Multicore Programmers Need Help

• Parallel programming is decades old...
• But parallel programming is new to most programmers (and programs)
• Libraries optimized across multiple cores are quickest route to performance
Outline

• Cell processor refresher
• Multicore matrix multiplication library
 ▪ Design and performance
• Bonus slides on multicore FFT library performance
• Where a multicore offload library fits into the bigger picture of multicore programming
Cell BE Processor Block Diagram

- **Cell BE processor boasts nine processors on a single die**
 - 1 Power processor
 - Up to 8 vector processors
- **Computational performance**
 - 205 GFLOPS @ 3.2 GHz
 - 410 GOPS @ 3.2 GHz
- **High-speed data ring connects everything**
 - 205 GB/s maximum sustained bandwidth
- **High-performance chip interfaces**
 - 25.6 GB/s XDR main memory bandwidth
Programming the Cell Processor

• **Easiest aspects of programming the Cell processor**
 - Very deterministic SPE performance
 - Generous ring bandwidth
 - Standards-compliant Power core

• **Getting top performance**
 - 256KB SPE local store for code and data:
 - Minimize code
 - Decompose algorithm to work on chunks that fit in local store
 - Explicit DMAs of code and data between local store and main memory
 - Performance best with 128 byte aligned data in granularity of 128 bytes
 - 128 bit vector engine:
 - Vectorize inner loops
 - Design data decomposition that:
 - Optimizes DMA alignment constraints and
 - Presents data in chunks that can be processed in parallel by vector engine
Multicore Matrix Multiplication Library

A * B → C
Multicore Matrix Multiplication Library

\[\text{nr} \left\{ \begin{array}{c}
\text{A} \\
d\text{pl} \\
\text{(dot product length)}
\end{array} \right\} \times \left\{ \begin{array}{c}
\text{B} \\
\text{dpl}
\end{array} \right\} \rightarrow \left\{ \begin{array}{c}
\text{C} \\
\text{nc} \\
\text{nr}
\end{array} \right\} \]
Multicore Matrix Multiplication Library

- **Supports**
 - Rectangular matrices
 - Sizes in increments of 32 row or columns
 - Optional accumulation $C = C + A \times B$
 - Optional pre-transposition of A or B or both
 - Selectable parallelism (number of SPEs)
- **Part of MultiCore SAL (Scientific Algorithm Library)**
Matrix Multiplication Implementation

- Different algorithm mappings for different matrix sizes
- Rest of talk covers sizes between 32 and 1024 rows or columns
Problem Decomposition

$A \times B \rightarrow C$

$A [nr=512,dpl=1024] \times B [dpl=1024,nc=512] \Rightarrow C [nr=512,nc=512]$

Each SPE processes entire matrix A.

Each SPE processes $nc/p = 64$ column partition of matrix B.

Each SPE computes $nc/p = 64$ column partition of matrix C.

X
Problem Decomposition

\[A \text{[nr=512,dpl=1024]} \times B \text{[dpl=1024,nc=512]} \rightarrow C \text{[nr=512,nc=512]} \]

Each SPE processes entire matrix A.

Each SPE processes \(nc/p = 64 \) column partition of matrix B.

Each SPE computes \(nc/p = 64 \) column partition of matrix C.

Inner loop multiplies 8 x \(dpl \) element tile from A with \(dpl \times 32 \) tile from B to produce 8 x 32 tile of C.
Why These Sizes?

• **Chose to store entire dot product in an SPE**
 - Want to maximize dot product length for efficient inner loop
 - But also want to process enough columns at once to make strided transfers of B and C tiles efficient
 • 32 columns: 128 byte DMAs
 - Multiple columns also make vectorization easier

• **Local store usage**
 - Two A buffers: $2 \times 8 \times 1024 \times 4 \text{ bytes/float} = 64K$
 - B buffer: $32 \times 1024 \times 4 \text{ bytes/float} = 128K$
 - C buffer: $8 \times 32 \times 4 \text{ bytes/float} = 1K$
 - Total: $193K$
Streaming Matrix A into Local Store

• Each SPE reads all of matrix A eight rows at a time
 ▪ XDR bandwidth can be the bottleneck
Streaming Matrix A into Local Store

• Each SPE reads all of matrix A eight rows at a time
 ▪ XDR bandwidth can be the bottleneck

• Idea: Some SPEs stream data to other SPEs
What’s the Best Streaming Strategy?

