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Mental health impairments can 
significantly and adversely affect human 
performance and quality of life for civilian 
and military populations. Indeed, brain 

disorders taken together are a leading cause of global 
disease [1]. Toward the goal of finding simple, non- 
invasive, and objective means to detect, predict, 
and/or monitor such conditions, the Human Health and 
Performance Systems Group at Lincoln Laboratory is 
developing multimodal biomarkers based on behavioral 
measurements to detect changes in neurobehavioral 
function associated with psychological (e.g., major 
depressive disorder), neurotraumatic (e.g., traumatic 
brain injury), neurodegenerative (e.g., Parkinson’s 
disease), and neurodevelopmental (e.g., autism spectrum 
disorder) conditions. 

One of our objectives is the discovery of behavioral-
based biomarkers that reflect a change or decline in 
brain functioning as manifested in motor control and, 
more specifically, changes in timing and coordination 
within the neuromotor components of a behavior. This 
investigation into biomarkers is based on the hypothesis 
that motor control is associated with neural coordination 
across different parts of the brain. Examples of behaviors 
we are examining include vocal and facial expression, 
heart rate variability, eye movement, and fine and gross 
movement of the extremities. One focus of our investiga-
tion is on novel vocal and facial biomarkers that are based 
on phonetic timing, articulatory coordination, and facial 
muscle coordination during speech production. 

A motivation for working in the areas of health and 
performance is the prevalence in civilian and military 

A large array of neurological and psychological 
conditions is prevalent in civilian and military 
populations. To complement current clinical 
standards, there is a pressing need for 
noninvasive in-field and at-home methods of 
assessing such conditions. Lincoln Laboratory 
is developing neurobehavior-based biomarkers, 
which reflect a change in brain functioning 
as manifested in motor control, paired with 
neurocomputational biophysical models to 
identify neurobehavioral changes. The efficacy 
of our approach is illustrated through several 
applications for assessing major depressive 
disorder, Parkinson’s disease, traumatic brain 
injury, and cognitive overload.

»
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populations of conditions that can compromise neuro-
behavioral function. Among the neurobehavioral disorders 
that affect global health, depression is the single largest 
source of lost productivity in high-income countries. 
According to the World Health Organization [1], by the 
year 2030, disability and lives lost from depression alone 
will surpass those caused by cancer, war, stroke, and 
accidents. There are roughly 20 suicides per day among 
U.S. veterans [2]. It also is projected that by 2030 there 
will be 82 million people worldwide with dementia [3]. 
One in 59 children in the United States has been identi-
fied as having autism spectrum disorder (ASD) [4]. About 
19 percent of U.S. servicepeople returning from recent 
wars experienced a traumatic brain injury (TBI) of some 
form, and about 20 percent of that same population has 
post-traumatic stress disorder (PTSD) [5]. Other factors, 
such as (1) exposures to environmental extremes or occupa-
tional chemicals and (2) fatigue resulting from physical 
and mental exertion or disrupted sleep patterns, can also 
compromise neurobehavioral performance in our service-
people. Figure 1 illustrates the staggering and increasing 
prevalence of mental health conditions and other factors 
that can impair neurobehavioral performance. 

The many standard methods used in detecting 
neurobehavioral performance changes range from brain 
imaging to clinical assessments to molecular diagnostics. 
These approaches, while useful, can be time and resource 
intensive, are often susceptible to the effects of individual 
motivation, and, because they often capture feelings or 
behaviors at discrete points in time, may lack sufficient 
sensitivity to detect subtle changes in behavior. Moreover, 
they often lack objective measurement, especially in early 
detection of day-to-day performance changes when assess-
ment can be most important. At Lincoln Laboratory, we 
are developing technologies that address these limitations 
by reaching large populations and detecting, monitoring, 
and ultimately intervening to follow the effect of treat-
ment and intervention. Our approach seeks objective 
biomarkers that reflect subtle changes in behavior and 
makes use of nonobtrusive mobile wearable technologies.

In the context of this article, the term biomarker 
refers to any measurement of behavior we can obtain 
from a human body, such as talking or walking. Certain 
behavioral features have been shown to change with a 
subject’s mental and emotional state and under numerous 
conditions, including cognitive load and neurological 

5.8 million 
U.S. adults are living with Alzheimer’s. 
By 2050, this number is projected to 

rise to nearly 14 million.

1 in 59 
eight-year-old children in 

11 communities across 
the United States were 

identified as having 
autism in 2014.

8 million
U.S. adults have post-traumatic stress disorder 
(PTSD) during a given year. This is only a small 

portion of those who have gone through a trauma.

7.6%
of Americans ages 
12 and older had 
depression during 
2009–2012.

50,000
people are diagnosed with 
Parkinson’s disease in the 
United States each year 
and about half a million 
people have the disease.

19.5%
of U.S. service members who have returned 

from Afghanistan and Iraq report experiencing 
a traumatic brain injury during deployment.

19.1%
of U.S. adults 

had an anxiety 
disorder in the 

past year.

Sources: Alzheimer’s Association, “2019 Alzheimer’s Disease Facts and 
Figures.” National Institute of Mental Health, “Any Anxiety Disorder,” available 
at https://www.nimh.nih.gov/health/statistics/any-anxiety-disorder.shtml, 
accessed Sept. 2019. J. Baio, L. Wiggins, D.L. Christensen, Z. Warren, et al., 
“Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — 
Autism and Developmental Disabilities Monitoring Network, 11 Sites, United 
States, 2014,” Morbidity and Mortality Surveillance Summaries, vol. 67, no. 6, 
2018,  pp. 1–23. National Institutes of Health, “Parkinson’s Disease Fact 
Sheet,” available at https://report.nih.gov/NIHfactsheets/ViewFactSheet.
aspx?csid=109, accessed Sept. 2019. L.A. Pratt and D.J. Brody, “Depression 
in the U.S. Household Population, 2009–2012,” National Center for Health 
Statistics Data Brief No. 172, 2014. U.S. Department of Veterans Affairs,
“How Common is PTSD in Adults?” available at https://www.ptsd.va.gov/
understand/common/common_adults.asp, accessed Sept. 2019. 

FIGURE 1. An array of neurological and psychological 
conditions is prevalent in U.S. civilian and military populations.
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disorders. Example modalities used in detecting cognitive 
and neurological stress include voice, facial expression, 
physiology, eye movement, gait, hand dexterity, and 
electroencephalography (EEG) analysis. The use of 
behavioral-based biomarkers is not a new concept. Such 
biomarkers have been applied in a variety of contexts for 
at least two decades. Examples include features derived 
from vocal and facial expression, fine and gross motor 
movements, physiology, and brain activity [6–40]. 

Features derived from vocal expression, or voice, 
include characterizations of prosody (e.g., fundamental 
frequency and speaking rate), spectral representations 
(e.g., vocal tract resonance), and glottal excitation flow 
patterns (flow shape, timing jitter, amplitude shimmer, 
and aspiration) [10, 13, 14, 33, 36] derived from acoustic 
measurements. Features from facial expression include 
parametric models of the face and representations of 
underlying facial muscle groups known as facial action 
units [22, 24] derived from video measurements. For 
fine and gross motor movements, irregularities in stride, 
hand dexterity, and eye tracking have been used in charac-
terizing a variety of neurological conditions, with a few 
examples in Russo et al., Samadani et al., and Gowan and 
Hamilton [40–42]. 

We cannot hope in the limits of this article to review 
all state-of-the-art behavioral-based feature approaches. 
However, what distinguishes Lincoln Laboratory’s 
approach from these more standard methods, or what 
we will refer to as low-level feature-based approaches, 
is the introduction of features motivated by the timing 
and coordination of underlying neuromotor control of 
behaviors. Although significant effort has been devoted to 
behavioral-based biomarkers, little or no study has been 
done examining changes in coordination, movement, 
and timing of components of a behavior. For example, 
in individuals suffering from depression, neurophysio-
logical changes often alter motor control and thus affect 
mechanisms controlling speech production and facial 
expression. Clinically, these changes are typically associ-
ated with psychomotor slowing, a condition of slowed 
neuromotor output manifested in altered timing and 
coordination across multiple observables of acoustics 
and facial movements during speech. We refer to features 
based on this paradigm as high-level features.

While we begin in this article with standard low-level 
features in each modality, we build upon these using 

high-level timing and coordination features that reflect 
underlying neural activity across the brain. It is hypoth-
esized that these relations are associated with neural 
coordination across different parts of the brain that 
are essential in motor control. Various subsets of these 
features have been used effectively at Lincoln Laboratory 
for detecting neurobehavioral changes associated with 
depression, Parkinson’s disease, TBI, and dementia 
[13, 43–46], as well as mental exertion under stress 
[43, 47], and thus perhaps form a common feature basis 
for neurocognitive change.

Neurophysiological Basis and Framework 
Our approach involves biomarkers of human behavior that 
we can observe from the human body. At the Laboratory, 
we are investigating a number of different behaviors, 
broadly defined to include fine motor movements (e.g., 
hand and finger dexterity and eye tracking), gross motor 
movements (e.g., balance and gait), skin conductance, and 
heart rate. But we are focusing in this article on vocal and 
facial expression, and specifically on markers that reflect 
change in motor aspects of brain function.

Neuromotor Representations in the Brain 
In our approach, we seek biomarkers that satisfy two 
primary properties:
1. They reflect decline in brain functioning as manifested 

in motor control measured from bodily behaviors. 
2. They reflect changes in timing and coordination both 

within and across components of a behavior.
Deriving biomarkers from vocal and facial expres-

sion is desirable for a number of reasons: vocal and facial 
expressions are easily measured, noninvasive, and acces-
sible, and, importantly for our approach, they are highly 
complex human behaviors that require precise coordina-
tion across different regions of the brain. In speaking, for 
example, the articulators (tongue, lips, jaw, and velum) 
are finely coordinated, and this coordination can change 
under conditions of injury, illness, and stress. Underlying 
this articulatory complexity is the even more complex 
control system of the brain [48]. As an example, we 
overview this control system in speech production. There 
is evidence of a similar kind of neural network complexity 
that controls facial expression during speaking, as well as 
in general expressiveness in paralinguistic socioemotional 
communication [49].
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As schematized in Figure 2, the core speech- 
production network consists of many components, widely 
distributed throughout the brain. These components 
go from developing a concept and selecting sentences 
and words to express a concept, to deciding syllables 
and phonemes to represent words, to positioning and 
coordinating articulators, to firing neural signals that 
activate muscles to move the articulators. Finally, there 
are auditory and somatosensory feedback mechanisms 
used to monitor and self-correct speech production. 
Somatosensory includes proprioception (a person’s 
sense of position and movement of the body) and tactile 
feedback (a person’s sense of tongue placement and vocal 
cord vibration). 

In addition to this core production network, 
nonspeech regions of the brain modulate the core. Given 
this wide distribution of modules in the brain that either 

directly or indirectly control speech production, it is 
likely that one of the modules will be affected by neuro-
logical or stress conditions, and speech production will 
suffer. In fact, all of the brain disorders mentioned at the 
start of this article cause some kind of speech degrada-
tion. For depression, as an example, there is evidence 
that a nonspeech region called the limbic system, which 
controls mood and emotion, is disrupted. This disrup-
tion propagates to the core speech network, in particular 
to neural circuits that control timing and coordination 
of the articulators. The general observation by clini-
cians that depressed individuals, on average, tend to talk 
slower and have less clarity in their articulation than do 
nondepressed individuals is consistent with a disruption 
of timing and coordination circuits. Motivated by these 
observations, we have introduced two novel biomarkers 
that are based on the decline in neuromotor timing and 
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FIGURE 2. The figure shows a simplified view of the core speech production neurocognitive network with many components widely 
distributed throughout the brain. The somatosensory region is associated with tactile and proprioceptive (a sense of position and 
movement of the articulators) sensory feedback. Nonspeech regions, such as visual and cognitive areas (not shown), can modulate 
the core speech network. It is important to note that Figure 2 is a gross oversimplification of the speech brain network that involves 
complex coordination across multiple brain regions.
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we leverage low-level and high-level feature types that 
were introduced previously. 

LOW-LEVEL FEATURE EXTRACTION 
The various low-level features are estimated from 
windowed speech segments frame-by-frame over time, 
and the window type (e.g., Hamming, Hanning, Kaiser), 
length (typically between 10–40 ms), and sliding frame 
(typically between 1–10 ms) are selected depending on 
the feature type.

Many standard low-level features used in the speech 
community characterize the degree of periodicity of 
the vocal-fold vibration within the vocal source. One 
such feature is the harmonics-to-noise (HNR) ratio, 
which is the ratio, in decibels (dB), of the power of the 
harmonic (periodic) signal from vocal-fold vibration 
and the power of the speech noise signal at the vocal 
folds created by turbulence as air rushes past the vocal 

coordination that we will describe. We also consider these 
biomarkers more generally across all conditions.

Framework 
The new features and the corresponding detection system 
that we have designed leverage many years of Laboratory 
expertise in speech and facial signal processing and 
automatic classification. At a bird’s eye view (Figure 3), our 
detection system first estimates a set of standard vocal and 
facial features. These features that leverage our and others’ 
past work [50–52] we call low-level features. Examples of 
low-level features from an acoustic speech signal are vocal 
tract resonances (termed formants in the speech commu-
nity) and automatically derived speech phoneme labels 
(units of sound that distinguish one word from another). 
Low-level features from facial video are facial action units 
that reflect muscle groups associated with basic elements 
of expression (lowered brow, puckered lips). From these 
low-level features, we then extract our new features on the 
basis of a timing and coordination concept, and we call 
these high-level features. With the high-level features, we 
train a classifier that provides us with a binary decision or 
severity-level estimate of a condition.

Feature Extraction 
Vocal Features 
The categorization of vocal characteristics is broken down 
into three components: speech source (at the vocal folds), 
system (vocal tract), and prosody (sometimes referred 
to as the melody of speech). As shown in Figure 4, the 
lungs provide the airflow that assists in making the vocal 
folds vibrate, sending a periodic or noise-like stimulus 
to the vocal tract. The vocal tract—consisting of the oral, 
nasal, and pharynx subsystems—provides “color” to the 
sound, with different tract shapes yielding different 
phonemes. Prosody is a function of pitch, timing, and 
energy fluctuations. 

