – Use variable length FFTs and dynamic matrix transpose blocks.
- Mixed Radix FFTs – Substitute other than radix-2 for 2nd FFT.
- Performance increases easy with parallel input radix-2 FFTs and multiple paths to SRAM.
Other Dillon Engineering Resources

- ParaCore Architect (parameterized core builder)
- DSP Algorithms
 - Mixed radix FFTs
 - 2D FFTs for image processing
 - Fixed or floating-point FFTs
 - Floating point math library
 - AES Cryptography
- System level DSP
 - OFDM Transceivers
 - Radar Processing on single FPGA
 - Image Compression/Processing
- Hardware/Software SOC
 - High speed Ethernet Appliances
 - Linux Based SOC in FPGA
 - MicroBlaze application