
Infrastructure Automation

Overview
Commercial industry has been rapidly evolving the way it
builds, operates, and maintains computer infrastructure to
support resilient, scalable systems. This evolution has
resulted in a multitude of benefits, including quicker
development, deployment, and re-deployment cycles for
software. The government has been slow to adopt these
new infrastructure paradigms and continues to use largely
traditional and manual configuration management and
system deployment approaches to manage its servers,
virtual machines (VMs), and related IT infrastructure. The
issue with these older approaches is that creating,
deploying, configuring, maintaining, and recovering systems
is an error-prone process (magnified during crisis), that
consumes a lot of time and involves a lot of repeated effort
across multiple systems.
In order to create a robust infrastructure, leveraging the
industry’s Infrastructure as Code (IaC)1,2, an automated
infrastructure capability and supporting process, is needed.
IaC can be broken down into three categories of tools:
Revision Control, Base Image Management, and
Infrastructure Deployment. This document will provide a
brief overview of these categories and the benefits to
using IaC.

Need
There are a number of undesirable practices and
approaches to infrastructure that relate to the older, more
traditional way of managing systems. Traditionally, DoD
systems have primarily been manually deployed and
maintained. Although the DoD has been adopting various
aspects of automation and efforts like the DevSecOps
Initiative (http://dccscr.dsop.io) are focused on bringing
some of these practices to the DoD, they are in their early
stages. Manual actions are highly error-prone, particularly
during incident response. Surprise disruptions (hardware
failures, environmental or adversarial attack) can result in
long downtimes to rebuild systems. Also, almost all systems
have discrepancies between infrastructure documentation
and implementation that accumulate over time.

Approach
We apply IaC concepts and processes to automate the
management and provisioning of our operational
deployments. IaC is the ability to configure your architecture
using machine-readable files (code) as opposed to a
manual/interactive approach3.
To give an example of this, we use IaC to deploy a
surrogate mission system with security and test monitoring
enclaves into AWS. We use Packer to create our base
images (CentOS 7 hardened images) that define our
common packages, configuration, and users. We use
Terraform to create all the AWS infrastructure, including
virtual private clouds, routing tables, internet gateways,
network access control lists, security groups, subnets, and
VM instances (using the base images). We then use
Ansible to install software and configure each VM instance
based on its role (security monitoring, test monitoring,
disruption, analysis, service, etc.). We use the
following steps.
Step 1: Develop Infrastructure Plan and Code
Develop an initial plan for how mission capability will be
deployed onto the IT resources and give some thought to
how the various repositories will be organized before
developing the infrastructure automation code. The
infrastructure code consists of all the actions needed to
deploy the base infrastructure and configure the systems
within that infrastructure in code form (e.g., networks, VM
instances, identities, access control, etc.). The
programming language used to write the code will depend
on the tools being used to perform the infrastructure
automation. We use Terraform to configure and deploy the
infrastructure components (e.g., networking) and deploy
base VM instances. Terraform interacts with multiple
datacenter infrastructures (e.g., VMWare, AWS, Azure,
etc.). We use Ansible to configure the instances (e.g., OS,
applications, etc.).

1 B. Johnson, "Introduction to Infrastructure as Code,"
https://www.networkcomputing.com/networking/introduction-infrastructure-code
2 M. Zamot, "How to use infrastructure as code,"
https://opensource.com/article/19/7/infrastructure-code
3 “Infrastructure as Code,” https://en.wikipedia.org/wiki/Infrastructure_as_code

Applied Resilience for Mission Systems
Mark Rabe

For more information contact:
ARMS@LL.MIT.EDU

Infrastructure Automation

Step 2: Revision Control
While developing the code, it is important to have a strategy
to manage that code. A revision control system allows for
changes to the infrastructure code to be tracked and
managed over time like any other software. These systems
allow multiple developers to collaborate on the same code
base and revert to previous versions.
Step 3: Base Image Management
Base images (operating system images, container images,
etc.) can be created and tailored (e.g., applying security
controls or other compliance requirements) to the unique
needs of different environments; custom-tailored images
are more trustworthy than existing images from the internet.
We use Hashicorp Packer to build our base images for
VMWare, AWS, and Docker.
Step 4: Infrastructure Deployment
Infrastructure deployment is broken down into two different
stages, described below (see Figure 1). Infrastructure code
will be modularized for reuse across multiple environments
and applications.
Stage 1 (Terraform): deploy base systems and supporting
infrastructure components (networking, security, cloud-
specific elements) to multiple public and private cloud
environments.
Stage 2 (Ansible): configure the systems once deployed,
and reuse across multiple environments or other
deployments. Additional security controls can be applied to
applications on individual systems.

Figure 1. IaC process.
Impact
By prototyping and implementing deployment automation
practices, we are aiming to modernize system-building
practices in the DoD. This modernization improves the
resiliency of the mission systems as it makes them more
understandable and manageable and reduces the time to
re-configure and re-deploy systems.

Infrastructure Code as Documentation. Having the
infrastructure as code allows for the infrastructure to be fully
defined in a readable format and effectively serve as the
ground-truth documentation of the architecture. It also
creates a common view of the infrastructure across all
stakeholders (e.g., administrators, accreditors).
Code Review. Revision control allows for any changes to
the infrastructure code to be reviewed before being applied.
Code Versioning and Tagging. Revision control systems
allow the infrastructure code to be versioned or tagged
when there is a stable release, allowing for easy rollback to
a known good state. This increases the confidence of
infrastructure engineers to make changes to the system.
Base Image Tailoring. Creating base images for
environments allows infrastructure engineers to tailor the
image to different environments with different levels of
security/compliance (e.g., DISA STIGs4).
Base Image Provenance. Creating base images from
scratch allows infrastructure engineers to have more
confidence in their images (no maliciously tampering).
Reusable across Programs/Environments. Codified
infrastructure allows for all or parts of that code to be
shared with other organizations and programs. It also
allows for the same deployment to be deployed to multiple
types of environments (development, testing, and
production) and across multiple classifications.
Rapid Restoration. Rapid deployment enables restoring
the architecture to a known good/clean state or previous
version should an issue arise and also supports resiliency
processes like Chaos Engineering.
Rapid Adaptation. Rapid deployment also enables the
system to be changed/adapted quickly. This allows for
patches/changes to be introduced quickly.
Immutable Servers5. Server immutability prevents drift
from the infrastructure code and what is deployed.

What Should Builders Do
• Codify your IT infrastructure and use Infrastructure as

Code tools to manage and deploy your capabilities
• Manage the infrastructure code in revision control

4 “DISA Security Technical Implementation Guide,” https://public.cyber.mil/stigs/
5 K. Morris, “ImmutableServer,” [Online]. Available:
https://martinfowler.com/bliki/ImmutableServer.html

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
This material is based upon work supported by the United States Air Force under Air
Force Contract No. FA8702- 15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force.

