Motivation: Accelerate image processing tasks through efficient use of FPGAs. Combine already designed components at runtime to implement series of transformations (pipelines)

Fast, Flexible Image Processing
- Run this pipeline:
 - Median Filter → Image size of 40185 pixels → Histogram

On this Environment:
- Which component implementations to use?
- How to minimize overall latency?
- When to use FPGA?
- How to change the pipeline or interfaces dynamically?

Goal: If pipeline selection is left to the image analyst, can the other three steps be performed automatically at runtime?

Four Shortcomings in Codesign
- Using reconfigurable hardware incurs execution costs not present in software or ASIC-based systems
 - Hardware initialization
 - Communication
 - Reprogramming

Efficient Use of FPGAs
- Software algorithm’s runtime for small images less than the hardware costs
 - Profiling the hardware and software runtimes for different image sizes determines the crossover point
 - Deciding at runtime to execute in software or hardware is simple for one algorithm processing one image

Image Processing Pipelines
- Series of image processing algorithms applied to an image
 - Each algorithm has a software and hardware implementation
 - Finding the optimal pipeline assignment is complicated
 - Exponential number of implementations
 - Coupling costs differ for each pipeline assignment
 - Need a strategy to find a fast pipeline implementation at runtime

Our Codesign Environment
- **Pipeline Selection:** choosing and ordering components
- **Pipeline Assignment:** assigning pipelines to minimize overall latency with the efficient use of software and FPGA
- **Pipeline Compilation:** creating image processing pipelines dynamically
- **Pipeline Execution:** executing image processing pipelines dynamically

Pipeline Assignment
- Chooses an algorithm to solve PA based on pipeline size

Pipeline Compilation
- Builds executable pipeline from PA solution

Pipeline Execution
- Executes the pipelines

Pipeline Assignment
- Choose algorithm based on pipeline size

Runtime Interfacing for Pipeline Synthesis
- Connects the appropriate implementations so that the coupling costs are satisfied

Four Challenges to Codesign
- Unify implementation languages
- Partitioning design
- Interfacing hardware and software
- Abstract communication layer and runtime interface
- Choosing a target architecture

Reconfigurable Systems
- Applications are configured statically
- Design is not sensitive to user changes
- FPGA-based tools do not account for overhead costs
- Latency is underestimated
- Partition bound too early
- Interface changes too costly
- System code needs extensive rewrites

SW/HW Runtime Procedural Partitioning Tool
- Solves PA within either fixed or adaptive time limit based on user’s choice

Optimization Method
- Fixed
- Adaptive

Dynamic Programming
- 1-15
- 10-20
- 16-20

Random Pipeline Test
- Forty test pipelines of different lengths were run in the Dynamo system for the best latency solution
- Image size of 40185 pixels
- Average ARE: 23% with overhead, 70% without

Future Work
- Extend the pipeline assignment problem for FPGA devices
- in a network of workstations
- with embedded processors
- Extend the pipeline assignment problem’s objectives to include power minimization
- Extend the latency model to include an estimation of the error for better accuracy

Publications

A Two Component Pipeline
- **Median Filter**
- Image size of 40185 pixels

Comparison of Hardware and Software Pipeline Performances

Packet Exchange Platform
- **Runtime Environment’s Communication Agent**
- **Pipeline’s Communication Agent**

Dynamo: A Runtime Codesign Environment
- Dr. Miriam Leeser
- Dr. Laurie Smith King
- Heather Quinn