Octopus: A Multi-core implementation

Kalpesh Sheth
HPEC 2007, MIT, Lincoln Lab

Export of this product is subject to U.S. export controls. Licenses may be required. This material provides up-to-date general information on product performance and use. It is not contractual in nature, nor does it provide warranty of any kind. Information is subject to change at any time.
Parameters to evaluate?

- **Many vendors have multi-core, multi-chip boards**

- **Characteristics of good evaluation**
 - How much memory BW among multiple cores? (i.e. core to core)
 - How much I/O BW between multiple sockets/chips on same board? (i.e. chip to chip on same board)
 - How much fabric BW across boards? (i.e. board to board)

- **CPU performance with I/O combined**
 - Data has to come from somewhere and go into memory
• **Current Benchmarks**
 - Most don’t involve any I/O
 - Many are cache centric
 - Many are single core centric (no multi-threading)

• **Questions to ask?**
 - Interrupt handling among multiple cores
 - Inter-process communication
 - How many channels for DDR2 interface? 4 or better?
 - Size, Weight and Power (SWaP) when fully loaded?
 - How to debug multi-threaded programs? Cost of tools?
 - What is the cost of ccNUMA or NUMA? Memory R/W latency?
• Single entry point for memory access
• All external I/O via Southbridge
 - GigE, UART competes with Fabric
 - Always requires CPU cycles
• Local memory access
• Mostly no I/O
• RapidIO (parallel or serial) switching
• Limited BW between chips
• Fabric bottleneck as all data comes via fabric only
DRS Approach

DRS's MIPS based Multi-socket System

- Each System on Chip (SoC) has HyperTransport switch
- Local memory access with NUMA and ccNUMA capability
- Data can come locally or via fabric

Zero CPU & memory cycles switching from any-to-any SoC
BCM1480 Architecture Overview

4-Issue SuperScalar
MIPS64 SB-1
(8 GFLOPS/Core)

Remote Memory Requests & ccNUMA Protocol

On-Chip Switch, 256 Gbps bandwidth, 5-ports

19.2 Gbps in each direction

Memory Bridge

X

Packet DMA

SoC I/O:
- 4 GigE
- 64b PCI-X
- System I/O

Multi-Channel Packet DMA Engine

102 Gbps Memory Controller

ZBbus, Split Transaction, Coherent, 128 Gbps
Performance measurement

• **How do you measure performance of multi-core embedded system?**
 - Perform network I/O while doing number crunching
 - Examples uBench, netPerf with FFTw
 - Measure memory BW with streams benchmark
 - Measure intra-core and inter SoC BW performance
 - Examples openMPI (measures latency and BW)
 - How open standards are supported?
 - Examples CORBA, VSIPL, FFTw, RDMA, MPI etc.
 - Measure switch fabric BW and latency
 - XMC and PMC plug ability and their interface speed
 - Boot time (in seconds)
VSIPL Benchmarks

VSIPL Comparisons

FFT Routines; Large Vectors

Times in microseconds

<table>
<thead>
<tr>
<th>vsip_ccfftop_f:</th>
<th>1480: 1GHz MIPS64</th>
<th>G4: 1GHz 7447</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>32K</td>
<td>64K</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1480</td>
<td>1120.00</td>
<td>2310.00</td>
</tr>
<tr>
<td>G4</td>
<td>1660.00</td>
<td>11654.00</td>
</tr>
</tbody>
</table>

Performance Improvement

<table>
<thead>
<tr>
<th></th>
<th>1.48</th>
<th>5.05</th>
<th>5.65</th>
</tr>
</thead>
</table>
Octopus as the Open Source/Standard and COTS commodity Solution

• Leverages open source development & run time environments
 - Including Linux OS (SMP), Eclipse IDE, GNU tools
 - Promotes ease of portability and optimal resource utilization

• Delivers open standard middleware & signal processing libraries
 - Including VSIPL, MPI, FFTw and CORBA

• Effectively decouples the application software from the hardware
 - Applications interface to the OS at a high level (layer 4)

• Utilizes standards based hardware
 - VITA 41 (VXS) backplane – backwards compatible with VME
 - VITA 42 (XMC) mezzanine standards - permits rapid insertion of new technology

• Implemented using commodity chips taken from large adjacent markets
 - Broadcom dual/quad core processors from Telecom/Datacom Network Processing
 - HyperTransport from commodity computing
 - Dune fabric from the Tera-bit router market

Portability & Inter-operability → Reduced Life Cycle Cost
Evaluation

• Independent evaluation done (Summer 2007)

• Summary of Results (based on 8-slot chassis)
 ▪ 166 GFLOPS sustained throughput
 ▪ 4.6 FLOPS/byte (2G DDR2 per BCM1480 SoC)
 ▪ 136 MFLOPS/W computation efficiency
 ▪ 4.9 GFLOPS/Liter computation density (not counting I/O)

• Contact DRS for more details
For more information:

Advanced Processing Group
21, Continental Blvd, Merrimack, NH 03054
Phone: 603-424-3750 x326
Octopus_support@drs-ss.com
http://www.drs-ss.com/capabilities/ss/processors.php
Backup Slides
VITA 41 (OCTOPUS) System Overview

- High Performance Embedded Multi-computing system backwards compatible with VME
- High Speed scalable advanced switch fabric with telecoms grade reliability
- Separate and redundant out-of-band (VITA 41.6) GigE control plane to every processing element
- Linux OS (SMP or ccNUMA)

