
HPEC 2005 JJC/ETP 1 9/22/05

High Performance Embedded Computing Workshop 2005
MIT Lincoln Laboratory

22 September 2005

Joe Cook / Louis Morda / Rick Pancoast - Lockheed Martin MS2
Steve Crago / Jinwoo Suh - USC-ISI

Implementation of an Embedded DoD
VSIPL Application on the DARPA

Polymorphous Computing
Architectures (PCA) Raw Processor

Maritime Systems & Sensors

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 2 9/22/05

DARPA is Developing Polymorphous
Computing Architectures (PCA)

Mission: Enable reactive multi-mission and in-flight retargetable
embedded information computing systems that will reduce
mission computing payload adaptation, optimization, and
verification times from months and years to minutes. Develop
processing architectures that can reconfigure and adapt to
mission requirements.

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 3 9/22/05

DARPA is Developing Polymorphous
Computing Architectures (PCA)

Background: Current DoD embedded information computing
systems can be characterized as static in nature, relying on
hardware driven heterogeneous point-solutions that represent
fixed architectures and software optimizations. Today’s
embedded computing systems were developed for fixed
mission scenarios and can not provide the robust embedded
processing capability necessary to fully support retargetable
and multi-mission systems. Nor are they able to accommodate
a growing reliance on reactive and dynamic collaborative
information centric strategies.

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 4 9/22/05

Software Design and Development Costs Far Exceed the
Hardware Development Costs for a Large DoD Program

When New Chips and Architectures Become Available to the
Community, How Do We Design Them into DoD Systems?

DoD System Integrators Cannot Afford to Develop the Specialized
Talent Required to Program Unique Chips and Architectures at the
Lowest Levels (e.g. Microcode Applications and Fine Grain Data
Movement)

One Solution to the Dilemma Pursued by Lockheed Martin MS2 is
to use Industry Standard APIs (e.g. MPI, VSIPL, HPEC-SI /
VSIPL++, CORBA, Data Re-Org, etc.) to Implement the Application

The Portability Provided Significantly Reduces Software
Development Cost and Enhances Re-Targeting and Reuse

We Have Begun to Implement One of Our Standard Processing
Benchmarks, Radar Pulse Compression, on the PCA Raw Chip
Architecture from MIT, Using a C VSIPL API

How Will DoD System Integrators Develop /
Program / Integrate & Test PCA Architectures?

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 5 9/22/05

Run the VSIPL / VSIPL++ API on the Host Processor, and Call
Assembly or Microcoded Functions (Primitives) that are Optimized
for the Particular Architecture of Interest (PCA, FPGA, etc.)

This is the Approach Selected for the Pulse Compression VSIPL / RAW
Demonstration, Since it is Probably the Easiest to Implement and we
Have the Necessary Primitive Functions

VSIPL++ Calls on the Host Invoke an Optimized C++ Compiler for
the Attached PCA Architecture

This appears to be the approach that UT Austin is taking with
the TRIPS C compiler

C++ / VSIPL++ is Compiled and Optimized Directly for the PCA
Architecture of Interest, Viewed as a “Parallel Processor” that
Exploits Parallel VSIPL++ Optimizations

There Are Probably Other Approaches That Will Evolve

Different Approaches to Using
VSIPL With PCA Architectures:

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 6 9/22/05

Develop a MATLAB Program to Perform Frequency Domain Pulse
Compression using an FFT - Complex Multiply by a Reference
Function - Inverse FFT Algorithm; Provide Input Data Set, Frequency
Domain Reference Waveform, and Output Data Set for Comparison

[Complete]

Develop a C / VSIPL Generic Implementation (Using Randy Judd’s
C - VSIPL Reference Library) of the MATLAB Pulse Compression
Algorithm [Complete]

Develop a C Program that will Execute on the Host Processor, and
Execute a Streaming VSIPL (Wrapper) Algorithm (e.g Pulse
Compression) on the Raw Processor on the Handheld Board

[VSIPL Running on Raw Simulator - VSIPL on Raw In-Progress]

Provide a Demonstration GUI in Java using Ptolemy Ptplot
[Prototype GUI is Running]

