Deployed Large-Scale Graph Analytics: Use Cases, Target Audiences, and Knowledge Discovery Toolbox (KDT) Technology

Aydin Buluc, LBL (abuluc@lbl.gov)
John Gilbert, Adam Lugowski and Drew Waranis, UCSB ({gilbert,alugowski,awaranis}@cs.ucsb.edu)
David Alber and Steve Reinhardt, Microsoft ({david.alber,steve.reinhardt}@microsoft.com)
Knowledge Discovery Toolbox enables rapid algorithm development and fast execution for large-scale complex graph analytics.
Knowledge Discovery Workflow

1a. Cull relevant historical data

1b. Use streaming data

2. Build input graph

3. Analyze input graph

4. Visualize result graph
Knowledge Discovery Workflow

1. Use streaming data
 - 1a. Cull relevant historical data
 - 1b. Use streaming data

2. Build input graph

3. Analyze input graph

4. Visualize result graph

Data filtering technologies

KDT

Graph viz engine
Agenda

Use cases and audiences for graph analytics

- Technology
- Next steps
Graph Analytics

• Graphs arise from
 - Social networks (human or animal)
 - Transaction networks (*e.g.*, Internet, banking)
 - Molecular biological interactions (*e.g.*, protein-protein interactions)

• Many queries are
 - Ranking
 - Clustering
 - Matching / Aligning

• Graphs are not all the same
 - Directed simple graphs, hypergraphs, bipartite graphs, with or without attributes on edges or vertices, ...
Use Case: Find Influential People in a Social Network
Use Case: Find Influential People in a Social Network

- Warfighter wants to understand a social network (e.g., village, terrorist group); see DARPA GUARDDOG
- Specifically, wants to identify leaders / influencers
- GUI selects data, calls KDT to identify top N influencers
Use Cases

• Homeland security / Understand roles of members of terrorist groups based on known links between them / “Looking just at cell-phone communications, who are the leaders?”

• International banking / Detect money laundering / “Find instances of money being transferred at least 5 times and coming back to its source.”

Common thread: Enabling the knowledge-discovery domain expert to analyze graphs directly gets to the “right” answer faster and possibly at all. (In the embedded context, the end-user and the KD domain expert are likely different people.)
Audiences

• **End-users / warfighters**
 - True end-user GUI not addressed by KDT

• **Knowledge discovery domain experts**
 - Are experts in something other than graph analytics
 - Have large graphs they need to explore as part of their work
 - Want simple, robust, scalable, flexible package

• **Graph-analytic researchers**
 - Are experts in graph analytics, machine learning, etc.
 - Want to experiment with new algorithms ...
 - And get feedback from users on efficacy on large data

• **Efficiency-level developers**
 - Call-backs in C++ currently have big performance advantage
 - Formatting data for ingest
Agenda

• Use cases and audiences for graph analytics

Technology

• Next steps
Local v. Global Metrics
Degree Centrality v. Betweenness Centrality

• Is vertex A or B most central?
 - A has directed edges to more vertices (degree centrality)
 - B is on more shortest paths between vertex pairs (betweenness centrality)
Local v. Global Metrics
Degree Centrality v. Betweenness Centrality

• Is vertex A or B most central?
 - A has directed edges to more vertices (degree centrality)
 - B is on more shortest paths between vertex pairs (betweenness centrality)
• Is vertex A or B most central?
 - A has directed edges to more vertices (degree centrality)
 - B is on more shortest paths between vertex pairs (betweenness centrality)
Algorithms: Insight v Graph Traversals

- Exact betweenness centrality
- Approximate betweenness centrality
- K-betweenness centrality
- Degree centrality
- Egocentrality

Execution time:
- $O(|E|^2)$
- $O(|E|)$
Algorithms: Insight v Graph Traversals

Graph traversals (\(\sim\) execution time)

- Degree centrality
- Approximate betweenness centrality
- Exact betweenness centrality
- K-betweenness centrality
- Search for better algorithms

Insight

- \(O(|E|)\)
- \(O(|E|^2)\)
Knowledge Discovery Toolbox (KDT) Overview

• Target audiences
 – Primarily, (non-graph-expert) domain experts needing to analyze large graphs
 – Secondarily, graph-algorithm researchers and developers needing access to highly performant scalable graph infrastructure

