Multiprocessor Implementation of a Face Detection System

HPEC 2007
September 18, 2007

Sankalita Saha¹, Neal K. Bambha²
and Shuvra S. Bhattacharyya¹

¹Electrical and Computer Engineering Department, University of Maryland, College Park MD, USA
²Army Research Lab, Adelphi, MD, USA
Overview

• Face detection and recognition
 – Important application for smart cameras,
 – Typically characterized by computational and memory intensive operations
 – Require significant performance for real-time realization
 – Multiprocessor implementation is an effective approach for power/performance gains for such systems
Face Detection Algorithm

Initialization

Read Img and downsample

Construct ellipse-shaped face masks

Find correlation between the Img I_d and each mask j

Find max correlation value

Mark the outline of the detected face in the image

Img I

Img I_d
Architecture for Hardware Implementation

Masks created offline

External Memory

Processing Element (PE) 1

Processing Element (PE) 2

Processing Element (PE) n

External Memory Controller

Input Interface

Output Interface

To input I/F

To eternal memory controller

I/F with External Memory Controller

Buffers to hold data from input I/F

CONTROL UNIT

Main Data Processing Unit

I/F with output I/F

Buffers to hold data from external memory

Buffers to hold results from this PE

I/F with input I/F
Architecture for Software Implementation

RI: Reads Image I and downsamples it
BM$_i$: Creates the mask set for PE$_i$
PE$_i$: Computes correlation for mask set BM$_i$ and image I and finds the local best match
FR: Finalize results by finding the best match amongst all the local matches and marking the outline
Pi: Processor id

4 processor implementation