We exploit dynamic variation and interrelation-
ships across speech production systems by computing 
features that reflect complementary aspects of the 
speech vocal-fold source, vocal tract system, and prosody 
[50]. Across the three categories, we use a broad suite 
of features that are used in the detection of neurological 
disorders and neurobehavioral performance changes 
associated with a wide range of exposures and other 
sources of stress [13, 43–47, 53–60]. In each category, 

Input into Lincoln 
Laboratory system

Audio and video of speech and face 

Condition is present 
or not present

Low-level features, e.g., vocal tract 
resonances, phoneme boundaries

High-level features, e.g., timing 
and coordination 

High-level features used 
to train a classifier

Severity of 
condition

Classifier 
determines

FIGURE 3. Lincoln Laboratory’s system can detect the 
presence or estimate the severity of a neurobehavioral 
condition. Low-level features are first derived from audio 
and video of speech and face, respectively. Next, high-
level features are extracted from neuromotor timing and 
coordination features. These high-level features are then 
used to train a classifier to determine the presence and/or 
severity of a neurobehavioral condition.
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folds from the lungs. This measure is thought to reflect 
breathiness in a voice. Our HNR is computed by using 
a periodic/noise decomposition method that employs 
a comb filter to extract the harmonic component of a 
signal [61, 62]. Two other low-level source features are 
(1) cepstral peak prominence (CPP), which is defined 
as the difference in dB between the magnitude of the 
highest peak and the noise floor in the power cepstrum 
(the result of taking the inverse Fourier transform of 
the logarithm of the estimated spectrum of a signal) 
and (2) a measure called creak, corresponding to what 
is often referred to as creaky voice, which reflects large 
irregularity in pitch periods (often with low average 
pitch) and high peakiness of airflow pulses that excite 
the vocal tract [63, 64].

Low-level vocal tract–based features are designed 
to reflect the intensity and temporal dynamics of the 
vocal tract frequency response. One primary feature 
set comprises the vocal tract resonances (referred to 
as formant frequencies) estimated by a Kalman filter 
technique, smoothly tracking the first three formant 
frequencies while also smoothly coasting through 
nonspeech regions [28]. A second primary feature set 
is referred to as Mel-frequency cepstral coefficients 
(MFCCs) that provide frequency response intensity, while 

16 delta MFCCs [50] are used to characterize velocities 
of vocal tract spectral magnitudes [65]. Delta MFCCs are 
computed by using regression with the two frames before 
and after a given frame. 

The final low-level feature types reflect speech 
prosody. The first feature type is pitch (also referred to 
as fundamental frequency), which we estimate by using 
a time-domain autocorrelation method [50]. Our second 
prosodic-based feature type relies on an automatic 
phoneme recognition algorithm [66]. This algorithm 
obtains phonetic boundaries and phoneme labels with 
one of 40 phonetic speech classes detected and allows us 
to obtain average speaking rate (number of phonemes 
per second).

HIGH-LEVEL FEATURE EXTRACTION 
Our high-level features, often derived from low-level 
features, are designed to capture timing, coordination, 
and fine time resolution of dynamics of speech produc-
tion components. We refer to one high-level feature 
type as correlation structure, which is a function of the 
temporal correlation (on different time scales), reflecting 
a form of coordination within and across vocal source, 
system, and prosodic speech components (illustrated in 
Figure 5).

In this approach, channel-delay correlation and 
covariance matrices are computed from multiple time - 
series channels of vocal parameters. Each matrix contains 
correlation or covariance coefficients between the channels 
at multiple time delays. Changes over time in the coupling 
strengths among the channel signals cause changes in 
the eigenvalue spectra of the channel-delay matrices. 
The matrices are computed at multiple time scales corre-
sponding to separate subframe spacings. Features at each 
time scale consist of the eigenvalue spectra of channel-
delay correlation matrices, covariance power (logarithm 
of the trace), and entropy (logarithm of the determi-
nant) from channel-delay covariance matrices. Under 
various conditions, we find different degrees of dynam-
ical complexity both within (e.g., formant frequencies, or 
HNR versus CPP) and across (e.g., formant frequencies 
vs creak), dependent on the condition, as reflected in 
eigenvalue distributions. This methodology is illustrated 
in Figure 6 with the example of the generation of formant 
track correlation matrices. Further mathematical details 
of this approach are in Williamson, Bliss, et al. [58], 
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Resonant 
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(modulator)
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FIGURE 4. This illustration shows the speech source (at the 
vocal folds) and system (vocal tract) [50]. Prosody is a function 
of pitch, timing, and energy fluctuations. The lungs provide 
an energy source and the airflow that assists in making the 
vocal folds vibrate, providing input to the vocal tract. The vocal 
tract—consisting of the oral, nasal, and pharynx subsystems—
provides “color” to the sound created at the vocal folds, with 
different tract shapes yielding different phonemes.
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which introduced the method for the analysis of EEG 
signals for epileptic seizure prediction, and in Quatieri, 
Williamson, et al. [43], which describes the approach in 
the context of speech and face processing. 

We have also introduced a feature set that charac-
terizes the structure of signal coherence and power at 
multiple frequency bands within and across speech 
components over time. We refer to this as coherence 
structure. The coherence between channels, indicating 
the amount of cross-channel power in a frequency band 
relative to the amount of within-channel power, provides 
a measure of how closely related the signals are within 
a frequency band. The power and cross-power are 
computed among three formant frequency channels in 
three different frequency bands, and a 3 × 3 coherence 
matrix is constructed for each band. Analogous to correla-
tion structure, the eigenspectra of the coherence matrices 
indicate the structure of coherence across the channels. 

Our high-level vocal source and prosodic features 
rely on their low-level counterparts described earlier. In 
one case, we leverage a finer time scale on a phoneme 
level (within phoneme boundaries), using feature sets of 
phoneme-dependent durations [56]. Based on estimated 
average durations for each phoneme, the summed 
average durations of certain phonemes are linearly 
combined to yield fused phoneme duration measures. A 
subset of phonemes whose summed durations are highly 
correlated with an assessment (e.g., known depression 
or cognitive load level) on a training set is selected to 
create these fused measures, with weights based on the 
strength of their individual correlations. This phoneme- 
dependent feature paradigm is shown in Figure 7. A fused 
phoneme-dependent pitch slope measure is also obtained 
by using essentially the same procedure as described above. 
For each passage in a training set, the set of phonemes with 
the highest correlating summed pitch slopes is selected.

Facial Features 
As with vocal features, high-level facial features rely on 
low-level features. Likewise, analogous to vocal high-level 
features, we use correlation-based measures that reflect 
the coordination of facial muscle groups and a rate 
measure that reflects the duration of each muscle group.

LOW-LEVEL FEATURE EXTRACTION 
Characterizing the effects of neurological disorders on 
facial movements is an active research area. For example, 
among people suffering from major depressive disorder, 
measurable differences have been found in facial expres-
sions [22], including acute reductions in involuntary 
facial expressions in depressed persons [23] and changes 
in facial expressions that are imperceptible to clinicians 
[18]. The facial action coding system (FACS) is a system-
atic method for quantifying localized components of 
facial expressions called facial action units (FAUs). Each 
FAU corresponds to distinct sets of muscle movements 
of the face [24]. The University of California San Diego 
has developed a computer expression recognition toolbox 
(CERT) that provides automatic identification of FAU 
likelihoods or probabilities from individual video frames 
[27]. Figure 8 lists the FAUs output by CERT for video-
based facial expression analysis. 

HIGH-LEVEL FEATURE EXTRACTION 
The coordination of facial movements during speech 
can be measured by using correlation structure features 
obtained from the multivariate FAU time series described 
in Figure 8. With the same method we used to assess 
coordination from audio-based features, we can construct 
high-dimensional channel-delay correlation matrices in 
which each matrix element represents the correlation 
coefficient between two FAU time series (channels) at 
a particular relative time delay [54]. Analogous to our 

(a) (b) (c)

FIGURE 5. Circled in red, the anatomical 
regions where coordination and timing 
features are derived are within the 
articulatory elements that form the 
vocal tract (a), across vocal tract and 
vocal source, or fold, components (b), 
and across muscle groups in facial 
expression (c). MRI IMAGES COURTESY OF 
UNIVERSITY OF SOUTHERN CALIFORNIA.
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vocal measures, the eigenspectrum of the correlation 
matrix then characterizes the total level of independent 
movement (i.e., complexity) contained in the FAU set.

The facial coordination features represent the total 
amount of independent movement captured by the FAUs, 
without regard to the level of movement contained in 
individual FAUs. Facial activation rate features take a 
different tack, representing the average level of activa-
tion among those FAUs that correlate strongly with the 
outcome measure of interest, such as depression score 
[54]. Analogous to our phoneme-duration strategy, 
an aggregate measure of facial activation rate is then 
obtained by linearly combining the rates of the highly 

correlated FAUs, with negative weights assigned to FAUs 
with negative correlations. 

Electroencephalogram Features 
Although not often feasible for a long-term objective of 
a nonintrusive mobile platform, electroencephalogram 
(EEG) is used as a reference and sometimes as ground 
truth. As with vocal and facial characterization, we work 
with low- and high-level features in EEG analysis.

The EEG signals were measured with a 1000 hertz 
(Hz) sampling with a 64-element Neuroscan system, 
followed by high-pass filtering and standard artifact 
removal. The EEG signals were decomposed into five 
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FIGURE 6. The diagram presents the cross-correlation 
analysis of articulatory coordination, as performed through 
formant-based features using channel-delay correlation 
matrices at multiple time scales (i.e., subsamplings of 
the correlation functions as denoted by 1T, 3T, and 7T, 
where T is the underlying speech analysis frame) [46, 50]. 
Each matrix contains correlation coefficients between 
the channels at a specific time delay. A channel-delay 
matrix at the third delay scale is shown, using the first 
two formants (F1 and F2), consisting of four submatrices, 
each representing an auto- or cross-correlation across 
formant pairs. Correlation matrices for other time delays 
are formed similarly. Changes over time in the coupling 
strengths among the channel signals cause changes in the 
eigenvalue spectra of the channel-delay matrices.
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frequency bands that have been implicated in cognitive, 
sensorimotor, and perceptual activities (delta, theta, 
alpha, beta, gamma), with band ranges of 0–4 Hz, 4–8 Hz, 
8–16 Hz, 16–32 Hz, and 32–49 Hz, respectively [25]. 

Decomposition was performed by bandpass filtering 
in each of these frequency bands at each channel. In our 
low-level analysis, we use EEG channel-dependent band 
power to compute measures of spatial activity patterns, 
which provide a basis for and complementary information 
to high-level features.

In high-level analysis, our guiding principles are that 
successful cognition requires coordinated neural activa-
tions in brain networks linking multiple brain regions 
and that these networks communicate using oscillatory 
codes operating over a wide range of frequencies. Based 
on these principles, our high-level feature approach is 
to use measures of neural coordination indicated by 
EEG connectivity at each frequency band. We use two 
connectivity measures: pairwise channel coherence and 
covariance [43, 67]. Coherence measures cross-channel 
power relative to within-channel power, whereas covari-
ance measures cross-channel correlation weighted by 
within-channel power. 

Neurological Disorders 
The general classification framework and biomarker 
extraction approach have been applied to numerous 
psychological and neurological disorders. Researchers 
in the Human Health and Performance Systems Group 
at Lincoln Laboratory have applied these principles to 
the detection of major depressive disorder, Parkinson’s 
disease, mild traumatic brain injury, dementia, and 
amyotrophic lateral sclerosis (ALS). Here, we focus on 
the first three of these conditions.

Predicting Major Depressive Disorder Severity 
Major depressive disorder (MDD) is the most prevalent 
mood disorder, with a lifetime risk of experiencing the 
disorder ranging from 10 to 20 percent for women and 
5 to 12 percent for men [68]. As the number of people 
suffering from MDD steadily increases, so too does the 
burden of accurate diagnosis. Currently, the diagnosis of 
MDD requires a comprehensive assessment by a profes-
sional with significant clinical experience. However, the 
inter-clinician variability of these assessments makes 
the tracking of medication efficacy during clinical trials 

difficult. The growing global burden of MDD suggests that 
a convenient and automated method to evaluate depres-
sion severity would both simplify and standardize the 
tasks of diagnosing and monitoring depression, allowing 
for greater availability and uniformity in assessment. 
An automated approach may reduce multiple in-office 
clinical visits, facilitate accurate measurement and identi-
fication, and quicken the evaluation of treatment. Toward 
these objectives, potential depression biomarkers of 
growing interest are vocal and facial expression features, 
two categories of easily acquired measures that have been 
shown to change with a patient’s mental condition and 
emotional state [14–16, 24, 27, 28, 66, 69].

Correlate with condition assessments

Automatic phoneme recognition

Speech

“sh” “o” “p”

t

Weighted sum of phoneme durations

Measure phoneme durations

“sh” “o” “p”

D1 D2 D3

t

FIGURE 7. Phoneme-dependent duration extraction [56] 
first requires automatic phoneme recognition, followed by 
measuring the average duration (D) of each phoneme (there 
are 42 in the English language). Average duration measures 
are then correlated with the condition assessment (e.g., 
severity of depression) across subjects. The final feature is 
a weighted sum of phoneme durations, where weights are a 
function of the correlation value for each phoneme.
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VOCAL AND FACIAL CHARACTERIZATION 
Depression exhibits changes in all three vocal components 
described above: speech excitation (source), vocal tract 
(system), and pattern of stress and intonation (prosody). 
Depression-related changes in speech reflect the percep-
tion of qualities, such as monotony, slur, slowness, 
hoarseness, and breathiness, in the speech of depressed 
individuals. Hoarseness and breathiness may be associ-
ated with speech source characteristics (at the level of the 
vocal folds). Monotony may be associated with prosody 
(e.g., modulation of speech-rate, pitch, and energy), 

and slur with speech system characteristics (e.g., vocal 
tract articulators). Likewise, characterizing the effects of 
depression on a speaker’s facial movements is an active 
research area. Early work found measurable differences 
between facial expressions of people suffering from MDD 
and facial expressions of nondepressed individuals [24]. 
Electromyography monitors can register facial expres-
sions that are imperceptible during clinical assessment 
[18] and have found acute reductions in involuntary 
facial expressions in depressed persons [23]. 