• Target use cases
 – Broadly, problems needing the detail of algorithms that traverse the graph extensively
 – Social-network-based ranking and search
 – Homeland security

• Current KDT practicalities
 – Abstractions are (semantic) directed graph and sparse and dense vectors, all of which are distributed across a cluster
 – Python interface layered on Combinatorial BLAS
 • Delivers full scaling of CombBLAS with negligible Python overhead for non-semantic graphs
 – v0.2 release expected in October
 • x86-64 clusters running Windows or Linux
 – Open-source code available at kdt.sourceforge.net under New BSD license
Parsimony with New Concepts for Domain Experts

• (Semantic) directed graphs
 - constructors, I/O
 - basic graph metrics (*e.g.*, `degree()`)
 - vectors
• Clustering: Markov, and components
• Ranking: betweenness centrality, PageRank
• Matching: k-cycles

• Hypergraphs and sparse matrices
• Graph primitives (*e.g.*, `bfsTree()`)
• SpMV / SpGEMM on semirings
Parsimony with New Concepts for Domain Experts

• (Semantic) directed graphs
 - constructors, I/O
 - basic graph metrics (e.g., degree)
 - vectors

• Clustering: Markov, and components

• Ranking: betweenness centrality, PageRank

• Matching: k-cycles

• Hypergraphs and sparse matrices

• Graph primitives (e.g., bfsTree())

• SpMV / SpGEMM on semirings

```python
# bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

clus = G.cluster('Markov')
clusNedge = G.nedge(clus)
smallG = G.contract(clus)

# visualize
```
Parsimony with New Concepts for Domain Experts

- (Semantic) directed graphs
 - constructors, I/O
 - basic graph metrics (e.g., degree)
 - vectors
- Clustering: Markov, and components
- Ranking: betweenness centrality, PageRank
- Matching: k-cycles

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree())
SpMV / SpGEMM on semirings
Parsimony with New Concepts for Domain Experts

- (Semantic) directed graphs
 - constructors, I/O
 - basic graph metrics (e.g., degree)
 - vectors
- Clustering: Markov, and components
- Ranking: betweenness centrality, PageRank
- Matching: k-cycles

- Hypergraphs and sparse matrices
- Graph primitives (e.g., bfsTree)
- SpMV / SpGEMM on semirings

```python
# bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)
clus = G.cluster('Markov')
clusNedge = G.nedge(clus)
smallG = G.contract(clus)

# visualize
...

L = G.toSpParMat()
d = L.sum(kdt.SpParMat.Column)
L = -L
L.setDiag(d)
M = kdt.SpParMat.eye(G.nvert()) - mu*L
pos = kdt.ParVec.rand(G.nvert())
for i in range(nsteps):
    pos = M.SpMV(pos)
```
Graph API (v0.2)

Applications
- Community Detection
- Network Vulnerability Analysis
- Graph500

Graph-problems
- Ranking: exact and approx BC, PageRank
- Clustering: Markov, connected components
- Matching: <None>

Algorithms and primitives
- DiGraph: bfsTree, isBfsTree, plus utility (e.g., DiGraph, nvert, toParVec, degree, load, UFget, +, *, sum, subgraph, reverseEdges), 64-bit and single-bit elements
- HyGraph: bfsTree, isBfsTree, plus utility (e.g., HyGraph, nvert, toParVec, degree, load, UFget)
- (Sp)Vec: (e.g., +, *, |, & , >, ==, [], abs, max, sum, range, norm, hist, randPerm, scale, topK)
- semantic support: (filters, objects)
- SpMat: (e.g., +, *, SpMV, SpGEMM, SpMV_SemiRing, SpMM_SemiRing)

Separation of interfaces

CombBLAS: SpMV_SemiRing, SpMM_SemiRing
Semantic Graph Use Case
“Looking just at cell-phone communications, who are the leaders?”

```
import kdt
# user function that converts a (file) record into an edge
def readRecord(self, sourceV, destV, record):
    sourceV = record[0]
    destV = record[1]
    self.category = record[2]
    self.type = record[3]
    return (sourceVert, destVert, self)
G = kdt.DiGraph.load('/file/my/graph/data', readRecord)

# edges for which the edge-filter returns True will
#   be used in the calculation
edgeFilter = lambda x:  x.category == CellPhone
G.addEFilter(edgeFilter)

# calculate leaders via approximate betweenness centrality
bc = G.centrality('approxBC')
leaders = bc.topK(10)
```

Caveat: Currently, expressing the filter in Python (rather than C++) leads to a big performance decrease; reducing/eliminating this decrease is work in progress.
Example Algorithm:
Find a breadth-first tree starting from a given vertex.
from \(\mathbf{A}^T \) to \(X \) \(\rightarrow \) \(\mathbf{A}^T \mathbf{X} \)
The case for sparse matrices

Many irregular applications contain coarse-grained parallelism that can be exploited by abstractions at the proper level.