<table>
<thead>
<tr>
<th>SPEs pulling A from XDR</th>
<th>GFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 7</td>
<td>159.0</td>
</tr>
<tr>
<td>0, 2, 4 and 6</td>
<td>170.2</td>
</tr>
<tr>
<td>0 and 4</td>
<td>169.0</td>
</tr>
<tr>
<td>0</td>
<td>169.7</td>
</tr>
</tbody>
</table>
Matrix Multiply Library Performance

<table>
<thead>
<tr>
<th>Matrix Dimensions</th>
<th>GFLOPS</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr</td>
<td>nc</td>
<td>dpl</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>768</td>
<td>768</td>
<td>768</td>
</tr>
<tr>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
</tbody>
</table>

- As part of a library, implementation must satisfy additional goals beside raw performance
 - Flexibility in data size and organization
 - Options such as accumulation
 - Selectable parallelism
 - Compatible calling sequence
Performance Comparison (GFLOPS)

<table>
<thead>
<tr>
<th>Matrix Dimensions</th>
<th>Mercury (row major)</th>
<th>IBM SDK (block layout)</th>
<th>Hackenberg (row major)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr</td>
<td>nc</td>
<td>dpl</td>
<td>Reported</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>512</td>
<td>149</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>1024</td>
<td>162</td>
</tr>
<tr>
<td>768</td>
<td>768</td>
<td>768</td>
<td>163</td>
</tr>
<tr>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>170</td>
</tr>
</tbody>
</table>

- IBM SDK 2.1 matrix multiplication example
 - Square matrices, power of two sizes
 - Block layout only
 - * 174 GFLOPS for 512x512 achieved only for 1000 iterations of same matrix

- Daniel Hackenberg, TU Dresden, May 2007
 - http://www.fz-juelich.de/zam/datapool/cell/Performance_Measurements_on_Cell.pdf
 - Square matrices, size increments of 64
 - Row major and block layout
 - Accumulation option
More MC-SAL Performance: Large 2D FFTs

- MC-SAL API called from PPE
- Each FFT performed in parallel on up to 8 SPEs
- Each FFT is too large to fit in the aggregate of the SPE local stores, but small enough that the row and column FFTs fit within local store

<table>
<thead>
<tr>
<th># rows</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>51</td>
</tr>
<tr>
<td>512</td>
<td></td>
<td>45</td>
<td>52</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td>44</td>
<td>52</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>2048</td>
<td>44</td>
<td>52</td>
<td>59</td>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>4096</td>
<td>51</td>
<td>55</td>
<td>63</td>
<td>67</td>
<td>61</td>
</tr>
</tbody>
</table>

MC-SAL 2D FFT performance (GFLOPS) on 8 SPEs (called from PPE, data starts and ends in XDR)
MC-SAL Performance: Streaming Small FFTs

- MC-SAL API performs a batch of 1D FFTs
- Each FFT executed on a single SPE
- Up to 8 SPEs used in parallel

<table>
<thead>
<tr>
<th>N</th>
<th>GFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>58</td>
</tr>
<tr>
<td>1024</td>
<td>65</td>
</tr>
<tr>
<td>2048</td>
<td>70</td>
</tr>
<tr>
<td>4096</td>
<td>77</td>
</tr>
</tbody>
</table>

Performance for 1000 FFTs using 8 SPEs (called from PPE, data starts and ends in XDR)
1. Compile/run application on general-purpose single core (Cell’s PPE)
2. Introduce function-offload model
 - Replace compute-intensive calls with calls to offload library (MultiCore-SAL)
3. For further improvement, selectively develop custom offload functions to replace offload library calls
 - E.g., fuse functions on SPE to reduce number of SPE-XDR transfers
 - Use SPE-local library (SPE-SAL) and data movement middleware (MultiCore Framework)
MultiCore Scientific Algorithm Library

- Large FFTs, fast convolutions and matrix operations
- Batch operations for smaller sizes
- Also compatible with single-core SAL API
- Compatible with MultiCore Framework
 - For explicit data movement and SPE computation
 - Example or template data-flow code provided for common algorithms
 - User can insert appropriate math (SPE-SAL)
MultiCore Framework Data Movement

PPE

input data

output data

input tile channel

SPE 0

compute

output tile channel

SPE 1

SPE 3
Summary

- Demonstrated superb performance for matrix multiplication on Cell processor
- Function offload libraries provide easiest path to good performance on multicore processors
 - No new languages to learn
 - Also provide portability between diverse multicore architectures
- Need ability to develop custom offload functions to extract maximum performance