Although significant effort has focused on studying 
vocal and facial biomarkers for emotion classification, 
little or no study has been done investigating changes in 
coordination, movement, and timing by using speech and 
facial modalities for depression classification or severity 
prediction. In individuals suffering from MDD, neurophys-
iological changes often alter motor control and thus affect 
mechanisms controlling speech production and facial 
expression. Clinically, these changes are typically associ-
ated with psychomotor retardation, a condition of slowed 

Time (8 s)

Am
pl

itu
de

ACTION UNIT 
NUMBER

FACIAL ACTION UNIT 
DESCRIPTION

1 Inner brow raiser

2 Outer brow raiser

4 Brow lowerer

5 Upper lid raiser (eye widen)

6 Cheek raiser

7 Lid tightener

9 Nose wrinkler

10 Upper lip raiser

12 Lip corner puller

14 Dimpler

15 Lip corner depressor

17 Chin raiser

18 Lip pucker

20 Lip stretcher

23 Lip tightener

24 Lip presser

25 Lips part

26 Jaw drop

28 Lip suck

45 Blink/eye closure

(a)

(b)

FIGURE 8. The 20 facial action units from the computer 
expression recognition toolbox, or CERT, are listed in (a) with 
their corresponding action unit (AU) number. (We list only the 
20 facial action units that are included in CERT; there are many 
additional facial action units not listed here.) Example time 
series of five of these facial action units, extracted from video 
during speaking, are shown in (b). The time series illustrate 
time variations of each of these facial action units.
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neuromotor output manifested in altered coordination 
and timing across multiple observables of acoustics and 
facial movements during speech [53]. Alluded to earlier is 
evidence that a nonspeech region called the limbic system 
(that controls mood and emotion) is disrupted, and this 
disruption propagates to the core speech network and in 
particular neural circuits that control timing and coordi-
nation of the articulators (Figure 9). Consistent with 
a disruption of timing and coordination circuits is the 
general observation by clinicians that depressed subjects, 
on the average, tend to talk more slowly and have less 
clarity in their articulation than nondepressed individ-
uals. Likewise, during speaking, the corresponding facial 
expression is slower and flatter in effect. 

FEATURE SELECTION 
Motivated by this neural-based hypothesis and clinical 
observations, we developed and applied a variety of the 
high-level articulatory and facial coordination features 
and vocal and facial timing features outlined earlier 
[46, 53, 54, 56]. Our high-level coordination-based 
features are designed to characterize properties of coordi-
nation from the low-level features. After investigating 
multiple combinations of the low-level vocal features as 
input to correlation analysis, we found the best overall 
performance was achieved by using the following three 
combinations: (1) formant–CPP, (2) CPP–HNR, and 
(3) delta MFCC. Channel-delay correlation and covari-
ance matrices are computed from multiple time-series 
channels (of given vocal and facial parameters). Each 
matrix contains correlation or covariance coefficients 
between the channels at multiple relative time delays. 
Changes over time in the coupling strengths among 
the channel signals cause changes in the eigenvalue 
spectra of the channel-delay matrices. The matrices are 
computed at four separate time scales, in which succes-
sive time delays correspond to frame spacings of 1, 3, 7, 
and 15. Overall covariance power (logarithm of the trace) 
and entropy (logarithm of the determinant) are also 
extracted from the channel-delay covariance matrices 
at each scale. For vocal-based timing features, we use 
cumulative phoneme-dependent durations and generalize 
to phoneme-dependent pitch slopes, obtained by using 
estimated phoneme boundaries. For facial-based timing 
features, we use FAU rates obtained from their estimated 
posterior probabilities.

EXAMPLE DETECTION 
We have tested our biomarkers on a variety of depres-
sion databases. Here we focus on the 2014 Audio/Video 
Emotion Challenge (AVEC) that uses a depression 
corpus that includes audio and video recordings of 
subjects performing two human-computer interaction 
tasks in the German language: (1) reading a phoneti-
cally balanced passage and (2) replying to free-response 
questions [54]. Data were collected from 84 German 
subjects with ages ranging between 18 and 63 years, 
with a mean of 31.5 years and a standard deviation of 
12.3 years. Video of the subjects’ faces was captured 
with a webcam at 30 frames per second and a spatial 
resolution of 640 × 480 pixels. Audio was recorded with 
a headset microphone at a sampling rate of 32 kHz or 
48 kHz. For each session, the standard self-reported 
Beck Depression Inventory (BDI) assessment score 
was available. The recorded sessions were split into two 
datasets: 100 subjects in the training set for designing a 
classifier and 50 subjects for the test set. 

Syllables, 
phonemes

Articulator 
positions

Articulator and 
fold timing and 

coordination

Mood/emotion 
(limbic system)

FIGURE 9. A simplified view of the modulation of representative 
components of the core speech network by the limbic system 
in depression is illustrated. Our hypothesis is that depression 
disrupts the limbic system, modifying core production 
regions required for precise timing and coordination of sound 
production. This hypothesis is supported by observed average 
slowing of speaking rate and general decline in clarity.
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For our coordination-based features, Figure 10 
shows examples of eigenvalue characterization from 
free-speech data with eigenspectra of the depressed 
subjects containing less power in the small eigenvalues, 
indicating a lower level of independent movement. This 
effect was observed across a spectrum of BDI scores from 
83 different subject recordings in which the averages of 
normalized eigenvalues are plotted for different BDI score 
ranges (a higher score range indicates greater depression 
severity): 0–8 (blue), 9–19 (cyan), 20–28 (green), and 
29–45 (red). Three different feature types are illustrated: 
vocal tract control (formants), clarity (vocal source: 
HNR-CPP), and facial movement (FAUs). A monotonic 
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FIGURE 10.  Correlation structure features are given as average normalized eigenvalues for four Beck Depression Inventory (BDI) 
ranges for three different feature types: (a) vocal tract control (formants), (b) facial movements (facial action units), and (c) speech 
clarity (vocal source: HNR-CPP). The different BDI score ranges are 0–8 (blue), 9–19 (cyan), 20–28 (green), and 29–45 (red). A higher 
score indicates greater depression severity. 

decrease in the average normalized eigenvalues with 
higher BDI score indicates that depression correlates with 
lower levels of independent vocal and facial movements, 
i.e., lowered ability for complex motor control.

For our timing features, Table 1 shows cumulative 
phoneme-dependent durations, obtained from estimated 
phoneme boundaries; for facial-based timing features, 
we see FAU rates obtained from their estimated poste-
rior probabilities. Specifically, Table 1 shows the 10 
highest correlations with BDI scores of average phoneme 
durations (a) and FAUs (b) from the AVEC dataset for 
speech from a read passage (North Wind) and from free 
speech. For facial-based timing features, we use FAU rates 
obtained from their estimated posterior probabilities. 
Notice that the aggregate measures have higher correla-
tions than those of any individual feature type.

Our next step involved mapping the features into 
univariate scores that can be easily mapped into BDI 
predictions. To do this, we used a novel extension of a 
generative Gaussian mixture model (widely used for 
automatic speaker recognition [65]) referred to as a 
Gaussian staircase classifier [54], and a discriminative 
extreme learning machine, a single layer feedforward 
neural network architecture with randomly assigned 
hidden nodes [57]. 

Our overall prediction system is shown in Figure 11. 
In both training (construct models) and testing (apply 
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models), after low- and high-level audio- and video-
based feature extraction, we typically performed feature 
dimensionality reduction to account for an often 
high-dimensionality feature set. From the audio- and 
video-based features extracted, eight different feature sets 
were defined. Initial BDI predictions were then obtained 
from three predictors, which used different combinations 
of the eight feature sets and two types of classifiers. Each 
of the three predictions was obtained by using a univariate 
regression model created from the training set and applied 
to the classifier output from the test data. The outputs of the 
three predictors were fused to create a final BDI prediction, 
using weights based on each predictor’s accuracy. Details of 
the methodology are found in Quatieri, Williamson, et al. 
[43] and Williamson, Quatieri, et al. [54].

The prediction system shown in Figure 11 was 
used for our best submission in the AVEC 2014 

Challenge, with BDI score root-mean-squared error 
(RMSE) = 8.12 across the test data. A similar system was 
used in the AVEC 2013 Challenge. In both challenges, 
Lincoln Laboratory took first place. Note that an alter-
native objective is detection of depression state. We 
can achieve this through mapping BDI scores into 
two ranges—severely depressed (25–50 BDI score 
range) and moderately depressed (0–24)—and then 
mapping predicted scores to one of the two classes to 
form a detector. Figure 12 shows the receiver operating 
characteristics (ROCs) (false-alarm versus true detec-
tion rates) for this mapping in both the AVEC 2013 and 
2014 Challenges.

Predicting Parkinson’s Disease Severity 
Parkinson’s disease is a neurological disorder with 
associated progressive decline in motor precision and 

Table 1. Correlation Coefficient (r) of Average Phoneme Durations (a) and Facial Action Unit 
(FAU) (posterior probabilities) Timing Features (b) with Beck Depression Inventory Scores

NORTH WIND FREE SPEECH

FAU r FAU r

C
om

m
on

 F
AU

s 
fo

r b
ot

h 
pa

ss
ag

es

Brow lower 0.24 Brow lower 0.22

Dimpler –0.28 Dimpler –0.18

Eye widen –0.26 Eye widen –0.27

Lip stretch –0.24 Lip stretch –0.15

Lip tightener –0.30 Lip tightener –0.22

Nose wrinkle 0.21 Nose wrinkle 0.19

Chin raise –0.23 Cheek raise 0.14

Lip corner 
pull –0.30 Lids tight 0.16

Lip pucker 0.27 Lip corner 
depressor 0.17

Jaw drop 0.37 Outer brow 
raise –0.16

Fused 0.58 Fused 0.46

NORTH WIND FREE SPEECH

Phoneme r Phoneme r

n –0.38 ih 0.34

ah 0.35 ey –0.27

d –0.23 r 0.25

ih 0.22 sil 0.24

b –0.20 oy –0.20

g 0.18 ah 0.19

ae 0.17 y 0.16

dh –0.15 m 0.16

eh 0.15 g –0.14

iy –0.15 er 0.14

Fused 0.63 Fused 0.51

(a)

(b)

For each session in the training set, the subject’s self-reported Beck Depression Inventory assessment score was available.
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sensorimotor integration, stemming presumably from 
the basal ganglia. In this disorder, a steady loss of cells 
in the midbrain leads to speech impairment in nearly 
90 percent of subjects [19]. Early, accurate detection of 
Parkinson’s disease may aid in possible intervention and 
rehabilitation. Thus, as with MDD, simple noninvasive 
biomarkers are desired for determining disease severity. 
Toward this end, we have applied a methodology similar 
to that developed for predicting MDD, introducing a 
novel set of acoustic speech biomarkers and fusing them 
with conventional features to provide clinical assessment 
of Parkinson’s disease. 

VOCAL CHARACTERIZATION 
Our acoustic biomarkers reflect changes in speech 
production that are due to disturbances in under-
lying neurophysiology that affect the source, system, 
and prosodic components of vocal expression. In 

particular, impairment to the basal ganglia may in 
turn modulate (and cause impairment in) the core 
speech network, analogous to the interaction shown 
in Figure 9 with depression. Speech and voice charac-
teristics of Parkinson’s disease include imprecise and 
incoordinated articulation, monotonous and reduced 
pitch and loudness, variable speech rate and rushes 
of breath and pause segments, breathy and harsh 
voice quality, and changes in intonation and rhythm 
[19, 30, 31, 57, 70, 71]. Such changes occur at phonetic 
and larger time scales, including multiscale perturbations 
in formant frequency and pitch trajectories, in phoneme 
durations and their frequency of occurrence, and in 
temporal waveform structure. We have also introduced 
articulatory features based on a neural computational 
model of speech production that is introduced in more 
detail in the article “Fundamental Brain Research” in 
this issue of the Lincoln Laboratory Journal.

High-level
feature extraction
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known BDI score
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FIGURE 11. This figure shows a block diagram of the developed system for predicting the Beck Depression Inventory (BDI) 
assessment score. In training to obtain classifier models and in testing, the processing pipeline involves extraction of high-level 
features derived from low-level features, dimensionality reduction, fusion, and BDI score regression based on different classifiers. 
Low-level feature extraction characterizes properties of the speech or video signal within short duration (10 ms or 30 ms) time 
windows. High-level feature extraction computes summary statistics from these low-level features over an entire passage of 
recorded speech. These high-level features are composed of the eigenspectra of correlation matrices, which are created using 
time-delay embedding of the low-level feature time series at multiple time-delay scales. Dimensionality reduction of these 
eigenvalue-based feature vectors is done by using principal components analysis. Finally, Gaussian mixture models and extreme 
learning machines are used to produce prediction scores that are mapped into BDI predictions by using univariate regression.
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FEATURE SELECTION
Our feature development reflects the three basic aspects 
of speech production: phonation (source), articulation 
(vocal tract), and prosody (intonation and timing). Our 
methodology is largely similar to those used in predicting 
depression severity: we design high-level features to 
characterize properties of timing and coordination from 
the low-level features. For example, our primary features 
exploit changes in phoneme-dependent durations, pitch 
slope, and formant frequency slope. The effectiveness of 
these features is consistent with previous findings that 
certain speech segments are more prone to variation than 
others in Parkinson’s disease [72, 73]. 

We also use a high-level correlation structure 
of formant trajectories but expand this concept to a 
correlation structure of the position of speech articula-
tors derived from a neurocomputational model of speech 
production, the Directions into Velocities of Articulators 
(DIVA) model [48]. (See the article “Fundamental Brain 
Research” in this issue for a more complete description 
of this approach, which uses a vocal source model in 
contrast to a vocal tract system model, and its applica-
tion to depression.) The DIVA model takes as inputs the 

first three formants and the fundamental frequency of a 
speech utterance. Through an iterative learning process, 
the model then computes synaptic weights that corre-
spond to modules of the speech production process, 
including aspects of the articulatory feedforward mecha-
nism and auditory and somatosensory feedback errors 
(Figure 13). We hypothesize that Parkinsonian speech 
results from impairments in certain components of 
the speech production process, and therefore, when 
the model is trained on Parkinsonian speech via the 
iterative learning process, the internal variables reflect 
the severity of the disorder [57]. In this work, we have 
focused specifically on the correlation structure features 
derived from the DIVA model’s 13 time-varying artic-
ulatory position states, with the same delay and scale 
parameters used for the correlation structure of the 
formant trajectories. More details and the complete 
feature selection process are described in Williamson 
et al. [57]. 

