Evaluating Partial Reconfiguration for Embedded FPGA Applications

Ross Hymel, Chris Conger, Alan D. George, and Herman Lam

Baseline Architecture #1

- Pros
 - Most flexible
 - Simplest module development with highest performance
 - Configuration controller can be radiation-hardened
 - 100% of user FPGA logic/routing resources available
- Cons
 - Highest communication bandwidth
 - State information not maintained
 - Longest reconfiguration time
 - SelectMAP pins usually no longer usable as general purpose I/O
 - Higher power/PCB requirements
 - More points of failure

- Pros
 - Lower communication bandwidth
 - Possible to maintain state information
 - Unrelated processing can continue uninterrupted during partial reconfiguration
 - Shorter reconfiguration times
 - Lower power/PCB requirements
- Cons
 - Less than 100% of logic/routing resources available
 - High overhead
 - Radiation susceptibility if COTS
 - More difficult module development
 - Varying degrees of flexibility (always lower than non-PR baseline)

Architecture #1

- Pros
 - 1 single region of maximal size
 - Has exclusive access to all I/O not used by static region
 - I/O type is reconfigurable
- Cons
 - No maintenance of state information
 - Highest PR bandwidth
 - Least amenable to current Xilinx toolset

Architecture #2

- Pros
 - Conceptually simplest – only one PRR
 - Lowest overhead
 - Least performance degradation
 - Easiest development framework
- Cons
 - Unrelated processing can continue uninterrupted during partial reconfiguration
 - Partial reconfiguration
 - Partial maintenance of state information
 - More performance degradation

Architecture #3

- Pros
 - Maintenance of module state information
 - Lowest PR bandwidth
 - More amenable to current Xilinx toolset
 - No maintenance of state information
 - Higher overhead
- Cons
 - Conceptually most difficult – 7 PRRs
 - Must partition I/O and communication using a best guess at design-time

Region 1

- Usage
 - 8320
 - XC4VLX25 Utilization: 77.4%
- Static Controller
 - Usage: 1910
 - XC4VLX25 Utilization: 17.8%
- Bus Macro Overhead
 - Usage: 522
 - XC4VLX25 Utilization: 4.9%

Region 2

- Usage
 - 1536
 - XC4VLX25 Utilization: 14.3%
- Static Controller
 - Usage: 1664
 - XC4VLX25 Utilization: 15.5%
- Bus Macro Overhead
 - Usage: 792
 - XC4VLX25 Utilization: 7.4%
- Wiring
 - Usage: 296
 - XC4VLX25 Utilization: 2.8%