The Tile Processor: A 64-Core Multicore for Embedded Processing

Anant Agarwal
Tilera Corporation

HPEC 2007
Markets Demanding More Performance

Networking market
- Demand for high performance
 - Services being integrated in the infrastructure
 - Faster speeds 1Gbps » 2Gbps » 4Gpbs » 10 Gbps
- Demand for more services
 - In-line L4 – L7 services, intelligence everywhere
 - Integration of video with networking

Digital Multimedia market
- Demand for high performance
 - H.264 encoding for High Definition
 - Pre & post processing
- Demand for more services
 - VoD, video conferencing, transcoding, transrating

... and with power efficiency and programming ease
Industry Aggressively Embracing Multicore

Inherent architectural bottlenecks:
- No scalability
- Power inefficiency
- Primitive programming model
Tiled Multicore Closes the Performance Gap

- Cores connected by mesh network
- Unlike buses, meshes scale
- Resources are distributed
 - improved power efficiency
- Modular – easy to layout and verify

Core + Switch = Tile
The TILE64™ Processor

Multicore Performance (90nm)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tiles (general purpose cores)</td>
<td>64</td>
</tr>
<tr>
<td>On chip distributed cache</td>
<td>5 MB</td>
</tr>
<tr>
<td>Operations @ 750MHz (32, 16, 8 bit)</td>
<td>144-192-384 BOPS</td>
</tr>
<tr>
<td>On chip interconnect bandwidth</td>
<td>32 Terabits per second</td>
</tr>
<tr>
<td>Bisection bandwidth</td>
<td>2 Terabits per second</td>
</tr>
</tbody>
</table>

Power Efficiency

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per tile</td>
<td>170 – 300 mW</td>
</tr>
<tr>
<td>Clock speed</td>
<td>600-1000 MHz</td>
</tr>
</tbody>
</table>

I/O and Memory Bandwidth

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O bandwidth</td>
<td>40 Gbps</td>
</tr>
<tr>
<td>Main Memory bandwidth</td>
<td>200 Gbps</td>
</tr>
</tbody>
</table>

Programming

- ANSI standard C
- SMP Linux programming
- Stream programming

The TILE64 chip is shipping today
TILE64 Processor Block Diagram
A Complete System on a Chip
Performance in Networking and Video

• Performance in networking
 – 10Gbps of SNORT
 – Complete SNORT database
 – All SNORT pre-processors
 – Customer’s real world data
 – Open source SNORT software base

• Performance in video
 – H.264 video encode
 – Encodes 40 CIF video streams @ 30fps
 – Encodes two 720p HD streams @ 30fps
 – PSNR of 35 or more
 – Open source X264 software base
Key Innovations

1. iMesh™ Network
 – How to scale

2. General purpose cores
 – How to balance core size & number of cores

3. Multicore Coherent Cache
 – How to obtain both cache capacity and locality

4. Multicore Hardwall™
 – How to virtualize multicore

5. Multicore Development Environment
 – How to program
1- iMesh On-Chip Network Architecture

- **Distributed resources**
 - 2D Mesh Peer-to-peer tile networks
 - 5 independent networks
 - Each with 32-bit channels, full duplex
 - Tile-to-memory, tile-to-tile, and tile-to-IO data transfer
 - Packet switched, wormhole routed, point-to-point
 - Near-neighbor flow control
 - Dimension-ordered routing

- **Performance**
 - ASIC-like one cycle hop latency
 - 2 Tbps bisection bandwidth
 - 32 Tbps interconnect bandwidth

- **5 independent networks**
 - One static, four dynamic
 - IDN – System and I/O
 - MDN – Cache misses, DMA, other memory
 - TDN – Tile to tile memory access
 - UDN, STN – User-level streaming and scalar transfer
Meshes are Power Efficient

More than 80% power savings over buses
Direct User Access to Interconnect

- Enables stream programming model
- Compute and send in one instruction
- Automatic demultiplexing of streams into registers
- Number of streams is virtualized
- Streams do not necessarily go through memory for power efficiency
2- Full-Featured General Purpose Cores

- Processor
 - Homogeneous cores
 - 3-way VLIW CPU, 64-bit instruction size
 - SIMD instructions: 32, 16, and 8-bit ops
 - Instructions for video (e.g., SAD) and networking (e.g., hashing)
 - Protection and interrupts
- Memory
 - L1 cache: 8KB I, 8KB D, 1 cycle latency
 - L2 cache: 64KB unified, 7 cycle latency
 - Off-chip main memory, ~70 cycle latency
 - 32-bit virtual address space per process
 - 64-bit physical address space
 - Instruction and data TLBs
 - Cache integrated 2D DMA engine
- Switch in each tile
 - Runs SMP Linux
 - 7 BOPS/watt
5- Multicore Software Tools and Programming

- Arguably biggest multicore challenge
- Multicore software tools challenge
 - Current tools are primitive – use single process based models
 - E.g., how do you single-step an app spread over many cores
 - Many multicore vendors do not even supply tools
- Multicore programming challenge
 - Key tension between getting up and running quickly using familiar models, while providing means to obtain full multicore performance
 - How do you program 100—1000 cores?
 - Intel Webinar likens threads to the “Assembly of parallel programming” – but familiar and still useful in the short term for small numbers of cores
 - Need a way to transition smoothly from today’s programming to tomorrow’s
Tilera’s Approach to Multicore Tools: Spatial Views and Collectives

Grid view
- Provides spatial view
- For selecting single process or region
- Eclipse based

Multicore Debugger
- GDB standard based -- familiar
- Aggregate control and state display
- Whole-application model for collective control
- Low skid breakpointing of all related processes

Multicore Profiler
- Collective stats
- Aggregate over selected tiles
Gentle Slope Programming Model

Gentle slope programming philosophy
 – Facilitates immediate results using off-the-shelf code
 – Incremental steps to reach performance goals

Three incremental steps
• Compile and run standard C applications on a single tile
• Run the program in parallel using standard SMP Linux models – pthreads or processes
• Use stream programming using iLib – a light-weight sockets-like API
Example System Design

Intelligent Switch Design

- RJ45 Magnetics
- Octal PHY
- DDR2 DRAM
- Reset/Interrupt Controller
- XAUI
- 10Gig Phy (stack)
Summary

• Current multicores face software and scalability challenges

• iMesh network based Tile Processor scales to many cores

• Gentle slope programming offers:
 – Convenience of SMP Linux/ pthreads programming model
 – Performance scalability through streaming channels

• TILE64 silicon, software tools, and applications deployed in customers’ systems
Additional Information

PSNR: Peak signal to noise ratio
MDN: Memory dynamic network
UDN: User dynamic network
TDN: Tile dynamic network
IDN: I/O dynamic network
STN: Static network

The following are trademarks of Tilera Corporation: Tilera, the Tilera Logo, Tile Processor, TILE64, Embedding Multicore, Multicore Development Environment, Gentle Slope Programming, iLib, iMesh and Multicore Hardwall. All other trademarks and/or registered trademarks are the property of their respective owners.

© Copyright 2007 Tilera Corporation