On-Chip Photonic Communications for High Performance Multi-Core Processors

Keren Bergman, Luca Carloni, Columbia University
Jeffrey Kash, Yurii Vlasov, IBM Research
Chip MultiProcessors (CMP)

- **CELL BE**
 - IBM 2005

- **Montecito**
 - Intel 2004

- **Niagara**
 - Sun 2004

- **Terascale**
 - Intel 2007

- **Barcelona**
 - AMD 2007
Networks on Chip (NoC)

- Shared, packet-switched, optimized for communications
 - Resource efficiency
 - Design simplicity
 - IP reusability
 - High performance

- But… no true relief in **power dissipation**

Kolodny, 2005
Chip MultiProcessors (CMPs)
IBM Cell, Sun Niagara, Intel Montecito, …

IBM Cell:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology process</td>
<td>90nm SOI with low-κ dielectrics and 8 metal layers of copper interconnect</td>
</tr>
<tr>
<td>Chip area</td>
<td>235mm^2</td>
</tr>
<tr>
<td>Number of transistors</td>
<td>~234M</td>
</tr>
<tr>
<td>Operating clock frequency</td>
<td>4Ghz</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>~100W</td>
</tr>
<tr>
<td>Percentage of power dissipation due to global interconnect</td>
<td>30-50%</td>
</tr>
<tr>
<td>Intra-chip, inter-core communication bandwidth</td>
<td>1.024 Tbps, 2Gb/sec/lane (four shared buses, 128 bits data + 64 bits address each)</td>
</tr>
<tr>
<td>I/O communication bandwidth</td>
<td>0.819 Tbps (includes external memory)</td>
</tr>
</tbody>
</table>
Why Photonics for CMP NoC?

Photonics changes the rules for Bandwidth-per-Watt

OPTICS:
- Modulate/receive ultra-high bandwidth data stream \textit{once} per communication event
- Transparency: broadband switch routes entire multi-wavelength high BW stream
- Low power switch fabric, scalable
- Off-chip and on-chip can use essentially the same technology
- \textbf{Off-chip BW = On-chip BW} for \textit{same power}

ELECTRONICS:
- Buffer, receive and re-transmit at \textbf{every switch}
- \textbf{Off chip} is pin-limited and really power hungry
Recent advances in photonic integration

Infinera, 2005
IBM, 2007
Lipson, Cornell, 2005

Bowers, UCSB, 2006
Luxtera, 2005
3DI CMP System Concept

- Future CMP system in 22nm
- Chip size ~625mm2
- 3D layer stacking used to combine:
 - Multi-core processing plane
 - Several memory planes
 - Photonic NoC

For 22nm scaling will enable 36 multithreaded cores similar to today’s Cell

Estimated on-chip local memory per complex core ~0.5GB
Optical NoC: Design Considerations

- **Design to exploit optical advantages:**
 - **Bit rate transparency:** transmission/switching power independent of bandwidth
 - **Low loss:** power independent of distance
 - **Bandwidth:** exploit WDM for *maximum* effective bandwidths across network
 - (Over) provision *maximized* bandwidth per port
 - Maximize *effective* communications bandwidth
 - **Seamless optical I/O to external memory with same BW**

- **Design must address optical challenges:**
 - No optical buffering
 - No optical signal processing
 - Network routing and flow control managed in electronics
 - Distributed vs. Central
 - Electronic control path provisioning latency

- **Packaging constraints:** CMP chip layout, avoid long electronic interfaces, network gateways must be in close proximity on photonic plane
- Design for photonic building blocks: low switch radix
Goal: Design a NoC for a chip multiprocessor (CMP)

Electronics
- Integration density → abundant buffering and processing
- Power dissipation grows with data rate

Photonics
- Low loss, large bandwidth, bit-rate transparency
- Limited processing, no buffers

Our solution – a hybrid approach:
A dual-network design
- Data transmission in a photonic network
- Control in an electronic network
- Paths reserved before transmission → No optical buffering
On-Chip Optical Network Architecture
Bufferless, Deflection-switch based

Cell Core (on processor plane)
Gateway to Photonic NoC (on processor and photonic planes)
Thin Electrical Control Network (~1% BW, small messages)
Photonic NoC
Deflection Switch
Building Blocks (1): High-speed Photonic Modulator

- Ring-resonator structure
- Achieve optical data modulation
- Compact ~ 10\(\mu\)m diameter for high density integration
- Ultra-low power ~ 1pJ/bit today, scalable to 0.1pJ/bit
- 12.5Gb/s demo, extendable to 40Gb/s

