FPGA Technology Meeting the Multicomputer Environment:
Improving Processing Performance and Bandwidth in Advanced Naval Radar Missions

Sarah Leeper, Mercury Computer Systems
Mike Iaquinto, Lockheed Martin Maritime Systems & Sensors
Joseph Finnivan, Mercury Computer Systems
Rick Brooks, Mercury Computer Systems
Naval Missions of the Future

• **Aegis Weapons System** provides heart of surveillance and airborne threat response for the U.S. Navy
 - Incorporates advanced radar systems with Mercury Computer Systems’ signal processing systems

• **Lockheed Martin** extends traditional surveillance and response to include sea-based Ballistic Missile Defense (BMD) capability
 - Requires real-time detection, tracking, and discrimination performance against threat-representative targets and countermeasures

• **Combined goal of Lockheed Martin & Mercury** to architect multi-mission capable solution
 - Need for system architectures with a mixture of GPPs and FPGAs to satisfy processing needs
 - Rich in flexible and reconfigurable resources
 - Offering unprecedented I/O bandwidth

Mission-critical demands for tomorrow’s naval threats require ever increasing application enrichment and system performance
Mission Goals Set FCN Requirements

• **Integration of FPGA module into PowerStream 7000** delivered more system performance
 ▪ Input high-bandwidth raw data from a remote sensor
 ▪ Perform front-end algorithms in real-time
 ▪ Handle diverse set of processing scenarios
 ▪ Distribute post-processed data to a GPP array

• **Mission requirements for FCN module**
 ▪ Utilize standardize COTS interfaces for sensor I/O, control, and data
 ▪ Allow high-bandwidth/low-latency communication between FPGAs in system
 ▪ Support fault detection in the design
 ▪ Provide a significantly dense board that offers the flexibility to power more than one mission application
 ▪ Large FPGAs with a significant amount of gates for application development
 ▪ Support high-bandwidth external RAM for memory-intensive algorithms
 ▪ Support for commercially available FPGA development tools
 ▪ Enable FPGA-mastered DMA capability for sending/receiving data from/to GPP array
 ▪ Allow for fast download of FPGA bit streams to support low-latency mission changes
FCN Architecture

- Three FPGA node architecture
 - Each node - 32 MB QDR SRAM
 - Each node - 128 MB RLDRAM
- Two 10 Gigabit Ethernet ports for standardized, high-speed I/O
- Tremendous chip-to-chip interconnect for on-board data distribution
 - Five MGTs at 2.5 Gbps between each FPGA
- Parallel RapidIO interconnect at 622 MB/sec peak per link