The Jump Tracker

Nonlinear Bayesian Tracking with Adaptive Meshes and a Markov Jump Process Model

Steven T. Smith*

*MIT Lincoln Laboratory, Lexington, MA 02420; stsmith@ll.mit.edu.

This work was sponsored by the United States Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.
Outline

• Introduction
 – Parametric vs nonparametric Bayesian filters
 – Direct (numerical) vs Monte Carlo approaches
• The Jump Tracker concept
• Implementation and complexity
• Jump Tracker example scenario
 – Bistatic radar tracking
• Summary and conclusions
New Contributions

• Finite-state Markov jump process motion model
 – Motivation for “Jump Tracker” name
 – Computational advantages
 – Relative realism of motion model vs random walk

• Adaptive moving mesh to describe target state
 – Used for tracker solution
 – Computational advantages

• New method for direct numerical solution of “forward equation”
 – Compare to Kalman filter equations (closed-form)
 – Compare to particle filtering (Monte Carlo)
Parametric vs Nonparametric Bayesian Filters

Kalman filter

- Parametric tracker
 - Gaussian mean and covariance
- Bayes’ rule update for linear, Gaussian motion and measurement models
 - \(d + d(d+1)/2 \) nonlinear ordinary differential equations

General Bayesian filter

- Non-Parametric tracker
 - Probability density vs state
- Bayes’ rule update for nonlinear, non-Gaussian models
 - Computationally intensive

Jump Tracker filter

- Parametric tracker
 - Mesh position and probability
 - \(Nd \) nonlinear partial differential equations
- Bayes’ rule update for nonlinear, non-Gaussian models
 - Computationally tractable

See also Daum-Beneš exact filters

\(d = \) dimension
Bayesian Tracker Implementation

\[\rho(t, x, v) = \text{target state density at time } t \]

Fokker-Planck equation
\[\frac{\partial \rho}{\partial t} = \frac{1}{2}a^2 \frac{\partial^2 \rho}{\partial (x,v)^2} + \ldots \text{ solves Kalman filter exactly} \]

This talk

Motion Model

<table>
<thead>
<tr>
<th>Measurement Model</th>
<th>General</th>
<th>Markov</th>
<th>Gaussian</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>General</td>
<td>Bayesian</td>
<td>Bayesian</td>
<td>Bayesian</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Bayesian: Jump Tracker, Particle Filter</td>
<td>Extended Kalman Filter (EKF)</td>
<td>EKF</td>
<td>Kalman Filter</td>
</tr>
<tr>
<td>Linear</td>
<td>Particle Filter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target measurements → Tracker → Probability of position and speed
Tracker Motion and Measurement Models

Motion model
- Specifies target movement through state space

Kalman filter model
- Random walk
 \[dx = (Ax + Bv) \, dt + Edw_1 \]
 \[dv = (Cx + Dv) \, dt + Fdw_2 \]

Measurement model
- Relationship between target measurements and state space

Kalman filter model
- Linear and Gaussian
 \[dy = (Gx + Hv) \, dt + Kdw_3 \]
- Continuous contact

This talk
Markov jump process
- Straight-line motion
 \[dx = v_k \, dt \]
 \[v_k = \text{general speed model} \]
 \[k = \text{finite state from \{1, 2, ..., K\}} \]

General model
- Nonlinear, Non-Gaussian, Ambiguous
- Irregular contacts
 Terrain masking
 Interference
 Fluctuating radar cross section
 Jazwinski’s “continuous-discrete” model
Outline

• Introduction

• The Jump Tracker concept
 – State space and motion models
 – Forward equation

• Implementation and complexity

• Jump Tracker example scenario

• Summary and conclusions
Jump Tracker State Space: X, Y, v_X, v_Y

- X, Y, v_X, v_Y pdf (dBkm$^{-2}$)

- Target path
- 86% contour*

*2-sigma error ellipse in Gaussian case

MIT Lincoln Laboratory
Jump Tracker Probability Law
Bayesian/Optimal Tracking

\[\frac{\partial \rho}{\partial t} = -\text{diag}(\frac{\partial \rho}{\partial x} \cdot V) + \lambda(11^T/K - I)\rho + \frac{1}{2}a^2 \frac{\partial^2 \rho}{\partial x^2} \]

