Panel Session:
Multicore Meltdown?

James C. Anderson
MIT Lincoln Laboratory

HPEC07
Wednesday, 19 September 2007

This work was sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author, and are not necessarily endorsed by the United States Government.

Reference to any specific commercial product, trade name, trademark or manufacturer does not constitute or imply endorsement.
Objective & Schedule

• Objective: assess the impact of multicore processors on past and present DoD HPEC systems, and project their importance for the future

• Schedule
 – 1545-1605: Overview
 – 1605-1615: Guest speaker Mr. Kalpesh Sheth
 – 1615-1620: Introduction of the panelists
 – 1620-1650: Previously-submitted questions for the panel
 – 1650-1710: Open forum
 – 1710-1715: Conclusions & the way ahead
On-chip Performance for Representative COTS Single- & Multi-core Processors (2Q98)

Billion 32-bit floating point operations per sec-watt for computing 1K-point complex FFT (GFLOPS/W)

- RISC + 4 DSPs (0.5µm): TI SMJ320C80
- DSP (0.5µm): Analog Devices ADSP-21060L SHARC

Year

On-chip Performance for Representative COTS Single- & Multi-core Processors (3Q07)

- **1997**:
 - RISC + 4 DSPs (0.5µm): TI SMJ320C80
 - RISC + 8 SIMD processor elements (90nm): IBM Cell Broadband Engine

- **2007**:
 - 4 RISC cores (MIPS64) in SoC (130nm): Broadcom BCM1480
 - Dual 64-bit Power Architecture CPU (65nm): P.A. Semi PA6T-1682M
 - 3X in 3 yrs improvement rate

- **2017**:
 - “Present”
 - 4× improvement rate

- **Billion 32-bit floating point operations per sec-watt for computing 1K-point complex FFT**

- **GFLOPS/W**

- **Year**
 - 1997
 - 2007
 - 2017

- **Dual 64-bit Power Architecture CPU (65nm): P.A. Semi PA6T-1682M** (note: 14X on-chip memory for given throughput vs. Cell)
On-chip Performance for Possible Future COTS Single- & Multi-core Processors

- **Billion 32-bit floating point operations per sec-watt for computing 1K-point complex FFT**

- **1997**
 - RISC + vector processor (130nm): Freescale MPC7447A
 - PowerPC w/ AltiVec

- **1997**
 - RISC + 4 DSPs (0.5µm): TI SMJ320C80

- **1997**
 - PowerPC

- **2007**
 - 3X in 3 yrs improvement rate

- **2007**
 - Possible future COTS multi-core processor (45nm)
 - 80 µP cores (65nm): Intel Polaris non-COTS tech demo

- **2007**
 - RISC + 8 SIMD processor elements (90nm): IBM Cell Broadband Engine

- **2007**
 - DSP (0.5µm): Analog Devices ADSP-21060L SHARC

- **2007**
 - Analog Devices ADSP-21060L SHARC

- **2017**
 - 50 GFLOPS/W in 2016 (32nm)

Data appear consistent with an underlying improvement rate model

MIT Lincoln Laboratory

KAM 8/20/2007
Single-core Microprocessor Family Improvement Rate Model

- Derived from ITRS06 projections (2005-2020)
 - $\frac{1}{\sqrt{2}}$ geometry reduction every 3 yrs
 - Normalized for constant die size & power

1). Present-generation uni-processor

- Re-design in new geometry

Original µP die

2a). Next-generation uni-processor

- 2X throughput (2X transistors @ similar speed, bytes/OPS unchanged)
- Compatible HW/SW

New µP design
Single- & Multi-core Microprocessor Family Improvement Rate Model

- Derived from ITRS06 projections (2005-2020)
 - $1/\sqrt{2}$ geometry reduction every 3 yrs
 - Normalized for constant die size & power

2a). Next-generation uni-processor
 - 2X throughput (2X transistors @ similar speed, bytes/OPS unchanged)
 - Compatible HW/SW

2b). Next-generation dual-core processor
 - 3X throughput (2X transistors @ 1.5X speed, but 1/3 fewer bytes/OPS)
 - Incompatible HW/SW (2X pins, not a uni-processor)

Re-deesign in new geometry
Re-implementation in new geometry

Note: 3X in 3 yrs improvement rate also projected for COTS ASICs (e.g., Cell) & SRAM-based FPGAs