EXAMPLE DETECTION
One Parkinson’s disease database we are working with is 
from the Interspeech 2015 Computational Paralinguistic 
Challenge described in Orozco-Arroyave et al. [19]. 
Assessments of Parkinson’s severity are based on the 
Unified Parkinson’s Disease Rating Scale (UPDRS) with 
a score range of 6–92 [35]. A higher score indicates 
higher severity. The language is Spanish and the dataset 
is divided into 42 tasks per speaker, yielding 1,470 record-
ings in the training set (35 speakers) and 630 recordings 
in the development set (15 speakers), both with UPDRS 
scores provided. The dataset also contains 462 record-
ings (11 speakers) in the test set, without UPDRS scores 
provided. The duration of recordings ranges from 0.24 
seconds to 154 seconds.

As an example of the discriminatory capability of our 
articulatory coordination–based features derived from 
the DIVA neurocomputational model, Figure 14a shows 
eigenvalue characterization of the correlation structure 
features derived from the model’s 13 time-varying artic-
ulatory position states. The average eigenvalues for three 
different ranges of Parkinson’s severity are computed (in 
standard units) for the sentence “Luisa rey compra el 
colchón duro que tanto le gusta” across speakers from 
the training set. These averages reveal distinct differ-
ences related to Parkinson’s disease severity. These 
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FIGURE 12. ROC detection curves (false alarm versus true 
detection rates) are shown for the AVEC 2013 and 2014 
Challenges. In 2013, only speech was used, while in 2014, 
both speech and facial action units were leveraged but with 
considerably less training data provided. In both cases, true 
detection versus false-alarm rate trade-offs were favorable, 
i.e., for about 20 percent false alarms, we obtain about 85 
percent detection accuracy. An automated system that can 
classify major depressive disorder at this level of accuracy 
would be extremely useful as a clinical screening tool.
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differences were observed across a spectrum of scores 
for correlation structure features from different tasks. 
The decrease in the higher-indexed average normal-
ized eigenvalues with higher Parkinson’s disease score 
indicates that Parkinson’s disease correlates with lower 
levels of independent vocal movements, i.e., lowered 
ability for complex motor control, as we observed in 
major depressive disorder. 

In an approach similar to our detection prediction 
methodology, we fused a subset of our set of speech 
features into the Parkinson’s severity prediction system 
by using multiple Gaussian staircase statistical regression 
models. Using a linear combination of the predictions 
from the multiple statistical models, we obtained 
Spearman correlations (a nonparametric measure of 
dependence between two variables) between predicted 
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somatosensory feedback errors. 
The model’s optimal parameter 
fit, given a measured speech 
signal, provides input to high-
level feature extraction by using 
correlation structure analysis.
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scores and clinical assessments (the metric of choice for 
the Interspeech 2015 database) of r = 0.63 on the training 
set (fourfold cross validation), r = 0.70 on a held-out 
development set, and r = 0.96 on a small held-out test set 
[57]. As illustrated in Table 2, our neurological model–
based features provide a sizable gain over our more 
standard timing and coordination features.

Using a system analogous to our depression predic-
tion system, we can split the UPDRS scores in the middle 
and design a binary detection problem. Figure 14b shows 
the resulting true detection versus false-alarm rate for this 
binary detection scenario, indicating that the algorithm 
can effectively discriminate between minimal to mild and 
moderate to severe Parkinson’s disease levels. Features 
used in detection are derived from a combination of 
primarily phonetic timing and formant coordination 
representations and articulatory coordination derived 
from the DIVA neurocomputational model [57].

Detecting Cognitive Decline from Neurotrauma
Mild traumatic brain injury (mTBI) affects an estimated 
1.7 million civilians each year, who incur the condi-
tion primarily because of sport injuries, falls, and car 
accidents. Servicepeople are at significant risk of mTBI 
because of the hazards associated with military training 
and operations. A wide variety of sensorimotor (e.g., 
speech, dexterity, vestibule) and cognitive (e.g., attention, 
memory) problems may result from mTBI. Changes in 
neurocognitive status following concussion injury may 
adversely impact an individual’s work and daily life, and, 
in the military context, may affect individual and unit 
readiness. The ability to determine cognitive perfor-
mance changes associated with mTBI in an objective, 
noninvasive way would facilitate the monitoring of injury 
during all stages of care and recovery, and would serve as 
a valuable decision aid to leaders for determining when a 
soldier can safely return to duty. 

Since speech and cognitive processes are highly 
coupled in the brain (sharing similar pathways and 
regions, perhaps each modulating the other), we would 
expect to be able to detect cognitive changes through 
changes in vocal and facial expression during speaking. 
We applied the methodology introduced earlier to a 
civilian case (high school athletes) and a military case 
(U.S. veterans), showing that our features based on 
timing and coordination of the complex motor activity 

of vocal and facial expression while speaking provide 
sensitive indication of cognitive impairments resulting 
from neurotraumatic injury. The datasets we explored 
represent a variety of mTBI types, some involving 
concussion and some requiring immediate evaluation 
and others requiring longer-term evaluation. Even when 
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FIGURE 14. The plot in (a) shows average eigenvalue features 
on the development set for three ranges in the Unified 
Parkinson’s Disease Rating Scale: 0–20 (blue), 21–40 (green), 
and 41–100 (red). The plot in (b) shows the true detection 
versus false-alarm rate for this detection scenario on the test 
set, indicating that the algorithm can effectively discriminate 
between minimal to mild and moderate to severe Parkinson’s 
disease levels. Features used in detection are derived from 
a combination of primarily phonetic timing and formant 
coordination representations and articulatory coordination 
derived from the DIVA neurocomputational model [57].
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concussion does not occur, repeated exposure to head 
impacts without concussion can cause neurocognitive 
and neurophysiological impairments prior to concussion 
(referred to as preclinical mTBI) [37]. 

VOCAL AND FACIAL CHARACTERIZATION AND 
FEATURE SELECTION 
With brain trauma, a wide range of lesion types, severi-
ties, and locations relate to different types and severities 
of speech and cognitive impairments. Changes in brain 
structure or connectivity may result in changes in source, 
prosodic, or articulatory aspects of voice. These changes 
include excessive delays in initializing a vocalization; 
excessive (exaggerated) or reduced (flat) emotional 
content; impaired function of muscles affecting the lips, 
tongue, vocal folds, and/or diaphragm; and difficulty in 
making and coordinating the precise movements of these 
articulators [74]. In our work, we have examined the 
articulatory components of speech reflected in formant 
tracks and the ways that changes in track dynamics and 
coordination map to cognitive decline. We also have 
focused on the change in average phoneme duration 
as one component of prosodic change caused by brain 
injury from trauma. As with formant changes, change 
in average phoneme duration may be associated with 
decline in cognitive processes from the trauma. Figure 15 
shows schematically a simplified view of the link of these 
particular brain modules with cognitive processing that is 
widely distributed throughout the brain. 

Our methodology is again largely similar to that used 
in predicting depression severity: we design high-level 
features to characterize properties of timing and coordi-
nation from the low-level features. Our primary features 
exploit changes in phoneme-dependent durations and 
the high-level correlation structure of formant trajec-
tories. To characterize formant dynamics as a second 

baseline feature, we extract nine formant functions over 
20-millisecond segments at 10-millisecond frame inter-
vals. These functions are the three raw formant tracks and 
their high-pass and low-pass components. The common 
3 dB cutoff frequency of the high- and low-pass filters 
is 55 Hz. From each of the above functions, we compute 
three dynamics functions: the raw function value, the 
velocity, and the acceleration.

DATASETS FOR CASE STUDIES
We hypothesize that preclinical or concussion- 
related damage results in changes in average vocal 
tract dynamics measured by formant frequencies, 

Table 2. Sensitivity Improvement Plus Ability to Specify Affected Neural Pathways by 
Using Lincoln Laboratory Neurological Model–Based Features

STANDARD LINCOLN 
LABORATORY 
PHYSIOLOGICAL VOCAL 
TRACT FEATURES

NEUROLOGICAL MOTOR 
COORDINATION FEATURES

STANDARD PLUS 
NEUROLOGICAL MOTOR 
FEATURES

Correlation metric 0.88 0.39 0.96

Syllables, 
phonemes

Prosodics

Cognitive processing

Articulator and 
fold timing and 

coordination

Cognitive 
processing

FIGURE 15. A simplified view of the representative brain 
modules of the core speech production network and their links 
to higher-level cognitive processing is illustrated.
This is a highly schematized illustration given that cognitive 
processing is broadly distributed throughout the brain.
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their velocities, and acceleration; changes in articula-
tory coordination measured by our formant-frequency 
cross-correlation characterization; and phoneme- 
dependent average durations. These features allow 
machine learning algorithms to detect cognitive changes 
identified by a battery of cognitive tests. We developed 
distinct datasets for the two case studies.
1. Athlete study [55, 75]. The dataset for this study 

involved a population of athletes regularly receiving 
impacts to the head and showing signs of preclin-
ical mTBI, a state indicated by impaired cognitive 
performance occurring prior to concussion. Data 
for this study were collected monthly in collabora-
tion with Dr. Thomas Talavage at Purdue University 
under a protocol approved by an institutional review 
board. The study included pre-season, in-season, 
and post-season data from 32 high school athletes, 
of whom 25 were male football players and seven 
were female soccer players. The athletes’ ages ranged 
from 15 to 18, with all data collected independently 
of any clinical diagnoses of concussions. For each 
athlete, the data collection included scores from the 
online Immediate Post-Concussion Assessment and 
Cognitive Testing (ImPACT) assessment version 2.1, 
which comprises a series of cognitive tests typically 
used in the sports community [76], along with 
speech recordings, eye tracking, auditory percep-
tion, and optic nerve sheath-diameter measurements 
[75], all of which are part of a multimodal collec-
tion suite developed at Lincoln Laboratory. Although 
we had obtained promising preliminary results 
with ocular measures [75], we focused on the 
speech modality in the athlete study [55]. Speech 
features were extracted from audio recordings of the 
Grandfather Passage, which provides a standard-
ized and phonetically balanced sample of speech.  
 The ImPACT was used as a means of assessing 
cognitive performance [76]. This test is made up 
of six subtests that measure verbal memory, visual 
memory, visual motor speed, reaction time, impulse 
control, and a total symptom composite. For each 
test, a threshold is set for a change in cognitive 
performance. The threshold for each test is defined 
as a decline from baseline that exceeds one standard 
deviation, where the standard deviation is computed 
over the change from baseline across all subjects’ 

test scores. A support vector machine–based classi-
fier, with cross validation, then uses our formant 
features to predict a decline in cognitive performance. 
Figure 16a shows average z-normalized eigenspectra 
from formant channel-delay matrices associated 
with cognitive decline (red) and normal function 
(blue). We compared the effectiveness of vocal tract 
dynamics features versus articulatory coordination 
features. This evaluation was done via ROC curves 
along with a variation of their area under the curve 
(AUC), where a score of 1 represents a perfect test. 
For the reaction-time component of ImPACT, the 
articulatory dynamics features achieved AUC values 
between 0.72 and 0.98, whereas the articulatory 
coordination features achieved AUC values between 
0.94 and 0.97. Figure 16b illustrates this comparison, 
indicating the importance of coordination of articu-
latory components over their absolute counterparts. 
Nevertheless, for some components of the ImPACT 
test, e.g., visual motor and verbal memory, the two 
formant-based features performed about the same. 
 In this study, we also investigated features 
reflecting the change from baseline phoneme 
duration. The features were combined on the basis of 
their correlation with each of the cognitive modalities 
and then incorporated into Gaussian classifiers to 
predict cognitive decline. Classification performance 
was then analyzed using ROC curves through detec-
tion versus false alarm. Using vocal phonetic timing 
features for the four components of ImPACT that 
were studied, we computed ROC curves that demon-
strated high-fidelity prediction of cognitive change. 
The highest AUCs achieved were 0.89, 0.80, 0.94, 
and 0.90 for verbal memory, visual memory, visual 
motor speed, and reaction time scores, respectively.

2. U.S. veterans study [77]. In this second study 
conducted in collaboration with Dr. Kristin Heaton 
at the U.S. Army Institute of Environmental 
Medicine (USARIEM) and Dr. Alex Lin at Brigham 
and Women’s Hospital, data were collected from 20 
subjects. Of the 20 subjects, five had a documented 
history of mild traumatic brain injury and 15 were 
control subjects. Subjects were enrolled in a larger 
study that used magnetic resonance spectroscopy to 
characterize neurochemical biomarkers for mTBI. 
Study participants completed a battery of cognitive 
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tasks selected for sensitivity to changes in cognitive 
performance associated with mTBI. High-quality 
audio and video recordings were obtained while 
participants completed a standardized protocol 
consisting of read passages, spontaneous speech, 
and repetition of sounds. Timing and coordination 
features were extracted from the speech and face 
data, and used along with select cognitive perfor-
mance outcomes to construct statistical models for 
estimating cognitive performance. Speech features 
were based on articulatory coordination derived 
from the acoustic signal (vocal-tract resonances), 
while facial features were derived from the coordi-
nation of muscle groups (facial action units). 
 Gaussian staircase regression models were 
trained on the 15 control subjects to estimate the 
processing speed index (PSI) from the Wechsler Adult 
Intelligence Scale (WAIS-IV), which is sensitive to 
the cognitive consequences of mTBI. Models were 
then used to estimate PSI scores from the five mTBI 
cases not included in the training set. The strongest 
results were seen in predicting PSI from speech and 
facial features during the read passages. Pearson’s 
correlation coefficient between the estimates and the 
recorded PSI scores revealed r = 0.98 (p = 0.003, n = 5) 
for the speech features and r = 0.92 (p = 0.025, n = 5) 
for the facial features. Table 3 shows these results in 
comparison with results for free speech.

These preliminary analyses demonstrate the 
promise of cognitive assessment technologies based 
on motor timing and coordination underlying vocal 
and facial expression during speaking in the context 
of mTBI. 

In the veterans study, statistical models trained on 
control subjects were transferable to mTBI subjects, 
while the athletes study addressed accumulative injury 
over time. Results also show the utility of different 
modalities for cognitive evaluation following mTBI, 
with both speech and facial features affording high 
estimation accuracy in predicting different metrics of 
cognitive decline. Further validation of these technol-
ogies is required on larger datasets and in operational 
settings. Once validated and fully developed, these assess-
ment technologies may provide a capability for objective, 
noninvasive real-time assessment of individuals in daily 
life and in military training and operational settings.