Morph the Environment to Switch to a Threaded Algorithm Process
(e.g. Integrated Radar Search & Track Tracking Algorithm) on Raw;

[In-Progress]

Compare the Output from Raw (Validate) with the Output From the
MATLAB Simulation and Demonstrate for USC-ISI, DARPA and the
Navy / MDA; Develop a DoD Transition Plan

AMP Phase 2 VSIPL / Raw Demo Plan

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 7 9/22/05

Run the VSIPL / VSIPL++ API on the Host Processor, and Call
Assembly or Microcoded Functions (Primitives) that are Optimized
for the Raw Architecture

Input Data is Plotted on the Host Processor then Downloaded to
the PCA Raw Processor Chip

Graphic on Host Processor Indicates which Raw Tiles are
Executing which VSIPL Pulse Compression Function Primitives

Output Data is Uploaded to the Host Processor from the PCA Raw
Chip then Plotted on the Host Processor

The Above Cycle Repeats to Represent Real-Time Repetitive
Radar Pulse Compression Operations

Approach to Using VSIPL Pulse
Compression With PCA Raw Architecture:

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 8 9/22/05

AMP Phase 2 Demo Approach

– Data Sets Verified by Running
Through a MATLAB Pulse Compression
Algorithm Offline

– Data Transferred From Host Processor
to Raw Processor

–1K FFT, Complex Multiply, and IFFT
implemented on Raw Chip; Invoked via
VSIPL / VSIPL++ API in the Host
Processor

– Pulse Compression based upon
existing Raw Primitives: FFT, complex
multiply by a realistic Reference
Function, & IFFT

– Morph from a Streaming Pulse
Compression Process to a Threaded
Track Process

Input
Data FFT

Complex
Multiply

IFFT Output
Data

Pulse
Compression

Reference
FFT

Host Processor

Input Data Output DataControl

Display

Raw Processor

(VSIPL API)

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 9 9/22/05

MATLAB VSIPL / Raw Data Sets

1 KHz PRF (1ms PRI)
20 MHz sampling rate
870 samples
Echo (Envelope Shown)

10 µs pulse
Linear FM chirp up
200 samples

Pulse Shifted to Simulate
Object Range Movement

Pulse Compression
Input (MatLab)

Pulse Compression
Frequency Domain
Reference (MatLab)

Pulse Compression
Output (MatLab)

Frequency Domain Reference
10 µs
Linear FM chirp up
1024 complex samples
Hamming weighting
Bit-reversed to match optimized
implementation possible

671 samples out of Pulse
Compression
Peak Indicates Detection / Range
Range Shifts In Accordance With
Input Pulse Shift

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 10 9/22/05

FFT FFT FFT FFT

FFT FFT CMPYCMPY

IFFT IFFT IFFT IFFT

IFFT IFFT Spare Spare

FFT FFT FFT FFT

FFT FFT FFT FFT

FFT FFT FFT FFT

FFT FFT FFT FFT

FFT FFT FFT FFT

FFT FFT CMPYCMPY

IFFT IFFT IFFT IFFT

IFFT IFFT Spare Spare

CMPYCMPY CMPYCMPY

CMPYCMPY CMPYCMPY

CMPYCMPY CMPYCMPY

CMPYCMPY CMPYCMPY

FFT FFT FFT FFT

FFT FFT CMPYCMPY

IFFT IFFT IFFT IFFT

IFFT IFFT Spare Spare

IFFT IFFT IFFT IFFT

IFFT IFFT IFFT IFFT

IFFT IFFT IFFT IFFT

IFFT IFFT IFFT IFFT

Input Data

Output Data

AMP VSIPL / Raw Demo Display

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 11 9/22/05

AMP VSIPL / Raw Demo Code

void pulseCompress(vsip_cvview_f * in, vsip_cvview_f* ref, vsip_cvview_f* out)

{ vsip_length size = vsip_cvgetlength_f(in);

//FFT OBJECT SETUP REQUIRED BY VSIPL

vsip_fft_f *forwardFft = vsip_ccfftop_create_f(size, 1.0, VSIP_FFT_FWD,1,VSIP_ALG_SPACE);

vsip_fft_f *inverseFft = vsip_ccfftop_create_f(size,1.0/size,VSIP_FFT_INV,1,VSIP_ALG_SPACE);