“Multicore meltdown” occurs when core-based design methods can no longer provide substantial improvements
Notional Model Projection Based On IBM’s Cell Broadband Engine

• 90nm geometry baseline ca. 2006
 – 1 mm pitch 1320 (41^2-19^2) BGA (ball grid array)
 – 234M transistors on 221 mm^2 die
 \[L = 17.7 \text{ mm} \]
 \[W = \frac{L}{\sqrt{2}} = 12.5 \text{ mm} \]
 – 1333 pads (43x31) possible using 400µm pitch
 – 100W (est) @ 3.2 GHz (170 GFLOPS sustained for 1.7 GFLOPS/W)
 – 2592 Kbytes on-chip memory (66 KFLOPS/byte)

• 22nm geometry ca. 2018 (16X transistors & 5.1X speed @ constant power & die size)
 – 0.25 mm pitch 21,120 (164^2-76^2) FBGA (fine pitch BGA, with 0.15 mm feasible ca. 2010)
 – 21,328 pads (172x124) possible using 100µm pitch (typical ca. 2015)
 – 139 GFLOPS/W & 334 KFLOPS/byte

Core-based design methods appear feasible for the coming decade, but how useful are the resulting devices given that memory & I/O shortcomings are compounded over time?
Timeline for Highest Performance COTS Multiprocessor Card Technologies (3Q06)

Card-level I&O complex sample rate sustained for 32-bit flt pt 1K-pt complex FFT (1024 MSPS for FFT computed in 1µs with 51.2 GFLOPS) using 6U form factor convection-cooled cards <55W

Historical Moore’s Law slope: 4X in 3 yrs

“Front-end” processing (~100 FLOPS/byte)

Uni-processor µP, DSP & RISC (w/ vector processor): 2X in 3 yrs

Multicore µPs & COTS ASICs: 3X in 3 yrs

SRAM-based FPGAs: 3X in 3 yrs

“Back-end” processing (~10 FLOPS/byte)

Can multicore µPs be used efficiently for anything other than “embarrassingly parallel” front-end applications?

Could multicore µPs with high-speed (e.g., optical) on-chip interconnect be made to act more like uni-processors?
Timeline for Highest Performance COTS Multiprocessor Card Technologies (4Q06)

Normalized performance values for 6U (55W) card include I/O to support FFT & high-speed memory for general-purpose processing (10 FLOPS/byte)

By 2016, performance gap is 8 yrs & growing

By 2016, COTS ASIC & SRAM-based FPGA cards improving 3X in 3 yrs

Multicore µP, COTS ASIC & SRAM-based FPGA cards improving 3X in 3 yrs

Uni-processor µP, DSP & RISC (w/on-chip vector processor) cards improving 2X in 3 yrs

Are multicore performance & time-to-market advantages lost due to programming difficulties?

Can the uni-processor improvement rate be increased by adding external cache?

TFLOPS (trillion 32-bit floating-point operations per sec for computing 1K-point complex FFT)

Year

2007

2016

2024

0.01

0.1

1

10

Dual Virtex-4 LX200

Triple PowerPC MPC7448

6X by 2016

MIT Lincoln Laboratory
Improvements in COTS Embedded Multiprocessor Card Technologies (4Q06)

- Do we need new tools (e.g., floorplanning) to make use of multicore technology for FPGAs?
- What good are high-throughput multicore chips without high-speed (e.g., optical) off-chip I/O?
- Projected 6X performance gap ca. 2016 due to different improvement rates
- How can future multicore µPs be supported in an "open systems architecture?"

- Uni-processor cards improving 2X in 3 yrs
- Multicore cards improving 3X in 3 yrs
- 70 W/Liter (55W & 6U form factor)
- Uni-processor µP, DSP & RISC (w/on-chip vector processor) cards ca. 2016
- Multicore µP, COTS ASIC & FPGA cards ca. 2016
- Projections for 2016 based on 2006 data

- Do we need new tools (e.g., floorplanning) to make use of multicore technology for FPGAs?
- What good are high-throughput multicore chips without high-speed (e.g., optical) off-chip I/O?
- Projected 6X performance gap ca. 2016 due to different improvement rates
- How can future multicore µPs be supported in an “open systems architecture?”