Recent 12.5GHz
Building Blocks (2): Broadband deflection switch

- Broadband ring-resonator switch
- **OFF state**
 - passive waveguide crossover
 - negligible power
- **ON state:**
 - carrier injection \rightarrow coupling into ring \rightarrow signal switched $\sim 0.5 \text{mW}$
Building Blocks (3): Detector

- Lateral PIN design, direct Ge growth on thin SOI (IBM)
- Low capacitance and dark current
- 20GHz Bandwidth
- Ultra-low power, 0.1pJ/bit today scalable to 0.01pJ/bit
4x4 Photonic Switch Element

- 4 deflection switches grouped with electronic control
- 4 waveguide pairs I/O links
- Electronic router
 - High speed simple logic
 - Links optimized for high speed
- Small area (~0.005mm²)
- Nearly no power consumption in OFF state
Non-Blocking 4x4 Switch Design

- Original switch is internally blocking
- Addressed by routing algorithm in original design
- Limited topology choices
- New design
 - Strictly non-blocking*
 - Same number of rings
 - Negligible additional loss
 - Larger area

* U-turns not allowed
Design of strictly non-blocking photonic mesh

Non-blocking 4x4 \(\rightarrow \) enables non-blocking mesh topology
Network is strictly nonblocking (derived from crossbar)
Link bidirectionality is exploited

Allow 2 gateways to inject on each row
Allow 2 gateways eject on each column
Detailed layout

gateway

network slice

injection/ejection switch

PSE

- electronic pathway
- electronic control
Comparative Power Analysis [DAC ’07]

- **6x6 tiled CMP**
- Very large bandwidths per core
 - Peak: 800 Gb/s
 - Average: 512 Gb/s
- Compared designs
 - Electronic on-chip network
 - Hybrid photonic on-chip network
- Performance per Watt
Power Analysis Results [DAC ’07]

- **Electronic NoC**
 - Copper lines are bandwidth-limited
 - Parallelism used to attain large bandwidth
 - Wide busses and large buffers are power hungry
 - Multiple hops require regeneration
 - **NoC power exceeding 100 W** (prediction for 22 nm)

- **Photonic NoC**
 - Message generation: 2.3 W (assuming 0.11 pJ/bit)
 - Photonic switching: 0.04 W – practically negligible
 - Network control: 0.8 W (and scaling down with technology)
 - **Total – 3.2 W**
 - optical I/O off-chip with same bandwidth to external memory at very little additional power.
Performance Analysis

- Goal to evaluate performance-per-Watt advantage of CMP system with photonic NoC
- Developed network simulator using OMNeT++: modular, open-source, event-driven simulation environment
 - Modules for photonic building blocks, assembled in network
 - Multithreaded model for complex cores
- Evaluate NoC performance under uniform random distribution
- Performance-per-Watt gains of photonic NoC on FFT application
Multithreaded complex core model

- Model complex core as multithreaded processor with many computational threads executed in parallel
- Each thread independently make a communications request to any core
- Three main blocks:
 - Traffic generator – simulates core threads data transfer requests, requests stored in back-pressure FIFO queue
 - Scheduler – extracts requests from FIFO, generates path setup, electronic interface, blocked requests re-queued, avoids HoL blocking
 - Gateway – photonic interface, send/receive, read/write data to local memory
Throughput per core

- Throughput-per-core = ratio of time core transmits photonic message over total simulation time
 - Metric of average path setup time
 - Function of message length and network topology
- Offered load → considered when core is ready to transmit
- For uncongested network: throughput-per-core = offered load
- Simulation system parameters:
 - 36 multithreaded cores
 - DMA transfers of fixed size messages, 16kB
 - Line rate = 960Gbps; Photonic message = 134ns
Throughput per core for 36-node photonic NoC

Multithreading enables better exploitation of photonic NoC high BW
Gain of 26% over single-thread
Non-blocking mesh, shorter average path, improved by 13% over crossbar
FFT Computation Performance

- We consider the execution of Cooley-Turkey FFT algorithm using 32 of 36 available cores.
- First phase: each core processes: \(\frac{k}{m/M} \) sample elements
 - \(m \) = array size of input samples
 - \(M \) = number of cores
- After first phase, \(\log M \) iterations of computation-step followed by communication-step when cores exchange data in butterfly.
- Time to perform FFT computation depends on core architecture, time for data movement is function of NoC line rate and topology.
- Reported results for FFT on Cell processor, \(2^{24} \) samples FFT executes in ~43ms based on Bailey’s algorithm.
- We assume Cell core with (2X) 256MB local-store memory, DP.
- Use Bailey’s algorithm to complete first phase of Cooley-Turkey in 43ms.
- Cooley-Turkey requires \(5k \log k \) floating point operations, each iteration after first phase is ~1.8ms for \(k = 2^{24} \).
- Assuming 960Gbps, CMP non-blocking mesh NoC can execute \(2^{29} \) in 66ms.