<table>
<thead>
<tr>
<th>Traditional graph computations</th>
<th>Graphs in the language of linear algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data driven, unpredictable communication.</td>
<td>Fixed communication patterns</td>
</tr>
<tr>
<td>Irregular and unstructured, poor locality of reference</td>
<td>Operations on matrix blocks exploit memory hierarchy</td>
</tr>
<tr>
<td>Fine grained data accesses, dominated by latency</td>
<td>Coarse grained parallelism, bandwidth limited</td>
</tr>
</tbody>
</table>
• Graph500 benchmark on 8B edges, C++ or KDT calling CombBLAS
• NERSC “Hopper” machine (Cray XE6)
• [Buluç & Madduri]: New hybrid of CombBLAS MPI + OpenMP gets 25 GTEPS on 2T edges (scale 37) on 43,200 cores of Hopper
Performance
Betweenness Centrality

• With a few hundred cores, can do even a complex graph analysis in near-interactive time
• 2M edges, approximate betweenness centrality sampling at 3%
Productivity

• Betweenness centrality
 – Python version initially written to SciPy interfaces
 – Porting to KDT took 11 hours for working, scalable implementation

• Markov clustering
 – Written by an undergraduate in 6 hours
Agenda

• Use cases and audience
• Technology

Next steps
Next Steps

• Core technology
 – Evolve semantic graph support so fully usable
 – Implement support for streaming graphs

• Engineering
 – Couple with GUI / graph viz package
 – Port to Windows Azure
 – Accept more data formats
 – Extend coverage of clustering, ranking, and matching algorithms
KDT Summary

• Open-source toolbox targeted at domain experts
• Scalable to 10B-edge graphs and thousands of cores
• Limited set of methods, no graph viz yet
• kdt.sourceforge.net for details
• If you
 - have other use cases
 - need specific data formats or methods
 - have developed a method
please contact me at steve.reinhardt@microsoft.com
Knowledge Discovery Toolbox enables rapid algorithm development and fast execution for large-scale complex graph analytics.
Backup
Further Info

• Linked, by Albert-Laszlo Barabasi
• Graph Algorithms in the Language of Linear Algebra, by John Gilbert and Jeremy Kepner, SIAM
Cloud Benefits for Graph Analytics
Cloud Benefits for Graph Analytics

- For domain expert
 - Elasticity of compute resource
 - Ready availability of needed data – what?
 - Ready availability of new methods – which?

- For graph-algorithm researcher
 - Quickly try your algorithm on big data
 - Quickly make it visible to domain experts
“Transport of the mails, transport of the human voice, transport of flickering pictures - in this century, as in others, our highest accomplishments still have the single aim of bringing men together.”

Antoine de Saint-Exupery
Undelivered Possibilities

- Graph viz
- More ranking/clustering/matching options
- Availability in Azure
- Initial stages on disk, later stages in memory
- Dynamic/streaming graphs
Use Case: Find Influential People in a Social Network

- Promoter has a SN group
- Wants to identify influencers on which to focus marketing efforts so as to maximize viral effect of the group
- Calls KDT with group name, gets back top N influencers
- Useful for (e.g.) viral marketing, public health
Comparison to Other Parallel Packages