- Octopus boards
 - Shown in standard VITA 41 chassis’
 - Sourced from commodity chassis vendor
 - Alternative backplane configurations exist and are supported as defined in VITA 41
• “Smart Switch” acts as Host controller
 ▪ Controls boot sequence
 ▪ Provides services to system

• Data Plane Connectivity
 ▪ Measured net 1.1 GBytes/s full duplex between any payload boards after fabric overhead and encoding/decoding
 ▪ Provides dynamic connectivity (no more static route tables) and single layer of switching between payloads

• Control Plane GigE Connectivity
 ▪ 1 GigE to every payload board and front panel
 ▪ 10 GigE between switch cards

• Dual Core Processor on board
 ▪ Each core running Linux at 600 MHz
 ▪ 256 MB DDR SDRAM at 125 MHz DDR memory bandwidth
 ▪ User (64 MB) and boot (4 MB) flash

• Temperature Sensors
 ▪ 1250 processor and each fabric switch
OCTOPUS Motherboard

• High performance **Quad Core** processor
 - MIPS64 SoC (System on a Chip) processor
 - 8 GFLOPS/processor (**32 GFLOPS/Chip**) with **4.8 GByte/s** composite I/O
 - Running SMP Linux at 1GHz on each core (ccNUMA capable)

• **2 GB** of **DDR2 SDRAM**
 - @200MHz

• **Flash**
 - User (128MB) and boot (4MB)

• **Front panel GigE and USB**

• **Power ~ 45W (Max)**

• **Temperature Sensors**
 - 1480 processor and fabric end-point
OCTOPUS Dual XMC

- VITA 42.4 compliant
- 2 x High performance Quad Core processors
 - MIPS64 SoC processors
 - Running SMP Linux at 1GHz on each core (ccNUMA capable)
- With each Quad Core processor:
 - **2 GB** of DDR2 SDRAM (3.2 GB/s)
 - 4 MB of flash
- Total of **8 x 1 GHz cores, 4 GB DDR2 SDRAM** and **8 MB boot flash**!
- Power ~ 65 W
- Temperature Sensors
 - For each 1480 processor
Fully loaded payload slot (Motherboard plus Dual XMC) provides:

- **96 GFLOPS** = 3 x High performance MIPS64 Quad BCM1480
- **6 GB** of DDR2 SDRAM
- Flash
 - User 128 MB
 - Boot 12 MB
- Node aliasing and ccNUMA
- On board PCI-X and HyperTransport
- Off board VITA 41 serial fabric
- Power ~ 110W (Max)
Inter-SoC Connectivity

Logical connectivity between Octopus Motherboard and daughtercard (XMC) CPU

BCM1480 SoC

HT/SPi switch

DDR-2 Memory

VITA 42.4 based XMC Connector

PCi-X I/O (PMC)

VME I/O

GigE I/O

Switch Fabric I/O

Maximum I/O bandwidth between SoC with HyperTransport running at 600MHz, 16-bit wide
Figures of Merit Comparison

- **Computation Efficiency (GFLOPS/Watt)**
- **Computation Density (GFLOPS/Liter)**

Chassis with Radstone/PowerPC (G4DSP) card (not counting I/O bottlenecks)

DRS Octopus Chassis (counting I/O bottlenecks)

Note: external I/O as needed via PMC sites in both systems

Advanced Processing Group
Octopus SAR Benchmark Comparison

Data Presented at Processor Technology Symposium on 10/3/06

Timing Results Normalized by Volume

Cell Processor software effort in process

Multi-core Board	**Volume per Board**	**Gcc/Linux Multi-threading**	**Gcc/Linux Multi-threading Per cu. In.**	**Gcc/Linux Multi-processes**	**Gcc/Linux Multi-processes Per cu. In.**	**Vendor Compiler Multi-threading**	**Vendor Compiler Multi-processes**	**Vendor Multi-processes Per cu. In.**
Cu. Inches | **Per cu. In.**
--- | --- | --- | --- | --- | --- | --- | --- | ---
Intel Sossaman | 756 | 26.2 | 2,817,157 | 19.45 | 3,794,834 | 28 | 2,636,054 | 19.8 | 3,727,754
Intel Dempsey | 756 | 23.2 | 3,181,445 | 12.2 | 6,049,961 | 20.5 | 3,600,465 | 9.93 | 7,432,983
Intel Woodcrest | 756 | 12.4 | 5,952,381 | 8.5 | 8,683,473 | 12.1 | 6,099,961 | 6.45 | 11,443,337
Intel Montecito | 3671 | 26.8 | 567,172 | 10.75 | 1,413,974 | 17.9 | 849,174 | 6.7 | 2,268,689
DRS-IT MIPS64 | 186.6 | 28 | 11,196,601 | 13.44 | 22,249,655 | | | |
Fabric7 Opteron | 2766 | 16.3 | 1,237,640 | 5.75 | 3,508,441 | | | |

Best SWaP Performance
Octopus Shows SWaP Advantage over Blade Servers

Recognizer Channel Performance for various processors

- Intel Pentium 4 single core, hyperthread, 3.2 GHz (Pentium D 480), 130 W each
- DRS Octopus w/3 Broadcom chips, 900 MHz MIPS64/quad core, 20 W each
- Intel Pentium Dual Xeon 3.02 GHz, 130 W each
- IBM Cell processor, 60 W each
- Motorola Quad PowerPC VME 1.4 GHz, 20 W each
Development Environment
Advanced Debug Tools