Cognitive Load 
Cognitive load is often defined as the demand placed 
on cognitive and mental resources required by a partic-
ular task [6, 7]. Some tasks place greater burden on 
such resources and attributes than others. In particular, 
highly complex tasks, or those involving long periods of 
sustained activity or attention, and more monotonous 
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FIGURE 16. The results from the high school athlete study are 
shown for the reaction-time component of the ImPACT test [55]. 
Average z-normalized eigenspectra from formant coordination 
channel-delay matrices associated with cognitive decline are in 
red and normal function is in blue, showing a large separation 
especially in certain mid- and high-rank eigenvalues (a). A 
cognitive decline detection versus false-alarm (ROC) comparison 
shown in (b) gives the effectiveness of vocal tract dynamics 
features (blue) versus articulatory coordination features (red).
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tasks requiring sustained vigilance can tax available 
cognitive resources and lead to fatigue. An individu-
al’s ability to adapt to changing workloads and manage 
fatigue caused by cognitive exertion can be influenced 
by stress imposed both externally (e.g., environmental 
extremes, physical exertion, or social interactions) and 
internally (e.g., psychological/emotional state, nutritional 
status, or changes in sleep patterns). 

Applications for monitoring cognitive load, including 
assessing cognitive load, have been developed for both 
clinical and nonclinical settings. In clinical applications, 
the objective is often to measure the specific causes 
of load, while in nonclinical settings, an objective is to 
quickly assess cognitive ability and readiness under 
loaded conditions, regardless of their etiology.

Because speech and cognitive processes are highly 
coupled in the brain (sharing common processes and 
pathways, and perhaps modulating one another), we 
might expect to be able to determine cognitive load levels 
through changes in vocal and facial expression during 
speaking. We might think of speaking as itself a task 
that may occur simultaneously with some other specific 
targeted cognitive task of different load level. Indeed, 
there is evidence that in such scenarios, dual-task inter-
ference occurs under finite cognitive capacity across the 
dual tasks, with the relevant underlying neural mecha-
nism located in the brain’s lateral prefrontal cortex 
[78]. The linkage may also be due to the coordination of 
neuromotor activity in the brain and reliance on discrete 
cognitive functions in the production of speech.

Cognitive Load Detection 
Our research has shown that when vocal and facial 
modalities are combined, they perform nearly as well as 
a gold-standard EEG analysis in cognitive load detection, 
thus providing a potential nondisruptive means to track 
cognitive status.

VOCAL AND FACIAL CHARACTERIZATION 
On designing a multimodal database protocol that 
reflects typical cognitive load conditions, we employed 
the hypothesis that speech and the corresponding facial 
movements that occur while speaking are complex motor 
activities requiring precise neural timing and coordina-
tion. We also hypothesized that manipulating cognitive 
load level systematically alters this complex motor activity 

in a measurable way [43, 47]. This neural activation is 
reflected in EEG measurements, which are sometimes 
considered a gold standard in viewing the effect of 
working memory demand [11, 12, 79]. To explore those 
hypotheses, we designed a dual-task protocol involving 
auditory memory and speaking. 

DUAL-TASK PROTOCOL 
In one scenario, we introduced cognitive load of 
different levels through an auditory working memory 
task shown in Figure 17. Subjects gave informed consent 
to our working memory–based protocol approved by the 
MIT Committee on the Use of Humans as Experimental 
Subjects. Audio data were collected with a DPA acoustic 
lapel microphone (with a Roland Octa-Capture audio 
interface), facial video with a Canon high-definition 
video camera, and EEG signals with a 64-element 
Neuroscan device. 

The working memory task was split into a training 
and a testing phase. During training, the maximum 
number of digits that a subject could accurately recall 
was estimated by using an adaptive tracking algorithm 
[43, 47]. This number, nc, was used to determine 
the three difficulty levels in the test phase, which 
were typically set as: dn = {ceiling(nc), ceiling(nc)-1, 
ceiling(nc)-2}, where ceiling corresponds to a minimum 
high load of 4. Despite some minor protocol changes 
among early subjects, this common load assessment 
test was used for 10 of the 11 subjects analyzed. We later 
defined a binary detection problem of discriminating 
high load (maximum number) from low load (maximum 
number minus two). The range of the number of digits 

Table 3. Results of the U.S. Veterans Study: 
Predicting Processing Speed Index [77]

FEATURE SETS READ SPEECH 
r (p)

FREE SPEECH 
r (p)

Formants  0.98
(0.003)

 0.45
(0.447)

Facial Action 
Units

 0.92
(0.025)

 0.55
(0.332)

Predictions are for five mTBI subjects and from a model trained 
on 15 control subjects.
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recalled across all subjects was 2–5 for low load and 4–7 
for high load. 

Finally, with our protocol, we also measured 
skin conductance, temperature, and pulse oxygen-
ation level. Though not our focus, the study of these 
measurements may pave the way to investigating other 
multimodal biomarkers.

FEATURE SELECTION 
Our features from three modalities (voice, face, EEG) 
are based on the principles of timing and coordination 
within components of each modality. In each case, we 
extracted first baseline low-level features followed by 
our high-level features as functions of the low-level 
features. For voice, feature vectors were extracted only 
from the single spoken sentence component of each 
trial in the test phase of the auditory memory task. 
Low-level vocal features comprise measures of phoneme 
and pseudosyllable durations, pitch dynamics, spectral 
(formant) dynamics, and vocal-fold irregularity (creak). 
We constructed high-level features that capture timing 
and interrelationships across the low-level features. 
The feature sets were derived under the hypothesis that 
differences in cognitive load produce detectable changes 

in speech production timing and coordination within 
and across articulatory and vocal-fold components. For 
facial expression, analyzed during the same time interval 
as audio, the extracted low-level features were facial 
action units [22, 24, 27], followed by correlation-based 
measures as high-level features. For the EEG, during the 
pause interval to avoid motion and muscle artifacts, we 
performed preprocessing to extract low-level EEG signals 
free of many typical artifacts, followed by correlation and 
frequency-dependent coherence and power measures. 
To avoid motion and muscle artifacts, the EEG measure-
ments were made during time intervals when the subject 
was not speaking. 

As was done in the research on neurological condi-
tions, we averaged across different targeted class 
conditions. Our high-level features showed strong load 
discriminability with averages across all subjects of 
normalized (z-scored) eigenvalues from formant, creak, 
and delta-MFCC signals for low load and high load. In all 
three cases, there was greater power in the medium-level 
eigenvalues during higher cognitive load. This finding 
indicates greater dynamical complexity in formant 
frequencies, creak, and spectral content during higher 
cognitive load and thus higher levels of independent 

Recite 
“pa-ta-ka”

(10 s)

Recite  
vowel “ahh”

(5 s)

Recite  
vowel “ahh”

(5 s)

Recite 
“pa-ta-ka”

(10 s)

Task training
(maximum
54 trials)

Perform cognitive 
task, repeat 324 

times (2 hr)

Hear digits
“4, 6, 7, 8”

Hear sentence
“The viewpoint 

overlooked the ocean”

Pause
Measure 

EEG

Repeat sentence
“The viewpoint 

overlooked the ocean”

Repeat digits
“4, 6, 7, 8”

Cognitive load and vocal load
3 difficulties, 108 unique sentences

FIGURE 17. Illustrated here is a summary of the working memory protocol. The experiment consists of 324 trials. In each trial, a 
subject listens to a sequence of digits followed by a sentence (green boxes). Following a pause, the subject repeats the sentence 
and then the digits (red boxes). In different trials, the working memory load level is modified by varying the number of digits. 
Electroencephalogram (EEG) is measured during the pause to avoid motion and muscle artifacts. Speech (from audio and facial 
video) is measured when the sentence is repeated. The working memory load level is estimated based on the EEG and speech 
signals. Prior to and after the two-hour cognitive task, we introduced reciting the diadochokinetic sequence “pa-ta-ka” and the 
vowel “ahh,” allowing for analysis of speech samples pre- and post-fatigue that are standardly used in articulatory and vocal 
source analysis.
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vocal movements than in the low-load case. Although 
this finding corresponds to more complex motor control 
under high load, we hypothesize that the eigenvalue 
distributions indicate greater independence associated 
with more random or erratic movements under the high 
load state—in contrast to our earlier observations for 
MDD, Parkinson’s disease, and mTBI, in which we found 
less independence of vocal movements. In our cognitive 
load experiments, we found a similar level of discrimin-
ability based on class-conditioned averages of the EEG 
high-level features, which are coherence eigenvalues of 
spatial log-power values in the beta frequency band. Also, 
high load is associated with lower levels of EEG power. 

EXAMPLE DETECTION
Although our protocol involves feature processing of 
single spoken sentences, the ability to detect load after 
fusing evidence across multiple sentences can be assessed 
by combining the Gaussian classifier scores from different 
trials, provided that the trials involve the same load condi-
tion. This combining was done by randomly selecting, 
from the same subject, a number of trials of either high 
load or low load and summing their Gaussian classifier 
scores. For each subject, load condition, and combination 
number, 200 randomly chosen sets of trials were used 
to determine the fused scores across multiple sentences.

Figure 18 summarizes the ROC results (detection 
versus false alarm) for the modalities in various combi-
nations. We observe that the EEG-based detector rapidly 
converges to a limit that, after six minutes, slightly 
outperforms the combined audio and video modalities 
that converge to a limit more slowly. Each modality 
alone (audio or video) converges to a limit that under-
performs the combination of audio and video, with 
audio outperforming video [43] (not shown). Observe 
that combining all three modalities provides only a small 
gain over the EEG. 

Predicting Cognitive Fatigue
Individuals often report the subjective impression of 
weakness or slowness in performing cognitive tasks, 
particularly following periods of heavy cognitive 
workload. This subjective feeling has been called cogni-
tive fatigue and is closely associated with the objective 
notion of cognitive capacity (alluded to earlier in the 
context of dual tasks), which is the ability of an individual 

to perform cognitive work. When cognitive workload 
exceeds an individual’s overall capacity, at a given point 
in time, performance in managing the workload can be 
expected to degrade. For individuals engaged in tasks 
such as driving a car or piloting an airplane, reductions in 
cognitive capacity may lead to accidents and injuries. The 
ability to monitor changes in cognitive capacity over time 
would have benefits for planning and decision making in 
both civilian and military settings, and may inform inter-
ventions and performance-enhancement techniques.

A frequently used method for assessing cognitive 
capacity in real time is the psychomotor vigilance task 
(PVT), which is a test that measures reaction time and 
attentiveness, developed primarily as an in-laboratory 
assessment. Despite recent efforts to integrate PVT 
into portable and/or wearable devices, the test itself is 
still largely inappropriate for operational environments 
because it requires the tested individuals to disengage 
from their primary task and spend between two and 
20 minutes participating in the PVT. Some success has 
been achieved in developing nonobtrusive assessment 
methods that are based on ocular behavior, such as the 
percentage of eyelid closure (e.g., PERCLOS) and ocular 
dynamics (e.g., SmoothEye). These methods hold promise 
for monitoring cognitive capacity in field settings but 
nonetheless require specialized equipment and/or specific 
environmental conditions to function accurately.

VOICE CHARACTERIZATION AND FEATURE 
SELECTION 
In ongoing work with the U.S. Army and U.S. Air Force, 
we have been investigating voice-based technologies for 
real-time assessment of cognitive capacity. We are using 
a variety of standard acoustic speech features in combina-
tion with the timing and coordination features developed 
by Lincoln Laboratory. Voice-based assessments for 
cognitive capacity are attractive because they can be made 
nonobtrusive, can be implemented in hardware that uses 
conventional microphones, and have the potential to be 
adapted to standard-issue communications platforms 
used in operational environments, such as airplane 
cockpits. Early development and validation have been 
taking place on data collected at Lincoln Laboratory. Data 
collections with U.S. Army and U.S. Air Force partners are 
ongoing and will substantially advance early results and 
validation efforts.
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EXAMPLE PREDICTION 
We conducted a preliminary proof of concept of the 
biomarkers pipeline in the domain of cognitive fatigue 
by applying it to data collected at Lincoln Laboratory. 
We chose the longitudinal estimation of typical, daily 
fluctuations of fatigue for a single individual. This single 
subject was recorded reading the Caterpillar passage [80] 
three times each day (at approximately 9 a.m., 12 p.m., 
and 4 p.m.) for five consecutive days (Monday through 
Friday of a normal work week). At these times, the subject 
also performed a 10-minute PVT session to assess level of 
fatigue. Mean reaction time was used to quantify the level 
of fatigue. A suite of the Laboratory’s low- and high-level 
features were extracted from the speech audio and used 
as a basis for quantifying fatigue levels. Principal compo-
nents analysis was performed on the audio features to 
achieve dimensionality reduction, keeping the first five 
most prominent components. A linear model was trained 
with a leave-one-session-out cross validation to predict 
mean reaction time from the audio features. Results in 
Figure 19 show a strong correlation (r2 = 0.64, p < 0.01) 
between actual and estimated reaction time, with a 
root-mean-square error (RMSE) of 9.6 milliseconds, 
or approximately 15.5 percent of the observed range 
of mean reaction times in the dataset. These results, 
though preliminary, demonstrate the promise of vocal 
biomarkers for cognitive fatigue assessment and, more 
generally, for cognitive status monitoring. The ability to 

predict objective measures of fatigue with an estimation 
error of approximately 16 percent may be relevant and 
actionable for individuals on sleep-restricted schedules 
during which fatigue levels have been shown to vary by 
35 percent or more [81]. Preliminary results on larger 
datasets have revealed improved performance compared 
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FIGURE 18. The fused probability of detection versus false 
alarm for the modalities of EEG (a), audio and video (b), and 
EEG, audio, and video (c) is compared. Each panel gives 
ROCs as a function of increasing number of trials from 1 to 60, 
corresponding to 6 seconds to 360 seconds (6 minutes) for low 
and high cognitive loads.
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to this modest-sized proof of concept. Our expanded 
effort in this area is also investigating the independent 
and joint effects of cognitive load and fatigue conditions 
in voice features, showing the changing discriminatory 
ability of cognitive load under different cognitive fatigue 
conditions [82].