<table>
<thead>
<tr>
<th>Package</th>
<th>Target users</th>
<th>Interface</th>
<th>Supported memory*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graph-alg devs</td>
<td>Domain experts</td>
<td></td>
</tr>
<tr>
<td>Pegasus</td>
<td>X</td>
<td>Hadoop</td>
<td>Distributed on-disk</td>
</tr>
<tr>
<td>Pregel</td>
<td>X</td>
<td>C++</td>
<td>Distributed on-disk</td>
</tr>
<tr>
<td>PBGL</td>
<td>X</td>
<td>C++</td>
<td>Distributed in-memory</td>
</tr>
<tr>
<td>MTGL</td>
<td>X</td>
<td>C++</td>
<td>Shared</td>
</tr>
<tr>
<td>SNAP (GA Tech)</td>
<td>X</td>
<td>C</td>
<td>Shared</td>
</tr>
<tr>
<td>SNAP (Stanford)</td>
<td>X</td>
<td>X</td>
<td>C++ / NodeXL</td>
</tr>
<tr>
<td>GraphLab</td>
<td>X</td>
<td>C++</td>
<td>Shared</td>
</tr>
<tr>
<td>CombBLAS</td>
<td>X</td>
<td>C++</td>
<td>Shared or distributed, in-memory</td>
</tr>
<tr>
<td>KDT</td>
<td>X</td>
<td>Python</td>
<td>Shared or distributed, in-memory</td>
</tr>
</tbody>
</table>

*“Shared” meaning either cache-coherent or Cray XMT-style
Example Implementation: bfsTree

AT

from

to
from

\[A^T X \]
Technically

Ecologically

from

\[A^T \]

\[X \]

\[A^T X \]
Technically

Ecologically

from

to

\[\mathbf{A}^T \mathbf{X} \]
Technically

Ecologically

from

to

\[\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \]

\[A^T \]

\[X \]

\[A^T X \]
Many Graphs Don’t Decompose Simply onto Distributed Memory

- 4n exchanges
- n^2 FLOPS
- Good locality

- ? exchanges
- ? OPS
- Usually poor locality, hence frequent comms, hence often a poor match for MapReduce
Sparse array-based primitives

Sparse matrix-matrix multiplication (SpGEMM)

Element-wise operations

Sparse matrix-dense vector multiplication

Sparse matrix indexing

Matrices on various semirings: \((x, +)\), \((\text{and}, \text{or})\), \((+, \text{min})\), ...
Some Combinatorial BLAS functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Applies to</th>
<th>Parameters</th>
<th>Returns</th>
<th>Matlab Phrasing</th>
</tr>
</thead>
</table>
| **SpGEMM** | Sparse Matrix (as friend) | A, B: sparse matrices
trA: transpose A if true
trB: transpose B if true | Sparse Matrix | $C = A \times B$ |
| **SpMV** | Sparse Matrix (as friend) | A: sparse matrices
x: sparse or dense vector(s)
trA: transpose A if true | Sparse or Dense Vector(s) | $y = A \times x$ |
| **SpEWiseX** | Sparse Matrices (as friend) | A, B: sparse matrices
notA: negate A if true
notB: negate B if true | Sparse Matrix | $C = A \times B$ |
| **REDUCE** | Any Matrix (as method) | dim: dimension to reduce
binop: reduction operator | Dense Vector | sum(A) |
| **SpRef** | Sparse Matrix (as method) | p: row indices vector
q: column indices vector | Sparse Matrix | $B = A(p, q)$ |
| **SpAsgn** | Sparse Matrix (as method) | p: row indices vector
q: column indices vector
B: matrix to assign | none | $A(p, q) = B$ |
| **Scale** | Any Matrix (as method) | rhs: any object
(except a sparse matrix) | none | Check guiding principles 3 and 4 |
| **Scale** | Any Vector (as method) | rhs: any vector | none | none |
| **Apply** | Any Object (as method) | unop: unary operator
(applied to non-zeros) | None | none |
def bfsTree(self, root, sym=False):
 if not sym:
 self.T() # synonym for reverseEdges
 parents = dg.ParVec(self.nvert(), -1)
 fringe = dg.SpParVec(self.nvert())
 parents[root] = root
 fringe[root] = root
 while fringe.nnn() > 0:
 fringe.spRange()
 self._spm.SpMV_SelMax_inplace(fringe._spv)
 pcb.EWiseMult_inplacefirst(fringe._spv,
 parents._dpv, True, -1)
 parents[fringe] = fringe
 if not sym:
 self.T()
 return parents