FFT Computation Power Analysis

- For photonic NoC:
 - Hop between two switches is 2.78mm, with average path of 11 hops and 4 switch element turns
 - 32 blocks of 256MB and line rate of 960Gbps, each connection is 105.6mW at interfaces and 2mW in switch turns
 - Total power dissipation is **3.44W**

- Electronic NoC:
 - Assume equivalent electronic circuit switched network
 - Power dissipated only for length of optimally repeated wire at 22nm, 0.26pJ/bit/mm

- Summary: Computation time is a function of the line rate, independent of medium
FFT Computation Performance Comparison

FFT computation: time ratio and power ratio as function of line rate
Performance-per-Watt

- To achieve same execution time (time ratio = 1), electronic NoC must operate at the same line rate of 960Gbps, dissipating 7.6W/connection or ~70X over photonic.
- Total dissipated power is ~244W.
- To achieve same power (power ratio = 1), electronic NoC must operate at line rate of 13.5Gbps, a reduction of 98.6%.
- Execution time will take ~1sec or 15X longer than photonic.
Summary

- CMPs are clearly emerging for power efficient high performance computing capability
- Future on-chip interconnects must provide large bandwidth to many cores
- Electronic NoCs dissipate prohibitively high power → a technology shift is required
- Remarkable advances in Silicon Nanophotonics
- Photonic NoCs provide enormous capacity at dramatically low power consumption required for future CMPs, both on- and off-chip
- Performance-per-Watt gains on communications intensive applications
Power Analysis: Electronic On-chip Network

Assumptions:
- 6x6 Mesh, uniform traffic
- Link length \(l\): 1.67 mm
- Bus width \(w\): 168 bits
- Signaling rate \(f\): 5 GHz
- Injection rate \(IR\): 0.625

Results:
- Peak bandwidth \(BW_{PEAK} = wf\): 840 Gb/s
- Average bandwidth \(BW_{AVG} = w f IR\): 525 Gb/s

Link traversal energy:
- \(E_{link}\) = 0.34 pJ/bit/mm (estimated for 32 nm)
- \(E_{router}\) = 0.83 pJ/bit (estimated for 32 nm)
- \(E_{flit-hop} = (E_{link} l + E_{link}) \cdot w = 235\) pJ

- 6x6 Mesh \(\rightarrow\) 120 links
- Average link utilization (uniform traffic) = 0.75

Total network power = \(U_{AVG} \cdot N_{LINKS} \cdot E_{flit-hop} \cdot f = 106\) W
Power Analysis: (1) Photonic Network

- 6x6 CMP (36 Gateways)
- 12x12 Photonic mesh
- 960 Gb/s peak bandwidth
- Injection rate: 0.6
- Average BW: 576 Gb/s
- 4 turns per message
- 86 switches ON (~ 0.5 mW each)
- Network power: 43 mW
Power Analysis: (2) Photonic Gateways

- Generating/receiving very high bandwidths is costly.

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Exp. scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>~1 pJ/bit</td>
<td>0.1 pJ/bit</td>
</tr>
<tr>
<td>Detection</td>
<td>~0.1 pJ/bit</td>
<td>0.01 pJ/bit</td>
</tr>
<tr>
<td>Total (36 x 576 Gb/s)</td>
<td>23 W</td>
<td>2.3 W</td>
</tr>
</tbody>
</table>

- Comparable to a single electronic link
- But – need to modulate/detect only once, while routing is nearly free.
Power Analysis:
(3) Electronic Control Network

- Low bandwidth electronic NoC: Carries only control packets.
- Bulk of data transmitted on photonic network
- Assumptions
 - x2 path length (overprovisioning)
 - 64 control bits per 2-KByte photonic message
- Carries only 0.8% of the traffic

P P 0.8% 106 W 0.8%