Nonlinear Equalization of RF Receivers

HPC-Enabled Search for a Near-Optimal Architecture

Benjamin Miller
Gil Raz
Brandon Kam
Joel Goodman

19 September 2006

HPEC Workshop 2006

This work is sponsored by the Defense Advanced Research Projects Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.
Nonlinear Equalization with the Partitioned Horizontal Coordinate System (PHoCS)

- **Goal:** increase dynamic range of receive chain by reducing nonlinear distortions

- **Nonlinear filters typically have computational complexity too high for real-time operation**
- **PHoCS is a “pruned” version of the Volterra kernel with low real-time complexity, but . . .**
- **We need to search a large space for the best PHoCS architecture**
- **Algorithmic improvements and HPC enable this search**
Computational Cost of Searching for a PHoCS Architecture

- Use a greedy search algorithm that iteratively finds the local optimum
- Comparisons required to choose N processing elements from a set of M:

<table>
<thead>
<tr>
<th>Typical Values</th>
<th>combinatorial search</th>
<th>greedy search</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1,200, N = 20</td>
<td>$\sim 10^{43}$</td>
<td>24,000</td>
</tr>
<tr>
<td>M = 11,400, N = 80</td>
<td>$\sim 10^{205}$</td>
<td>912,000</td>
</tr>
</tbody>
</table>

- Still, a typical experiment requires over 5×10^{14} operations
Results (Enabled by HPC Technologies)

MatlabMPI and LLGrid allow us to complete in days experiments that would have taken months

We can improve wideband ADC IFDR by 27 dB, decades beyond the state-of-the-art!