- Forward equation for finite-state Markov jump process
 - This is not the Fokker-Planck equation (no Wiener process)
- The density \(\rho(x,t) \) is a vector formed from velocity hypotheses
 - State-space partitioned into physically distinct parts
 - Moving through and space and velocity takes very different time scales
- Coupled system of deterministic linear partial differential equations (PDEs)
 - Given initial \(\rho(x,0) \), integrate by operator splitting to easy parts
 \[\rho(x, t + \Delta t) = e^{\Delta t \lambda(11^T/K - I)} \cdot e^{\Delta t/2a^2} \frac{\partial^2}{\partial x^2} \cdot e^{\Delta t \partial \partial x \cdot V} \cdot \rho(x,0) \]
Tracker Update Methods

- **Kalman (exact) filter**
 - Easy and fast $O(d^3)$ finite-difference implementation
 - Linear/Gaussian measurement and motion models required

- **Monte Carlo (particle filtering)**
 - Easy but expensive $O(d!)$ Monte Carlo sampling
 Daum and Huang (2003) show how the “curse of dimensionality” may be avoided in some important cases
 - Greatest flexibility, but “you should never trust a Monte Carlo simulation without some method to verify that it is correct” (Daum 2004)

- **Direct numerical method: conditional density equation**
 - In general, complicated and expensive $O(d!)$ PDE solution
 - Numerical solution for given measurement and motion model
 - Recent algorithm developments may make this attractive at lower dimensions

$d = \text{dimension}$
Outline

• Introduction
• The Jump Tracker concept
• Implementation and complexity
 – Moving mesh finite element method
 – Comparison to particle filtering
• Jump Tracker example scenario
• Summary and conclusions
Nonuniform Sampling: 1-D vs N-D

One dimension

Solution: Interpolate using CDF

\[\Delta \xi = \text{pdf}(x) \cdot \Delta x \]

N dimensions

No closed-form sampling solution!

\[\min \frac{1}{2} \int_{\Omega} \text{tr} (\partial \xi / \partial x) G^{-1} (\partial \xi / \partial x)^T dA \]
Moving Mesh and Finite Element Methods

Adaptive meshes based on PDEs

- Mesh points adapt to where they’re needed most (r-method)
- Use of FEM methods possible
- Straightforward solution of “moving mesh partial differential equations” (Huang, Cao, and Russell)

\[
\min 1/2 \int_{\Omega} \text{tr} \left(\frac{\partial \xi}{\partial \mathbf{x}} G^{-1} \left(\frac{\partial \xi}{\partial \mathbf{x}} \right)^T \right) dA
\]

Finite element method

- Choose sample points
- Delaunay triangulation
- Apply Green’s first identity to everything in sight

\[
\int_{\Omega} \psi \nabla^2 \phi \, dA = -\int_{\Omega} \langle \nabla \psi, \nabla \phi \rangle \, dA + \int_{\partial \Omega} \psi \nabla \phi \cdot ds
\]
- Turns PDEs into linear system of equations

Advection equation

Combustion-diffusion equation

Airfoil simulation

Computational Nonlinear Filtering

How many samples to represent a \(d \)-dimensional density?

Daum and Huang’s analysis† of Monte Carlo approaches

- \(\text{accuracy}^2 = \text{Var}[X]/N \)
- \(N = \text{Var}[X]/\text{accuracy}^2 \)
- \(\text{Cost} \propto N \text{ or } N^2 \)
- \(\text{Var}[X] = d \times \sigma^2 \text{ for } d\text{-Gaussian} \)
- \(\text{Var}[X] = 2^d \times \sigma^2 \text{ for } d\text{-uniform} \)

Conclusions

- Monte Carlo filtering can avoid the curse of dimensionality with Gaussian-like densities, smart sampling, and moment-only computation
 - N.b. Monte Carlo provides mean and variance estimates, not pdfs
- In general, curse of dimensionality