Other Modalities 
Lincoln Laboratory is also expanding to other behav-
ioral measures, including fine motor (e.g., eye tracking 
and hand dexterity) and gross motor movements (e.g., 
static and dynamic balance), physiological measures 
(e.g., heart rate and skin conductance and temperature), 
and brain-computer interfaces (e.g., EEG measures), 
along with corresponding neurobiophysical models, for 
detecting, phenotyping, and monitoring brain trauma 
and disease. For example, eye tracking is included in 
our high school athlete data collection for preclinical 
mTBI in our collaboration with Purdue University and 
also in a cognitive load data collection in collaboration 
with the Combat Capabilities Development Command 
Soldier Center (CCDC Soldier Center), formerly the 
U.S. Army Natick Soldier Research, Development, and 
Engineering Center. In each case, eye-tracking features 
have contributed significantly to the prediction of 
cognitive decline [75] and cognitive load level [83], 
respectively. Physiological measures also play a role in 
our past and ongoing investigations of depression (as 
part of our multimodal study with the Wyss Institute 
at Harvard Medical School) and of cognitive overload 
and fatigue (as part of our multimodal studies with 
USARIEM and CCDC Soldier Center). In addition to 
using EEG analysis in cognitive load level prediction, 
we are using it to obtain insights into the importance of 
active brain regions during visual and auditory memory 
tasks [83]. Finally, in this same context of cognitive load 
prediction, we are investigating the effect of movement 
in cognition. One example involves recording speech, 
EEG (64-channel Neuroscan system), and full-body 
motion capture (17-accelerometer Xsens System) from 
10 subjects in both standing and walking conditions 
while they are engaged in an auditory working memory 
task. Here, we are exploring the effect of cognitive load 
on timing and coordination features within and across 
the three modalities, their interrelationships, and the 
consequence of multitasking [84].

Providing sensitive detection simultaneously with 
specific phenotyping is an inherent challenge facing the 
assessment of many different neurological conditions. 
An especially prevalent example of these challenges can 
be seen in the domain of mTBI, where a wide variety 
of sensorimotor (e.g., vestibular deficits) and cognitive 
(e.g., attention deficits) impairments lead to subtle and 
heterogeneous signs and symptoms. Clinical assessments 
in this domain tend to be subjective and insensitive, and 
neural imaging is expected to be negative. Moreover, 
diagnosis is typically focused on classifying the injury 
into broad categories: mild, moderate, or severe. There 
is a pressing need for technologies that can provide 
individualized physiological phenotypes in order to facil-
itate diagnostic specificity, which is often complicated by 
the co-occurrence of conditions with similar symptom 
profiles (e.g., PTSD and depression), as well as to tailor 
treatment approaches to individual needs and more 
accurately monitor risk and post-injury recovery.

In one program, Lincoln Laboratory staff—in collab-
oration with clinical and domain experts from Spaulding 
Rehabilitation Hospital, Massachusetts General 
Hospital, and Harvard Medical School—are developing 
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FIGURE 19. Preliminary results of using speech-based 
biomarkers for predicting reaction time are plotted. Reaction 
time, as measured with the psychomotor vigilance task, 
is sometimes taken as a gold standard for assessment of 
alertness and cognitive fatigue. A linear model was trained with 
a leave-one-session-out cross validation to predict reaction 
time from speech features, using data collected at Lincoln 
Laboratory of a single subject assessed three times daily for 
one work week.
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methods for individualized phenotyping of mTBI-related 
impairments through the analysis of balance and gait. 
Balance and gait show frequent impairment in mTBI 
from a variety of causes (e.g., vestibular, visual-motor, 
and/or proprioceptive sensory feedback impairment) 
and therefore hold promise for enabling phenotyping. 
Two parallel approaches are underway (see Figure 20). 

The first is the development of sensorimotor provoca-
tive tests, conducted on a flexible treadmill platform 
in the virtual reality environment at the Laboratory’s 
Sensorimotor Technology Realization in Immersive 
Virtual Environments (STRIVE) Center. These tests are 
designed to bring out latent impairments not observ-
able in activities of daily living. The second approach 
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FIGURE 20. Neurocomputational model–
based approaches to phenotyping mTBI 
are being developed in the virtual reality 
environment at the Laboratory’s Sensorimotor 
Technology Realization in Immersive Virtual 
Environments (STRIVE) Center (a). Behavioral 
and physiological responses to sensorimotor 
provocative tests are measured, driving 
neurocomputational models of motor control 
in normal and impaired individuals. This 
testing can facilitate system identification 
of impairment in neurological control 
mechanisms involving vestibular, visual, and 
proprioceptive sensory feedback (b).



54 LINCOLN LABORATORY JOURNAL  n  VOLUME 24, NUMBER 1, 2020

NONINVASIVE BIOMARKERS OF NEUROBEHAVIORAL PERFORMANCE

is the development of neurocomputational models of 
motor control in normal and impaired individuals to 
facilitate system identification of neurological control 
mechanisms. These approaches are synergistic, with data 
from STRIVE Center experiments used to refine control 
models and models used to inform the design of senso-
rimotor provocative tests.

Long-Term Vision
In the Laboratory’s Human Health and Performance 
Systems Group, we have previous or ongoing projects 
in detecting and tracking amyotrophic lateral sclerosis 
(ALS) [84], dementia [86], and autism spectrum 
disorder [87]. A common theme to detecting and 
tracking these conditions is the discovery of behavioral- 
based biomarkers that reflect a change or decline in brain 
functioning as manifested in motor control, and more 
specifically changes in timing and coordination within 
and across components of behaviors. It is hypothesized 
that these relations are associated with neural coordina-
tion across different parts of the brain that are essential 
in motor control. 

As a final application, we mention our introduc-
tion into an area of immediate urgency: detecting and 
tracking COVID-19 (the novel coronavirus) through 
asymptomatic and symptomatic stages. Given the physi-
ologically based insult to breathing functions [88] and 
the growing evidence of neurological deficits present in 
COVID-19 [89, 90], we hypothesize that biomarkers 
derived from measures of vocal-subsystem coordination 
that includes both lower and upper respiratory systems 
may provide a sensitive indicator of COVID-19, most 
importantly in its asymptomatic stages. Preliminary 
results with audio interviews of two subjects reveal 
strong effect sizes in distinguishing pre-COVID-19 
(pre-exposure) from post-COVID-19 (after positive 
diagnosis but still asymptomatic) by using intensity 
of breathing (respiration during speech), coordina-
tion of respiration and pitch (fundamental frequency), 
and coordination of pitch and articulatory motion. 
Morphology of eigenvalue Cohen’s d effect sizes indicates 
a constricted breathing and reduced complexity of 
coordinated subsystem movement. Although prelimi-
nary results are promising, we clearly need to validate 
these results and address confounding influences with 
larger, more controlled datasets.

With our timing and coordination-based features, 
we have achieved effective detection across a variety of 
application areas. Nevertheless, to more strongly validate 
performance in all areas, we need to move from the lab 
and clinic to the field. To provide access to larger popula-
tions, we are currently translating our data collections and 
detection algorithms to apps using mobile technology, 
e.g., smartphones and tablets. In the area of depression, 
we are working with the commercial entity Sonde Health; 
in traumatic brain injury, we are collaborating with the 
U.S. Army Medical Materiel Development Activity 
(USAMMDA) to develop a mobile device approved by 
the U.S. Food and Drug Administration; and in cognitive 
load and fatigue, we are collaborating with USARIEM 
toward a predictive algorithm for assessment within a 
technology transfer agreement. Toward our goal of early 
warning and tracking of COVID-19, it will be essen-
tial to address potential confounders, such as different 
recording environments and channels, unbalanced data 
quantities, and changes in underlying vocal status from 
pre-COVID-19 exposure to post-COVID-19 diagnosis. 
Finally, it will be essential to understand the specificity 
of our proposed biomarkers; for example, these proposed 
biomarkers must be able to differentiate COVID-19 from 
the typical flu and flu-like conditions resulting in various 
forms of inflammation.

A growing path in our biomarker research and 
development involves pairing our behavioral approaches 
with neurocomputational biophysical modeling and 
with clinical observation. This trifold strategic approach 
fuses empirical measurements, phenomenological 
(data-driven) models, and mechanistic models.

Our long-term vision is to move away from predic-
tions based on group analysis and to use the trifold 
fusion to improve assessments of mechanisms underlying 
individual impairments, leading to personalized design 
of patient care monitoring and intervention systems. 
Our ultimate objective is to develop patient-specific 
neurocomputational models of human behavior that 
integrate sensorimotor impairments for early warning 
and improved specificity and phenotyping.

Acknowledgments 
The authors acknowledge for discussions, assistance, 
and support Laura Brattain, Gregory Ciccarelli, Nicolas 
Malyska, Daryush Mehta, Tejash Patel, and Christopher 



 VOLUME 24, NUMBER 1, 2020  n  LINCOLN LABORATORY JOURNAL 55

THOMAS F. QUATIERI, JAMES R. WILLIAMSON, ADAM C. LAMMERT, KRISTIN J. HEATON, AND JEFFREY S. PALMER

Smalt from Lincoln Laboratory; Satrajit Ghosh from the 
McGovern Institute for Brain Research at MIT; Thomas 
Talavage from Purdue University; Alexander Lin from 
Brigham and Women’s Hospital; and Marianna Eddy and 
Joseph Moran from the U.S. Army. 

References
1. World Health Organization, Mental Health, https://www.

who.int/mental_health/en/. 
2. Office of Suicide Prevention, “Suicide Among Veterans and 

Other Americans,” U.S. Department of Veterans Affairs, 
3 Aug. 2016, available at http://www.mentalhealth.va.gov/
docs/2016suicidedatareport.pdf.

3. World Health Organization, “Dementia Fact Sheet,” available 
at http://www.who.int/en/news-room/fact-sheets/detail/
dementia. 

4. Centers for Disease Control and Prevention, “Community 
Report on Autism 2018,” U.S. Department of Health and 
Human Services.

5. T. Elianan and L.H. Joycox, eds., Invisible Wounds of War: 
Psychological and Cognitive Injuries, Their Consequences, 
and Services to Assist Recovery. Santa Monica: RAND 
Corporation, 2008. 

6. S.E. Lively, D.B. Pisoni, W. Van Summers, and R.H. 
Bernacki, “Effects of Cognitive Workload on Speech 
Production: Acoustic Analyses and Perceptual 
Consequences,” Journal of the Acoustical Society of America, 
vol. 93, no. 5, 1993, pp. 2962–2973.

7. B. Yin, F. Chen, N. Ruiz, and E. Ambikairajah, “Speech-
Based Cognitive Load Monitoring System,” paper in 
Proceedings of the IEEE International Conference on 
Acoustics, Speech, and Signal Processing, 2008, 
pp. 2041–2044. 

8. B. Yin and F. Chen, “Towards Automatic Cognitive Load 
Measurement from Speech Analysis,” paper in Proceedings 
of the 12th International Human-Computer Interaction 
Conference, Interaction Design and Usability, 2007, 
pp. 1011–1020.

9. M.A. Khawaja, N. Ruiz, and F. Cheng, “Think Before You 
Talk: An Empirical Study of Relationship between Speech 
Pauses and Cognitive Load,” paper in Proceedings of the 20th 
Australasian Computer-Human Interaction Conference, 
2008, pp. 335–338.

10. P. Le, J. Epps, H.C. Choi, and E. Ambikairajah, “A Study 
of Voice Source- and Vocal Tract-Based Features in 
Cognitive Load Classification,” paper in Proceedings of the 
International Conference on Pattern Recognition, 2010, 
pp. 4516–4519.

11. P. Zarjam, J. Epps, and F. Chen, “Characterizing Working 
Memory Load Using EEG Delta Activity,” paper in 
Proceedings of the 19th European Signal Processing 
Conference, 2011, pp. 1554–1558.

12. P. Zarjam, J. Epps, and F. Chen, “Evaluation of Working 
Memory Load Using EEG Signals,” paper in Proceedings 

of the Asia-Pacific Signal and Information Processing 
Association Annual Summit and Conference, 2011, 
pp. 715–719. 

13. N. Cummins, S. Scherer, J. Krajewski, S. Schnieder, J. Epps, 
and T.F. Quatieri, “A Review of Depression and Suicide Risk 
Assessment using Speech Analysis,” Speech Communication, 
vol. 17, 2015, pp. 10–49.

14. E. Moore, M. Clements, J. Peifer, and L. Weisser, “Analysis of 
Prosodic Variation in Speech for Clinical Depression,” paper 
in Proceedings of the 25th Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society, 
2003, pp. 2925–2928.

15. J.C. Mundt, P.J. Snyder, M.S. Cannizzaro, K. Chappie, 
and D.S. Geralts, “Voice Acoustic Measures of Depression 
Severity and Treatment Response Collected via 
Interactive Voice Response (IVR) Technology,” Journal of 
Neurolinguistics, vol. 20, no. 1, 2007, pp. 50–64.

16. A. Ozdas, R.G. Shiavi, S.E. Silverman, M.K. Silverman, 
and D.M. Wilkes, “Investigation of Vocal Jitter and Glottal 
Flow Spectrum as Possible Cues for Depression and 
Near-Term Suicidal Risk,” IEEE Transactions on Biomedical 
Engineering, vol. 51, no. 9, 2004, pp. 1530–1540. 

17. J.K. Darby, N. Simmons, and P.A. Berger, “Speech and 
Voice Parameters of Depression: A Pilot Study,” Journal of 
Communication Disorders, vol. 17, no. 2, 1984, pp. 75–85.

18. J.F. Greden and B.J. Carroll, “Psychomotor Function in 
Affective Disorders: An Overview of New Monitoring 
Techniques,” The American Journal of Psychiatry, vol. 138, 
no. 11, 1981, pp. 1441–1448. 

19. J.R. Orozco-Arroyave, J.D. Arias-Londoño, J.F. Vargas-
Bonilla, M.C. González-Rátiva, and E. Nöth, “New 
Spanish Speech Corpus Database for the Analysis of People 
Suffering from Parkinson’s Disease,” paper in Proceedings of 
the Ninth International Conference on Language Resources 
and Evaluation, 2014, pp 342–347.

20. P. Wang, F. Barrett, E. Martin, M. Milonova, R.E. Gur, 
R.C. Gur, et al., “Automated Video-Based Facial Expression 
Analysis of Neuropsychiatric Disorders,” Journal of 
Neuroscience Methods, vol. 168, no. 1, 2008, pp. 224–238.

21. M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. 
Krajewski, et al., “AVEC 2014: 3D Dimensional Affect and 
Depression Recognition Challenge,” paper in Proceedings 
of the Fourth International Workshop on Audio/Visual 
Emotion Challenge, 2013, pp. 3–10.