• SpMV and EWiseMult are CombBLAS ops that do not yet have good graph abstractions
 - pathsHop is an attempt for one flavor of SpMV
```python
def pageRank(self, epsilon = 0.1, dampingFactor = 0.85):
    # We don't want to modify the user's graph.
    G = self.copy()
    nvert = G.nvert()

    G._spm.removeSelfLoops()

    # Handle sink nodes (nodes with no outgoing edges) by
    # connecting them to all other nodes.
    degout = G.degree(gr.Out)
    nonSinkNodes = degout.findInds()
    nSinkNodes = nvert - len(nonSinkNodes)
    iInd = ParVec(nSinkNodes*(nvert))
    jInd = ParVec(nSinkNodes*(nvert))
    wInd = ParVec(nSinkNodes*(nvert), 1)
    sinkSuppInd = 0

    for ind in range(nvert):
        if degout[ind] == 0:
            # Connect to all nodes.
            for sInd in range(nvert):
                iInd[sinkSuppInd] = sInd
                jInd[sinkSuppInd] = ind
                sinkSuppInd = sinkSuppInd + 1
        sinkMat = pcb.pySpParMat(nvert, nvert,
                                  iInd._dpv, jInd._dpv, wInd._dpv)
    sinkG = DiGraph()
    sinkG._spm = sinkMat
```
G.normalizeEdgeWeights()
sinkG.normalizeEdgeWeights()

PageRank loop
delta = 1
dv1 = ParVec(nvert, 1./nvert)
v1 = dv1.toSpParVec()
prevV = SpParVec(nvert)
dampingVec = SpParVec.ones(nvert) *
((1 - dampingFactor)/nvert)
while delta > epsilon:
 prevV = v1.copy()
 v2 = G._spm.SpMV_PlusTimes(v1._spv) +
 sinkG._spm.SpMV_PlusTimes(v1._spv)
 v1._spv = v2
 v1 = v1*dampingFactor + dampingVec
 delta = (v1 - prevV)._spv.Reduce(pcb.plus(),
 pcb.abs())
return v1

• This portion looks much more like matrix algebra
scale = 15
nstarts = 640

GRAPH500 = 1
if GRAPH500 == 1:
 G = dg.DiGraph()
 K1elapsed = G.genGraph500Edges(scale)

 if nstarts > G.nvert():
 nstarts = G.nvert()
 deg3verts = (G.degree() > 2).findInds()
 deg3verts.randPerm()
 starts = deg3verts[dg.ParVec.range(nstarts)]
 G.toBool()
 K2elapsed = 1e-12
 K2edges = 0
 for start in starts:
 start = int(start)
 if start==0: #HACK: avoid root==0 bugs for now
 continue
 before = time.time()
 parents = G.bfsTree(start, sym=True)
 K2elapsed += time.time() - before
 if not k2Validate(G, start, parents):
 print "Invalid BFS tree generated by bfsTree"
 print G, parents
 break
 [origI, origJ, ign] = G.toParVec()
 K2edges += len((parents[origI] != -1).find())
def k2Validate(G, start, parents):
 ret = True
 bfsRet = G.isBfsTree(start, parents)
 if type(ret) != tuple:
 if dg.master():
 print "isBfsTree detected failure of Graph500 test %d" % abs(ret)
 return False
 (valid, levels) = bfsRet

 # Spec test #3:
 [origI, origJ, ign] = G.toParVec()
 li = levels[origI]
 lj = levels[origJ]
 if not ((abs(li-lj) <= 1) | ((li==-1) & (lj==-1))).all():
 if dg.master():
 print "At least one graph edge has endpoints whose levels differ by more than one and is in the BFS tree"
 print li, lj
 ret = False

 # Spec test #4:
 neither_in = (li == -1) & (lj == -1)
 both_in = (li > -1) & (lj > -1)
 out2root = (li == -1) & (origJ == start)
 if not (neither_in | both_in | out2root).all():
 if dg.master():
 print "The tree does not span the connected component exactly, root=%d" % start
 ret = False

 # Spec test #5:
 respects = abs(li-lj) <= 1
 if not (neither_in | respects).all():
 if dg.master():
 print "At least one vertex and its parent are not joined by an original edge"
 ret = False

 return ret

- #1 and #2: implemented in isBfsTree

- #3: every input edge has vertices whose levels differ by no more than 1. Note: don't actually have input edges, will use the edges in the resulting graph as a proxy

- #4: the BFS tree spans a connected component's vertices (== all edges either have both endpoints in the tree or not in the tree, or source is not in tree and destination is the root)

- #5: a vertex and its parent are joined by an edge of the original graph