//TEMPORARY VIEWS TO HOLD INTERMEDIATE OUTPUTS

vsip_cvview_f *tmpView1=vsip_cvcreate_f(size,VSIP_MEM_NONE);

vsip_cvview_f *tmpView2=vsip_cvcreate_f(size,VSIP_MEM_NONE);

//FORWARD FFT

vsip_ccfftop_f(forwardFft,in,tmpView1);

//COMPLEX MULTIPY BY REFERENCE WAVEFORM

vsip_cvmul_f(tmpView1,ref,tmpView2);

//INVERSE FFT

vsip_ccfftop_f(inverseFft,tmpView2,out);

//CLEAN-UP

vsip_cvalldestroy_f(tmpView1);

vsip_cvalldestroy_f(tmpView2);

vsip_fft_destroy_f(forwardFft);

vsip_fft_destroy_f(inverseFft) }

Previously Developed

Generic Pulse
Compression Code

void pulseCompress(in, ref, out)

{… Generic Pulse Compression Code … }

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 12 9/22/05

void pulseCompress(in, ref, out)

{… Generic Pulse Compression Code … }

AMP VSIPL / Raw Demo Code

VSIPL API Interface
Optimized VSIPL

for Raw
Optimized VSIPL for

Platform B

Raw Hardware Traditional Platform

Common VSIPL interface allows Application Designer to develop
“Write Once, Use Anywhere” Code

Reduced Portability Costs, and Increasing Platform Options

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 13 9/22/05

I/O Bandwidth Issues

Increased computational resources make managing bandwidth
more critical

I/O has not scaled as fast as computational power
Architects have always known this, but the software has not
caught up

Memory
Network I/O

Traditional Processor

PCA

Scaled Tiled Architecture

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 14 9/22/05

Interprocessor Communication

Low latency connections between compute tiles expose new
software issues

Library-based message passing paradigm insufficient

Traditional Multiprocessor

DRAM
~100 cycles

DRAM
~100 cycles~1000 cycles

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

<10 cycles
latency between

tiles

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 15 9/22/05

Important Software Issues

Inter-procedural optimizations critical
Data cannot be sent to off-chip memory modules between
all computations

Compiler must understand data movement issues
Language cannot obscure data flow

PCA just beginning to address these issues
R-stream, StreaMIT, SVM

HPEC-SI just starting to address multiprocessors
Focused on standardization and tech transfer, not
research
Just starting to think about tiled architectures

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 16 9/22/05

PCA Raw / HPEC-SI Demo Summary

Frequency Domain Pulse Compression Demonstration is
Planned for 4Q CY2005 Using C / VSIPL API, Implemented on
Raw

Morph the Environment to Switch to a Threaded Algorithm
Process on Raw Using a Demonstration GUI

More compiler/software problems to be solved to optimize for
PCA architectures

Validate the Output from Raw and Demonstrate for USC-ISI,
DARPA and the Navy / MDA; Develop a DoD Transition Plan

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 17 9/22/05

PCA to DoD Transition Plan
Lockheed Martin MS2 is Writing Real-
Time Embedded Signal Processing
Application Code Using Industry
Standard APIs (MPI, VSIPL, VSIPL++,
etc.) for Next Generation Shipboard
Ballistic Missile Defense (and Other
Applications)

PCA Architectures May Provide a
Significant Advantage in Size, Weight,
Power, Cost, etc. for DoD Applications

Industry Standard APIs and Middleware
on the PCA Architectures Will Provide
the Portability Necessary to Transition
Mainstream PowerPC Applications to
PCA Architectures for DoD

Demonstrations for Other Lockheed
Martin Businesses and DoD Program
Managers Will Provide Metrics for
Improving SWEPT

Maritime Systems & Sensors

HPEC 2005 JJC/ETP 18 9/22/05

Acknowledgements

Work presented is funded by DARPA IPTO on the
Polymorphous Computing Architectures (PCA) Program

Material contained herein is the opinion of the author, and
does not imply endorsement by the US Government.

Thanks to USC-ISI East, Steve Crago and Jinwoo Suh, for
Support in Utilizing the Raw Processor Board in the USC-ISI
Laboratory.