Analysis of direct approaches

- \(\text{accuracy} \propto 1/N \)
- \(\text{Cost} \propto T = \#\text{Delaunay triangles}(N) \)
- \(\text{Volume}(T^d) = 1/d! \)
- \(\text{Volume}(B^d) \sim (2\pi e)^{d/2} d^{-(d+1)/2} \)
- \(T_{\text{min}} \sim (2\pi d/e)^{d/2} \text{ (exponential growth)} \)
- \(N_{\text{min}} \sim (\pi/2)^{1/d} d^{2+1/d} \)

Conclusions

- Relatively small cost for low dimensions (10s of points)
- Curse of dimensionality appears to be unavoidable

Tracker Accuracy and Sample Size

- Tracker accuracy is measured by two parameters
 - The tracker error (mean of position)
 - The area of uncertainty (AOU; variance of position)

![Graphs showing the relationship between sample size, mean error, cost, AOU error, and numerical dissipation for Jump Tracker and Particle Filters.](https://via.placeholder.com/150)

- Jump Tracker:
 - Mean error vs. sample size: $O(N^{-1})$
 - AOU error vs. sample size: numerical dissipation

- Particle Filters:
 - Mean error vs. sample size: $O(N^{-1/2})$
 - AOU error vs. sample size: $O(N^{-1/2})$
Outline

• Introduction
• The Jump Tracker concept
• Implementation and complexity
• Jump Tracker example scenario
 – Bistatic radar tracking
• Summary and conclusions
Example Scenario

Bistatic Radar from Ristic et al.

Transmitter

Receiver

100 MHz
100 kHz BW

1-\lambda aperture
200 ms CPI

Localization via:
• Bistatic delay
• Bearing (rough)
• Doppler (speed)
Bistatic Radar Measurement Model

- Measurements
 - Delay
 - Bearing
 - Doppler

- Position and velocity estimates
 - Bistatic range = $c \times$ delay
 - Range error = c/bandwidth/SNR$^{1/2}$
 - Bearing error = λ/aperture/SNR$^{1/2}$
 - Doppler = \[-(\langle v_T, p_T - p_X \rangle/R_{TX} + \langle v_T, p_T - p_R \rangle/R_{TR})/\lambda\]
 - Doppler error = CPI$^{-1}$/SNR$^{1/2}$
Jump Tracker Performance

- Target path
- Target track
- 86% contour

*2-sigma error ellipse in Gaussian case

- Xmtr
- Rcvr

1:00 hr:mn
86% area = 191 km²

pdf (dBkm⁻²)
Jump Tracker Performance

- **Target path**
- **Target track**
- **86% contour**

*2-sigma error ellipse in Gaussian case

- **Xmtr**
- **Rcvr**

1:00 hr:mn
86% area = 191 km²

pdf (dBkm⁻²)

-40 0 40
-40 0 40
Jump Tracker Performance
Jump Tracker Performance (mesh)
Jump Tracker Error

\[\text{error} = || \text{mean}(86\%) - \text{truth} ||^2 \]

- **Track error (km)**
- **86\% area (km\(^2\))**

AOU; 2-sigma error ellipse in Gaussian case
Summary and Conclusions

- New direct method nonlinear tracker proposed ("jump tracker")
 - Straight-line motion model
 Finite-state Markov jump process velocity state
 Yields coupled system of linear PDEs for density equation
 - Moving mesh PDE and finite-element method numerical solution
 - Efficient computation of optimum nonlinear Bayesian filter
- Computational complexity roughly quantified and compared to Monte Carlo (particle filtering) for arbitrary samples, dimensions
 - Direct numerical approach may be competitive at lower dimensions
 - Expect Monte Carlo to win for large dimensions, in spite of "curse of dimensionality" for both
 Open research area / Performance cross-over unknown
- Jump Tracker applied to textbook bistatic radar tracking example
 - Good tracking performance demonstrated with a single target
 - False alarm and multiple target methods applicable as well