22. W. Gaebel and W. Wölwer, “Facial Expression and Emotional 
Face Recognition in Schizophrenia and Depression,” 
European Archives of Psychiatry and Clinical Neuroscience, 
vol. 242, no. 1, 1992, pp. 46–52.

23. G.E. Schwartz, P.L. Fair, P. Salt, M.R. Mandel, and G.L. 
Klerman, “Facial Expression and Imagery in Depression: An 
Electromyographic Study,” Psychosomatic Medicine, vol. 38, 
no. 5, 1976, pp. 337–347.

24. P. Ekman, W.V. Freisen, and S. Ancoli, “Facial Signs of 
Emotional Experience,” Journal of Personality and Social 
Psychology, vol. 39, no. 6, 1980, pp. 1125–1134.

https://www.who.int/mental_health/en/
https://www.who.int/mental_health/en/
http://www.mentalhealth.va.gov/docs/2016suicidedatareport.pdf
http://www.mentalhealth.va.gov/docs/2016suicidedatareport.pdf
http://www.who.int/en/news-room/fact-sheets/detail/dementia
http://www.who.int/en/news-room/fact-sheets/detail/dementia


56 LINCOLN LABORATORY JOURNAL  n  VOLUME 24, NUMBER 1, 2020

NONINVASIVE BIOMARKERS OF NEUROBEHAVIORAL PERFORMANCE

25. P. Zarjam, J. Epps, and N.H. Lovell, “Beyond Subjective 
Self-Rating: EEG Signal Classification of Cognitive 
Workload,” IEEE Transactions on Autonomous Mental 
Development, vol. 7, no. 4, 2015, pp. 301–310.

26. M. Fava and K.S Kendler, “Major Depressive Disorder,” 
Journal of Neuroscience, vol. 28, no. 2, 2000, pp. 335–341.

27. G. Littlewort, J. Whitehill, T. Wu, I.R. Fasel, M. Frank, J.R. 
Movellan, and M.S. Bartlett, “The Computer Expression 
Recognition Toolbox (CERT),” paper presented at the Ninth 
IEEE International Conference on Automatic Face and 
Gesture Recognition, Santa Barbara, 21–23 Mar. 2011. 

28. D.D. Mehta, D. Rudoy, and P.J. Wolfe, “Kalman-Based 
Autoregressive Moving Average Modeling and Inference 
for Formant and Antiformant Tracking,” The Journal of the 
Acoustical Society of America, vol. 132, no. 3, 2012, 
pp. 1732–46.

29. A.C. Trevino, T.F. Quatieri, and N. Malyska, “Phonologically-
Based Biomarkers for Major Depressive Disorder,” EURASIP 
Journal on Advances in Signal Processing, vol. 2011, no. 1, 
2011, pp. 1–18.

30. G.J. Canter, “Speech Characteristics of Patients with 
Parkinson’s Disease: I. Intensity, Pitch, and Duration,” 
Journal of Speech and Hearing Disorders, vol. 28, no. 3, 
1963, pp. 221–229.

31. J.A. Logemann, H.B. Fisher, B. Boshes, and E.R. Blonsky, 
“Frequency and Cooccurrence of Vocal Tract Dysfunctions in 
the Speech of a Large Sample of Parkinson Patients,” Journal 
of Speech and Hearing Disorders, vol. 43, no. 1, 1978, 
pp. 47–57. 

32. J. E. Sussman and K. Tjaden, “Perceptual Measures of 
Speech from Individuals with Parkinson’s Disease and 
Multiple Sclerosis: Intelligibility and Beyond,” Journal of 
Speech, Language, and Hearing Research, vol. 55, no. 4, 
2012, pp. 1208–1219. 

33. S. Skodda and U. Schlegel, “Speech Rate and Rhythm in 
Parkinson’s Disease,” Movement Disorders, vol. 23, no. 7, 
2008, pp. 985–992.

34. J. Rusz, R. Cmejla, T. Tykalova, H. Ruzickova, J. Klempir, V. 
Majerova, et al., “Imprecise Vowel Articulation as a Potential 
Early Marker of Parkinson’s Disease: Effect of Speaking 
Task,” The Journal of Acoustical Society of America, vol. 134, 
no. 3, 2013, pp. 2171–2181. 

35. C.G. Goetz, B.C. Tilley, S.R. Shaftman, G.T. Stebbins, S. 
Fahn, P. Martinez-Martin, et al., “Movement Disorder 
Society-Sponsored Revision of the Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS): Scale Presentation 
and Clinimetric Testing Results,” Movement Disorders, 
vol. 23, no. 15, 2008, pp. 2129–2170.

36. M. Falcone, N. Yadav, C. Poellabauer, and P. Flynn, “Using 
Isolated Vowel Sounds for Classification of Mild Traumatic 
Brain Injury,” paper in Proceedings of the 2013 IEEE 
International Conference on Acoustics, Speech, and Signal 
Processing, 2013, pp. 7577–7581. 

37. T.M. Talavage, E.A. Nauman, E.L. Breedlove, U. Yoruk, A.E. 
Dye, K.E. Morigaki, et al., “Functionally-Detected Cognitive 
Impairment in High School Football Players without 

Clinically-Diagnosed Concussion,” Journal of Neurotrauma, 
vol. 31, no. 4, 2014, pp. 327–338. 

38. C. Cao, R.L. Tutwiler, and S. Slobounov, “Automatic 
Classification of Athletes with Residual Functional Deficits 
Following Concussion by Means of EEG Signal Using 
Support Vector Machine,” IEEE Transactions of Neural 
Systems and Rehabilitation and Engineering: A Publication 
of the IEEE Engineering in Medicine and Biology Society, 
vol. 16, no. 4, 2008, pp. 327–335. 

39. C. Poellabauer, N. Yadav, L. Daudet, S.L. Schneider, C.B. 
Busso, and P. Flynn, “Challenges in Concussion Detection 
Using Vocal Acoustic Biomarker,” IEEE Access, vol. 3, 2015, 
pp. 1143–1160. 

40. A.L. Russo, J. Verghese, A.L. Metti, R.M. Boudreau, H.J. 
Aizenstein, S. Kritchevsky, et al., “Slowing Gait and Risk 
for Cognitive Impairment: The Hippocampus as a Shared 
Neural Substrate,” Neurology, vol. 89, no. 4, 2017, 
pp. 336–342.

41. U.U. Samadani, R. Ritlop, M. Reyes, E. Nehrbass, M. Li, 
E. Lamm, et al., “Eye Tracking Detects Disconjugate Eye 
Movements Associated with Structural Traumatic Brain 
Injury and Concussion,” Journal of Neurotrauma, vol. 32, 
2015, pp. 548–556. 

42. E. Gowen and A. Hamilton, “Motor Abilities in Autism: A 
Review Using a Computational Context,” Journal of Autism 
and Development Disorders, vol. 43, no. 2, 2013, 
pp. 323–344.

43. T.F. Quatieri, J.R. Williamson, C.J. Smalt, J. Perricone, 
T. Patel, L.J. Brattain, et al., “Multi-modal Biomarkers to 
Discriminate Cognitive State,” The Role of Technology in 
Clinical Neuropsychology. Eds. R.L Kane and T.D. Parsons. 
New York: Oxford University Press, 2017.

44. B. Yu, T.F. Quatieri, J.W. Williamson, and J. Mundt, 
“Prediction of Cognitive Performance in an Animal 
Fluency Task Based on Rate and Articulatory Markers,” 
paper in Proceedings of the 15th Annual Conference of the 
International Speech Communication Association, 2014, 
pp. 1038–1042. 

45. B. Yu, T.F. Quatieri, J.R. Williamson, and J.C. Mundt, 
“Cognitive Impairment Prediction in the Elderly Based on 
Vocal Biomarkers,” paper in Proceedings of the 16th Annual 
Conference of the International Speech Communication 
Association, 2015. 

46. J.R. Williamson, T.F. Quatieri, B.S. Helfer, R. Horwitz, 
B. Yu, and D.D. Mehta, “Vocal Biomarkers of Depression 
Based on Motor Incoordination,” paper in Proceedings of the 
Fourth International Workshop on Audio/Visual Emotion 
Challenge, 2013, pp. 65–72. 

47. T.F. Quatieri, J.R. Williamson, C.J. Smalt, T. Patel, J. 
Perricone, D.D. Mehta, et al., “Vocal Biomarkers to 
Discriminate Cognitive Load in a Working Memory Task,” 
paper in Proceedings of the 16th Annual Conference of the 
International Speech Communication Association, 2015, 
pp. 2684–2688.

48. F.H. Guenther, Neural Control of Speech. Cambridge, Mass.: 
MIT Press, 2018.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schlegel%20U%5BAuthor%5D&cauthor=true&cauthor_uid=18383114


 VOLUME 24, NUMBER 1, 2020  n  LINCOLN LABORATORY JOURNAL 57

THOMAS F. QUATIERI, JAMES R. WILLIAMSON, ADAM C. LAMMERT, KRISTIN J. HEATON, AND JEFFREY S. PALMER

49. K.A. Gola, Tal Shany-Ur, P. Pressman, I. Sulman, E. Galeana, 
H. Paulsen, et al., “A Neural Network Underlying Intentional 
Emotional Facial Expression in Neurodegenerative Disease,” 
NeuroImage: Clinical, vol. 14, 2017, pp. 672–678. 

50. T.F. Quatieri, Discrete-Time Speech Signal Processing: 
Principles and Practice. Upper Saddle River, N.J.: Prentice 
Hall, 2002.

51. R.L. Rabiner and B.-H.Juang, Fundamentals of Speech 
Recognition. Upper Saddle River, N.J.: Prentice Hall, 1993. 

52. P. Ekman and E.L. Rosenberg, eds., What the Face Reveals: 
Basic and Applied Studies of Spontaneous Expression Using 
the Facial Action Coding System (FACS), 2nd ed. New York: 
Oxford University Press, 2005.

53. T.F. Quatieri and N. Malyska, “Vocal-Source Biomarkers 
for Depression: A Link to Psychomotor Activity,” paper 
in Proceedings of the 13th Annual Conference of the 
International Speech Communication Association, 2012, 
pp. 1059–1062. 

54. J.R. Williamson, T.F. Quatieri, B.S. Helfer, G. Ciccarelli, and 
D.D. Mehta, “Vocal and Facial Biomarkers of Depression 
Based on Motor Incoordination and Timing,” paper in 
Proceedings of the Fourth International Workshop on Audio/
Visual Emotion Challenge, 2014, pp. 65–72.

55. B.S Helfer, T.F. Quatieri, J.R. Williamson, L. Keyes, 
B. Evans, W.N. Greene, et al., “Articulatory Dynamics 
and Coordination in Classifying Cognitive Change with 
Preclinical mTBI,” paper in Proceedings of the 15th Annual 
Conference of the International Speech Communication 
Association, 2014. 

56. A. Trevino, T.F. Quatieri, and N. Malyska, “Phonologically-
Based Biomarkers for Major Depressive Disorder,” EURASIP 
Journal on Advances in Signal Processing: Special Issue on 
Emotion and Mental State Recognition from Speech, vol. 42, 
no. 1, 2011, pp. 2011–2042. 

57. J.R. Williamson, T.F. Quatieri, B.S. Helfer, J. Perricone, 
S.S. Ghosh, G. Ciccarelli, and D.D. Mehta, “Segment-
Dependent Dynamics in Predicting Parkinson’s Disease,” 
paper in Proceedings of the 16th Annual Conference of the 
International Speech Communication Association, 2015, 
pp. 518–522. 

58. J.R. Williamson, D.W. Bliss, and D.W. Browne, “Epileptic 
Seizure Prediction Using the Spatiotemporal Correlation 
Structure of Intracranial EEG,” paper in Proceedings of the 
IEEE International Conference on Acoustics, Speech and 
Signal Processing, 2011, pp. 665–668.

59. J.R. Williamson, D.W. Bliss, D.W. Browne, and J.T. 
Narayanan, “Seizure Prediction Using EEG Spatiotemporal 
Correlation Structure,” Epilepsy and Behavior, vol. 25, no. 2, 
2012, pp. 230–238. 

60. R. Horwitz, T.F. Quatieri, B.S. Helfer, B. Yu, J.R. Williamson, 
and J. Mundt, “On the Relative Importance of Vocal Source, 
System, and Prosody in Human Depression,” paper in 
Proceedings of the 2013 IEEE International Conference on 
Body Sensor Networks, 2013, pp. 1–6.

61. P.J. Jackson and C.H. Shadle, “Performance of the Pitch-
Scaled Harmonic Filter and Applications in Speech Analysis,” 

paper in Proceedings of the 2000 IEEE International 
Conference on Acoustics, Speech, and Signal Processing, 
2000, pp. 1311–1314.

62. P.J. Jackson and C.H. Shadle, “Pitch-Scaled Estimation of 
Simultaneous Voiced and Turbulence-Noise Components in 
Speech,” IEEE Transactions on Speech and Audio Processing, 
vol. 9, no. 7, 2011, pp. 713–726.

63. J. Kane, T. Drugman, and C. Gobl, “Improved Automatic 
Detection of Creak,” Computer Speech and Language, vol. 27, 
no. 4, 2013, pp. 1028–1047. 

64. T. Drugman, Toolbox, http://tcts.fpms.ac.be/~drugman/
Toolbox/.

65. D.A. Reynolds, T.F. Quatieri, and R.B. Dunn, “Speaker 
Verification using Adapted Gaussian Mixture Models,” 
Digital Signal Processing, vol. 10, no. 1, 2000, pp. 19–41.

66. W. Shen, C. White, and T.J. Hazen, “A Comparison of 
Query-by-Example Methods for Spoken Term Detection,” 
paper in Proceedings of the 10th Annual IEEE International 
Conference on Acoustics, Speech, and Signal Processing, 
2009, pp. 2143–2146. 

67. B.S. Helfer, J.R. Williamson, B.A. Miller, J. Perricone, and 
T.F. Quatieri, “Assessing Functional Neural Connectivity as 
an Indicator of Cognitive Performance,” paper presented at 
the 5th Workshop on Machine Learning and Interpretation 
in Neuroimaging, Montreal, 11–12 Dec. 2015.

68. American Psychiatric Association, Diagnostic and Statistical 
Manual of Mental Disorders, 4th ed. Washington, D.C.: 
American Psychiatric Association Publishing, 2000. 