- Uni-processor cards improving 2X in 3 yrs
- Multicore cards improving 3X in 3 yrs
- 70 W/Liter (55W & 6U form factor)
- Uni-processor µP, DSP & RISC (w/on-chip vector processor) cards ca. 2016
- Multicore µP, COTS ASIC & FPGA cards ca. 2016
- Projections for 2016 based on 2006 data
Objective & Schedule

• Objective: assess the impact of multicore processors on past and present DoD HPEC systems, and project their importance for the future

• Schedule
 – 1545-1605: Overview
 – 1605-1615: Guest speaker Mr. Kalpesh Sheth
 – 1615-1620: Introduction of the panelists
 – 1620-1650: Previously-submitted questions for the panel
 – 1650-1710: Open forum
 – 1710-1715: Conclusions & the way ahead
Panel Session: “Multicore Meltdown?”

Moderator: Dr. James C. Anderson, MIT Lincoln Laboratory

Dr. James Held, Intel Corp.

Mr. Markus Levy, The Multicore Association & The Embedded Microprocessor Benchmark Consortium

Mr. Greg Rocco, Mercury Computer Systems

Mr. Kalpesh Sheth, Advanced Processing Group, DRS Technologies

Dr. Thomas VanCourt, Altera Corp.

Panel members & audience may hold diverse, evolving opinions
Objective & Schedule

• Objective: assess the impact of multicore processors on past and present DoD HPEC systems, and project their importance for the future

• Schedule
 – 1545-1605: Overview
 – 1605-1615: Guest speaker Mr. Kalpesh Sheth
 – 1615-1620: Introduction of the panelists
 – 1620-1650: Previously-submitted questions for the panel
 – 1650-1710: Open forum
 – 1710-1715: Conclusions & the way ahead
Conclusions & The Way Ahead

• Embedded processor hardware still improving exponentially
 – Throughput, in FLOPS (floating-point operations per second)
 – Memory, in bytes
 – Standard form factors with constant SWAP (size, weight and power) still required for upgradeability in DoD HPEC systems to support an “open systems architecture”

• At system level, ability to effectively utilize hardware improves slowly, leading to ever-worsening “performance gap”
 – Multicore processors, COTS ASICs (e.g., Cell) & FPGAs improving 3X every 3 yrs, but some performance advantages may be lost due to programming difficulties (relatively small memory) & I/O bottlenecks
 – Traditional uni-processors easier to program, but improving at slower rate (2X every 3 yrs)

• Several methods may help “narrow the gap”
 – Improved processor-to-processor & processor-to-memory communication technology (e.g., optical on-chip & off-chip) may allow multi-processors to behave more like uni-processors
 – Control logic & 3D interconnect to attach more high-speed memory for a given throughput may improve multicore processor utility (and/or allow uni-processors to improve at a faster rate)

“Multicore meltdown” avoidable for the coming decade, but taking full advantage of performance benefits will be challenging
Intel Benchmark Performance

Depending on task, 2 CPU cores perform 1.12 - 1.9X as fast as one.
6U Cards Feasible (but not built) using 90nm COTS Devices (4Q06)

- **µP:** Freescale MPC7448 PowerPC
 - 10W @ 1.4 GHz
 - 9.4 GFLOPS sustained for 32-bit flt pt 1K cmplx FFT (83.6% of peak)
 - 2.3W budget for external 1.5 Gbytes/sec simultaneous I&O
 - 2W budget for 1 Gbyte external DDR2 SDRAM (~10 FLOPS/byte)
 - 2.5W budget for misc. logic (host bridge, clock, boot flash)
 - 1.6W budget for on-board DC-to-DC converter (91% efficient)
 - **Triple CN (compute node) card**
 - Easier component placement vs. quad CN
 - 28.2 GFLOPS sustained for 55W
 - 0.51 GFLOPS/W & 37 GFLOPS/L

- **FPGA:** Xilinx Virtex-4 LX200
 - 41W (est.) for a legacy card re-implemented using 90nm devices
 - Card includes DC-to-DC converter
 - 2 FPGAs w/ 225 MHz core & 375 MHz I/O speeds
 - 528 Mbytes DDR-SRAM
 - 8 Gbytes/sec I&O
 - 51.2 GFLOPS sustained for 32-bit flt pt 1K cmplx FFT
 - 8W budget for additional 4 Gbytes DDR2 SDRAM (~10 FLOPS/byte)
 - **Dual CN card**
 - 51.2 GFLOPS sustained for 50W (1W added for increased converter dissipation)
 - 1.0 GFLOPS/W & 67 GFLOPS/L