Talk Overview

• Talk Goals
 – IDS as detector or design constraints?
• OAS and Detection Surfaces
• Attack and Payoff Models
 – Acquisition
 – Reconnaissance
• Evaluation and Comparison
• Conclusions
IDS as Detector

• Standard method for evaluation: ROC curves
 – True Positive Vs. False Negative
 – Hidden variable used to determine sensitivity, specificity
A Lack of Context

• The ROC based approach evaluates IDS as an alarm
• The world has changed
 – Many attacks are failures
 – Many attacks are
• Base-Rate Fallacy: Continuous tests and low FPR yields high objective false alarm count
There are also many True Positives
Our alternative

- View IDS as a design spec, with the attacker as an engineer
 - Attacker’s goal – succeed without getting caught
 - Attacker is rational

Anyone who talks to more than 15 hosts/minute is suspicious

I’ll talk to 14 hosts every minute
Observable Attack Space

• What attacks look like is a function of your logging software
 – We’re using NetFlow – no payload, can crunch a lot of data
• OAS: parameterized representation of varying types of attacks
 – Our OAS is simple:
 • Aggressiveness: # of hosts contacted in a 30s period
 • Success: Probability that they contact a host
Methodology

- IDS are state variables from a log file Λ
 - $g(\Lambda)$: total number of nodes [Collins + Reiter, 2007]
 - $c(\Lambda)$: largest component size [Collins + Reiter, 2007]
 - $h(\Lambda)$: entropy of server addresses [Lakhina et al., 2005]
 - $r(\Lambda)$: longest number of failed connections from an IP [Jung et al., 2004]
 - $d(\Lambda)$: maximum client degree [Everybody]

- Model variables using historical ssh data

- All the IDS (except d) have parameterized models
 - Control FPR (threshold of aggravation)
Detection Surface

• Generate an attack log from \((a,s)\)
 – calculate \(x(\Lambda \cup \Lambda_{\text{atk}})\), estimate
 – Multiple Monte-Carlo runs, build up a model for the probability of detection: \(P_{\text{det}}^x(a,s)\)

• Limited number of runs for this test
 – More runs, smoother lines
 – These show the behavior
Estimate a Detection Surface
This surface

• Aggregate behavior
 – FPR calibrated to 0.1% for all sensors combined
 • Control FPR by increasing thresholds, again statistical models
 – 0.1% = 1 False Alarm/8 hour shift w 30s observations
• d limits the size of the space
 – Upper limit: d = 150; anything greater automatically detected
Individual IDS results

![Diagram showing individual IDS results with contour lines for success percentage against aggressiveness. The diagrams indicate varying success rates at different levels of aggressiveness.]
Observations

• Why no d?
 – Max degree is treated as an upper limit. > 150 targets and you’re tagged.

• All of these things have the same FPR – 1/1000 tests.
 – Very different behavior
 – Different tests complement each other

• Some tests are very low detectors
 – Because we’re dealing with very smart attackers
 – You can get a good FPR/TPR because many attackers aren’t
Acquisition Scenario

- Attacker opens communication with a hosts, s % of which are on a hit list
 - Communication is assumed to be takeover
- Takes place in k rounds, each of which is an (a,s) attack
- If the defender detects the attacking IP:
 - Blocks the attacking IP
 - Restores all hosts the attacking IP talked with
Acquisition Payoff

• Payoff Function:

\[H_{acq}^x(a, s, k) = (1 - P_{det}^x(a, s))^k(ask) \]

• Continue attacking to point of diminishing returns

\[k < \frac{1 - P_{det}^x(a, s)}{P_{det}^x(a, s)} \]
Acquisition Payoff

Payoff

Aggressiveness

Success
Observations

• Aggression doesn’t pay
 – Too high an a, and the attack is detected and the damage undone

• The attacker can earn a very high profit through patience and a good hit list
Reconnaissance Scenario

• Attacker wants to scout out hosts
• Real payoff is failure rate
 – Success means attacker picked from hit list
 – Failures mean that the attacker has communicated with a new address
 • Assume IP space isn’t very dense
Reconnaissance Payoff

• Payoff Function:

\[H_{\text{rec}}^x (a, s) = a(1 - s) \frac{1}{P_{\text{det}}^x (a, s)} \]

• Scanners continue until they get caught
 – No penalty for being caught, still get intelligence
 – “First round free”
Reconnaissance Payoff

![3D graph showing Payoff, Aggressiveness, and Success relations]
Observations

• Aggressiveness pays
 – We limit d, but an attacker could hit thousands in that timeframe
 – Similar hump to attacks – slow and subtle identification can also pay well
Inverting the situation

- Instead of asking how effective attacks are
 - How effective do defenses have to be in order to stop them?
- Invert payoff calculation, solve detection probability for fixed payoff

\[P_{det}^x (a, s) = 1 - k \sqrt{H_{acq}^x (a, s, k)} \]
Individual IDS results

![Graph g](image)

Success (Percentage) vs. Aggressiveness

- g: 32%
- c: 5%
- h: 1.2%
- r: 3%

![Graph h](image)

![Graph r](image)
Observations

• The values drop
 – But they still aren’t really that good
 • 1% = 10 alerts/shift = 30 alerts/day
 – Again, these are very subtle attacks

• Since there’s a payoff for subtlety, an attacker can continue to hit the system using a very low success rate even if the system is amazingly sensitive (and therefore annoying)
Conclusions

• Developed a payoff-based model for comparing IDS efficacy
 – Shows strength and weaknesses of various anomaly detectors
• Attackers can conduct very subtle and effective attacks which even very sensitive detectors will fail to detect
 – Conversely, any old detector will work soon enough
• Subtlety pays; analyst patience will run out far before the system is an effective detector
• Probably need different detectors for slow attacks than fast ones
Questions?

• Michael Collins, RedJack LLC
 – michael.collins@redjack.com

• Michael Reiter, UNC Chapel Hill
 – reiter@cs.unc.edu