69. P. Boersma, “Accurate Short-Term Analysis of the 
Fundamental Frequency and the Harmonics-to-Noise Ratio 
of a Sampled Sound,” paper in Proceedings of the Institute of 
Phonetic Sciences, vol. 17, 1993, pp. 97–110. 

70. G.J. Canter, “Speech Characteristics of Patients with 
Parkinson’s Disease: II. Physiological Support for Speech,” 
Journal of Speech and Hearing Disorders, vol. 30, no. 1, 1965, 
pp. 44–49. 

71. G.J. Canter, “Speech Characteristics of Patients with 
Parkinson’s Disease: III. Articulation, Diadochokinesis, and 
Over-All Speech Adequacy,” Journal of Speech and Hearing 
Disorders, vol. 30, no. 3, 1965, pp. 217–224. 

72. J.A. Logemann and H.B. Fisher, “Vocal Tract Control 
in Parkinson’s Disease,” Journal of Speech and Hearing 
Disorders, vol. 46, no. 4, 1981, pp. 348–352. 

73. S. Skodda, “Aspects of Speech Rate and Regularity in 
Parkinson’s Disease,” Journal of Neurological Sciences, 
vol. 310, no. 1–2, 2011, pp. 231–236. 

74. R. Netsell and D. Lefkowitz, “Speech Production Following 
Traumatic Brain Injury: Clinical and Research Implications,” 
ASHA Neurophysiology and Neurogenic Speech and 
Language Disorders, vol. 2, no. 4, pp. 1–8.

75. B.S. Helfer, T.F. Quatieri, L. Keyes, B. Evans, W.N. Greene, 
T. Vian, et al., “Voice and Ocular Dynamics in Classifying 
Cognitive Change with Preclinical mTBI,” poster presented 
at the Fourth Annual Traumatic Brain Injury Conference, 
Washington, D.C., 16–17 Apr. 2014.

http://tcts.fpms.ac.be/~drugman/Toolbox/
http://tcts.fpms.ac.be/~drugman/Toolbox/
http://www.ncbi.nlm.nih.gov/pubmed/21849174


58 LINCOLN LABORATORY JOURNAL  n  VOLUME 24, NUMBER 1, 2020

NONINVASIVE BIOMARKERS OF NEUROBEHAVIORAL PERFORMANCE

76. ImPACT Applications Inc., “Immediate Post-Concussion 
Assessment Testing (ImPACT®) Test Technical Manual 
Technical Manual and Psychometric Data,” available at 
impacttest.com, 2013. 

77. A.C. Lammert, J.R. Williamson, A. Hess, T. Patel, T.F. 
Quatieri, H.J. Liao, et al., “Noninvasive Estimation of 
Cognitive Status in Mild Traumatic Brain Injury Using 
Speech Production and Facial Expression,” paper in 
Proceedings of the Seventh International Conference on 
Affective Computing and Intelligent Interaction, 2017, 
pp. 105–110.

78. K. Watanabe and S. Funahashi, “Neural Mechanisms of 
Dual-Task Interference and Cognitive Capacity Limitation in 
the Prefrontal Cortex,” Nature Neuroscience, vol. 17, 2014, 
pp. 601–611. 

79. P. Zarjam, J. Epps, and F. Che, “Spectral EEG Features for 
Evaluating Cognitive Load,” paper in Proceedings of the 33rd 
Annual International Conference of IEEE Engineering in 
Medicine and Biology Society, 2011, pp. 3841–3844. 

80. R. Patel, K. Connaghan, D. Franco, E. Edsall, D. Forgit, L. 
Olsen, et al., “‘The Caterpillar’: A Novel Reading Passage for 
Assessment of Motor Speech Disorders,” American Journal 
of Speech-Language Pathology, vol. 22, no. 1, 2013, pp. 1–9.

81. D.P. Redmond, M.L. Johnson, D.R. Thorne, G. Belenky, 
T.J. Balkin, W.F. Storm, et al., “Fatigue Models for 
Applied Research in Warfighting,” Aviation, Space, and 
Environmental Medicine, vol. 75, no. 3, 2004, pp. 44–60.

82. J. Sloboda, A. Lammert, J. Williamson, C. Smalt, D.D. 
Mehta, I. Curry, et al., “Vocal Biomarkers for Cognitive 
Performance Estimation in a Working Memory Task,” 
paper in Proceedings of the 19th Annual Conference of the 
International Speech Communication Association, 2018.

83. M.A. Nolan, J.R. Williamson, L.J. Brattain, M.D. Eddy, J.M. 
Moran, C.J. Smalt, and T.F. Quatieri, “Predicting Variations 
in Cognitive Load: A Multimodal Approach,” poster 
presented at Neuroscience 2016, San Diego, 12–16 Nov. 2016. 

84. T.F. Quatieri, B. Yu, J. Perricone, A. Lammert, M. Nolan, D. 
Mehta, and J.S. Palmer, “Energy and Correlation Analysis of 
Gait and EEG Representations During an Auditory Working 
Memory Task, Movement and Cognition,” poster presented 
at the Movement and Cognition International Conference at 
Harvard University School of Medicine, Boston, 27–29 Jul. 
2018.

85. R. Horwitz-Martin, T. Quatieri, A. Lammert, J. Williamson, 
Y. Yunusova, E. Godoy, et al., “Relation of Automatically 
Extracted Formant Trajectories with Intelligibility Loss and 
Speaking Rate Decline in Amyotrophic Lateral Sclerosis,” 
paper in Proceedings of the 18th Annual Conference of the 
International Speech Communication Association, 2017.

86. B. Yu, J.R. Williamson, J.C. Mundt, and T.F. Quatieri, 
“Speech-Based Automated Cognitive Impairment Detection 
from Remotely-Collected Cognitive Test Audio,” IEEE Access, 
vol. 6, no. 1, 2018, pp. 40494–40505.

87. T.F. Quatieri, J. O’Rourke, L. Nowinski, D. Hannon, A. 
Lammert, J. Williamson, et al., “Quantifying Fine Motor 

Dependencies in Autism Spectrum Disorder,” Neuroscience, 
2018. 

88. World Health Organization, “Clinical Management of 
Severe Acute Respiratory Infection (SARI) When COVID-19 
Disease is Suspected: Interim Guidance Report,” 13 Mar. 
2020, available at https://www.who.int/publications-detail/
clinical-management-of-severe-acute-respiratory-infec-
tion-when-novel-coronavirus-(ncov)-infection-is-suspected. 

89. L. Mao, M. Wang, S. Chen, Q. He, J. Chang, C. Hong, et al., 
“Neurological Manifestations of Hospitalized Patients with 
COVID-19 in Wuhan, China: A Retrospective Case Series 
Study,” JAMA Neurology, published online 10 Apr. 2020.

90. C.H. Yan, F. Faraji, D.P. Prajapati, C.E. Boone, and A.S. 
DeConde, “Association of Chemosensory Dysfunction 
and Covid-19 in Patients Presenting with Influenza-like 
Symptoms,” International Forum of Allergy & Rhinology, 
published online 12 Apr. 2020.

About the Authors 
Thomas F. Quatieri, a senior member of 
the technical staff in the Human Health 
and Performance Systems Group, is 
involved in bridging human language 
and bioengineering research and 
technologies. Within this group, he has 
initiated and developed major R&D and 
technology transition programs in speech 

and auditory signal processing and neuro-biophysical modeling 
with application to detection and monitoring of neurological, 
neurotraumatic, and stress conditions. He has been an author 
on more than 200 publications, holds 11 patents, and authored 
the textbook Discrete-Time Speech Signal Processing: Principles 
and Practice. He also holds a faculty appointment in the 
Harvard-MIT Speech and Hearing Bioscience and Technology 
Program. He developed the MIT graduate course Digital Speech 
Processing and is active in advising graduate students on 
the MIT and Harvard campuses. He is a recipient of four IEEE 
Transactions Best Paper Awards and the 2010 MIT Lincoln 
Laboratory Best Paper Award. He led the Lincoln Laboratory 
team that won the 2013 and 2014 AVEC Depression Challenges 
and the 2015 MIT Lincoln Laboratory Team Award for their work 
on vocal and facial biomarkers. He has served on the IEEE 
Digital Signal Processing Technical Committee, the IEEE Speech 
and Language Technical Committee, and the IEEE James L. 
Flanagan Speech and Audio Awards Committee. He has served 
on National Institutes of Health and National Science Foundation 
panels, been an associate editor for the IEEE Transactions on 
Signal Processing, and is an associate editor of Computer, 
Speech, and Language. He has been an invited speaker at 
conferences, workshops, and meetings, most recently as a 
keynote speaker at the 2019 Speech Science and Technology 
Conference. He is a Fellow of the IEEE and a member of Tau 
Beta Pi, Eta Kappa Nu, Sigma Xi, International Speech and 
Communication Association (ICSA), Society for Neuroscience, 
Association for Research in Otolaryngology (ARO), and the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Redmond%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=15018265
https://www.ncbi.nlm.nih.gov/pubmed/?term=Balkin%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=15018265
https://www.ncbi.nlm.nih.gov/pubmed/15018265
https://www.ncbi.nlm.nih.gov/pubmed/15018265


 VOLUME 24, NUMBER 1, 2020  n  LINCOLN LABORATORY JOURNAL 59

THOMAS F. QUATIERI, JAMES R. WILLIAMSON, ADAM C. LAMMERT, KRISTIN J. HEATON, AND JEFFREY S. PALMER

Acoustical Society of America (ASA). He holds a bachelor’s 
degree (summa cum laude) from Tufts University, and master’s, 
electrical engineering, and doctoral degrees from MIT.

James R. Williamson is a member of 
the technical staff in the Human Health 
and Performance Systems Group. His 
work focuses on detecting and modeling 
neurocognitive and physical state through 
the analysis of speech, facial expres-
sions, gait, and body-sensing modalities. 
Prior to joining Lincoln Laboratory, he 

earned a bachelor’s degree in psychology from the University 
of Massachusetts Amherst and a doctoral degree in cognitive 
and neural systems from Boston University. He also served as a 
research assistant professor at Boston University.

Adam C. Lammert was a member of 
the technical staff in the Bioengineering 
Systems and Technologies Group 
beginning in 2015, primarily focusing on 
neurocognitive analysis, motor control 
modeling, and speech signal processing. 
He currently holds the position of assistant 
professor at Worchester Polytechnical 

Institute. From 2006 to 2008, he was lab manager of speech and 
hearing research at the Veterans Affairs Northern California Health 
Care System in Martinez, California. He earned a doctoral degree 
in computer science from the University of Southern California, 
where he was a member of the Signal Analysis and Interpretation 
Laboratory and the Hearing and Communication Neuroscience 
Program at the House Research Institute. He was awarded the 
Raymond H. Stetson Scholarship in Phonetics and Speech 
Science by the Acoustical Society of America in 2013. Prior to 
joining Lincoln Laboratory, he was a visiting assistant professor 
in the Computer Science Department at Swarthmore College. 
He has published more than 45 papers, several of which have 
been awarded special status. He earned a bachelor’s degree in 
cognitive science from Vassar College and a master’s degree in 
computer science from North Carolina State University.

Kristin Heaton joined the Military 
Performance Division of the U.S. Army 
Research Institute of Environmental 
Medicine in Natick, Massachusetts, as 
a research psychologist in 2005. In July 
2019, she took on the role of deputy chief 
in the Military Performance Division and 
currently holds the position of super-

visory research psychologist. She earned a doctoral degree in 
psychology from the University of Maryland, College Park in 
2002. Specializing in the field of neuropsychology, she completed 
her postdoctoral clinical fellowship in neuropsychology with 
the Boston Consortium in Clinical Psychology, a joint program 

of the VA Boston Healthcare System, Boston University, and 
Harvard University. Previously, she was an adjunct research 
assistant professor at Boston University School of Public Health. 
Her research focuses broadly on the development, application, 
and validation of tools and techniques for assessment of neuro-
behavioral health and performance in military operational and 
training environments. Her current research portfolio includes 
studies examining the following: unobtrusive, naturally occurring 
behavioral markers (e.g., speech, facial expression, and physi-
ological responses) for prediction and monitoring of warfighter 
performance (cognitive, mental, physical); the impacts of military 
occupational, environmental, and neurotoxicant (fuel products, 
pesticides) exposures on warfighter neurological health and 
performance outcomes; and novel approaches such as electrical 
brain stimulation for optimizing and enhancing warfighter 
physical, mental, and cognitive performance. She is currently an 
active member of several federal agency (Department of Defense) 
and international (NATO) working groups and committees.

Jeffrey S. Palmer is the leader of 
the Human Health and Performance 
Systems Group at Lincoln Laboratory. 
He has oversight of multiple research 
programs that focus on health, human 
performance, objective neurocognitive 
analytics, and biosensing via wearable, 
ingestible, and implantable devices. In 

2010, he helped to create the first Army War College Fellowship at 
Lincoln Laboratory and the MIT Security Studies Program. He has 
given presentations at international conferences and authored 
book chapters and technical articles on DNA biometrics and 
forensics, biomechanics, cell biology, materials science, soldier 
nanotechnology, biological-chemical defense, polymer science, 
high-energy lasers, microelectronics packaging, wearable 
biomedical sensing in extreme environments, and neurocognitive 
technologies. He has served on editorial boards for journals in 
biomechanics, molecular science, biomedical informatics, and 
biosensors. He has chaired technical conferences for the National 
Science Foundation, Department of Homeland Security, and the 
IEEE. Currently, he is the vice chair (and chair-elect) of the IEEE 
Engineering in Medicine and Biology Society’s (EMBS) Technical 
Committee on Wearable Biomedical Sensors and Systems and 
the EMBS conference editorial board for tissue engineering and 
biomaterials. In addition, he has served as an advisor on senior 
military studies of enhancing health and performance, and led a 
multi-agency U.S. government effort to develop automated rapid 
human DNA analysis capabilities for field biometrics and forensics 
applications. Prior to working at Lincoln Laboratory, he worked 
at research laboratories at IBM and GE, and at the Physical 
Sciences Laboratory at New Mexico State University. He holds a 
bachelor’s degree with a minor in mathematics from New Mexico 
State University, a master’s degree from Rensselaer Polytechnic 
Institute, and a doctorate with a minor in bioengineering from MIT, 
all with majors in mechanical engineering.


	_GoBack

