
100 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

Moving Target Techniques:
Leveraging Uncertainty
for Cyber Defense
Hamed Okhravi, William W. Streilein, and Kevin S. Bauer

Securing critical computer systems
against cyber attacks is a continual struggle
for system managers. Attackers often need
only find one vulnerability (a flaw or bug that

an attacker can exploit to penetrate or disrupt a system)
to successfully compromise systems. Defenders, however,
have the technically difficult task of discovering and fixing
every vulnerability in a complex system, which usually
comprises an operating system, device drivers, numerous
software applications, and hardware components. Within
cyberspace, this imbalance between a simple, one-vulner-
ability attack tactic and a complicated, multipart defense
strategy favors attackers. While defensive applications
have grown significantly in complexity and size over many
years, malicious software, i.e., malware, has remained rel-
atively simple, computationally small, and still effective in
bypassing defensive applications [1].

A major contributing factor to the imbalanced
security of cyberspace is the static nature of systems and
defenses. The same copy of a popular software application
with the same internals developed by a major software
vendor may run on millions of machines. As a result, an
attack designed to infect that software application is likely
to compromise millions of machines. Similarly, many
defensive applications are static; they discover suspicious
inputs by applying a set of rules and checks commonly
used by software built to detect attacks. Therefore, clever
cyber invaders can craft attacks to bypass existing defenses
by analyzing local copies of readily available defensive
applications and then exploiting the weaknesses within
those applications.

Cyber moving target techniques involve
randomizing cyber system components to
reduce the likelihood of successful attacks,
adding dynamics to a system to shorten
attack lifetime, and diversifying otherwise
homogeneous collections of systems to limit
attack damage. A review of five dominant
categories of cyber moving target techniques
assesses their benefits and weaknesses.

»

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 101

HAMED OKHRAVI, WILLIAM W. STREILEIN, AND KEVIN S. BAUER

A promising approach to defense that attempts to
rebalance the cyber landscape is known as cyber moving
target (MT) defense (or just moving target). Moving
target techniques change the static nature of computer
systems to increase both the difficulty and the cost (in
effort, time, and resources) of mounting attacks. Simply
put, these techniques turn systems into moving targets
that will be hard for cyber villains to hit. Defenders using
MT techniques pursue any or all of the following goals:
make computer systems more dynamic by changing their
properties over time, make internals of computer systems
more random and nondeterministic, and make computer
systems more diverse.

Although numerous techniques categorized as MT
have been offered in the academic literature, we are
limiting our overview of dynamic MT techniques to those
in five computer domains—platforms, runtime environ-
ment, software, data, and network. Readers can find a
more detailed discussion of these five categories of MT
techniques in Okhravi et al. [2].

Moving Target Overview
An overview of different components of a computer
system is a good place to start to understand the
domains of MT techniques. For ease of design and
implementation, a computer system (e.g., a desktop or
laptop machine, a mobile device, or a process control

machine in an industrial control system) often consists
of multiple layers of software and hardware. These layers
are commonly referred to as the software stack although
the stack includes the hardware elements as well. Each
layer relies on other layers for its proper operation and
function. Figure 1 presents one representation of such a
layered design. At the very bottom of the software stack
are the hardware components of the machine: the pro-
cessor, the motherboard, the memory cards, and other
peripheral devices and cards, such as the sound card and
video card. Above this layer resides the operating system,
which is responsible for controlling and managing the
hardware components and providing an abstraction of
them to the application. This abstraction is key to the
interoperability and compatibility of the applications
because the vast majority of the applications do not
interact directly with the hardware components; rather,
they use the operating system’s abstraction. The abstrac-
tion layer, which is the interface that the operating system
provides to the application, is sometimes referred to as
the runtime environment. The hardware and operating
system of a machine are collectively called the platform.
Above the operating system reside the applications that
are used to process and present data. The data themselves
and their representation can be considered a layer atop
the application. Finally, many systems do not operate
as isolated devices but, in fact, are connected to other

FIGURE 1. On the right side of the figure is a depiction of the software stack. The layers of the stack address the five different
domains of cyber moving target techniques (explained in text at the figure edges) that are assessed in this article.

DataDynamic data techniques
Change data format or representation

Software application
Dynamic software techniques
Change application code

Runtime environmentDynamic runtime environment techniques
Change execution environment

Operating system
Dynamic platform techniques
Change platform properties

Dynamic network
techniques
Change network
properties and
configurations

Memory NetworkProcessor

102 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

MOVING TARGET TECHNIQUES: LEVERAGING UNCERTAINTY FOR CYBER DEFENSE

machines through a network. In general, five domains of
MT techniques address dynamically changing the above-
mentioned software stack layers.

Dynamic Platform
The dynamic platform domain consists of cyber defen-
sive techniques that dynamically change the properties
of the computing platform. Consider a system that runs
a given application on top of multiple operating systems
and hardware architectures. The application can run on
top of a platform consisting of the Fedora operating system
and x86 processor architecture or a platform consisting of
the FreeBSD operating system and ARM processor archi-
tecture. Such a system can be implemented by compiling
the application for different processor architectures and
employing a platform-independent checkpointing mech-
anism to preserve the current state of the application
during platform changes [3]. This type of system illus-
trates a dynamic platform MT technique. Other examples
of dynamic platform techniques include a voting system
that runs an application on top of different platforms, each
platform voting on the output of the system [4], or a system
that randomizes the operating system’s internals that are
unimportant for the correct functionality of the application.

The major benefit of a dynamic platform technique is
that it can prevent platform-dependent attacks. Crafting
a successful exploit against a system usually requires that
an attacker consider the exact platform of that system. By
varying the computing platform, an MT technique can
mitigate attacks that are platform-dependent. An attacker
can develop a strong attack by incorporating different
exploits against different platforms, but this approach
increases the cost (in time and/or computation complexity)
of developing the attack. Note that dynamic platform
techniques cannot mitigate attacks that target a higher-
level application logic flaw and that do not depend on
the platform. For example, SQL1 injection attacks, which
inject malicious commands into a database application by
leveraging a flaw in the application’s high-level logic, are
typically not mitigated by dynamic platform techniques.

While dynamic platform MT techniques offer the
potential to defeat platform-dependent attacks, these tech-
niques can increase the complexity of the overall system,

1 SQL stands for Structured Query Language, a standardized program-
ming language for requesting information from a database.

are generally difficult to effectively manage, and can
actually be detrimental to security if used inappropriately
[5]. Perhaps the greatest challenge from a system com-
plexity and management perspective is the synchronization
of application state across the set of diverse platforms.
Examples of application states could include information
about open data files, user input from a keyboard or mouse,
or network traffic that needs to be correctly delivered to
a specific running process (while correctly maintaining
connection-specific state in the kernel). Synchronizing
these resources among the dynamic platforms in real time
requires a complex management infrastructure that can
migrate state with speed and agility. Such a management
infrastructure increases system complexity considerably.

Another potential limitation of dynamic platform
techniques is that the use of multiple distinct platforms
can actually increase the system’s attack surface, that is, the
components of the system that are exposed to and could be
targeted by a potential attacker. Suppose that a dynamic
platform MT technique migrates an application between
three platforms: Linux, Windows, and Mac. If the attacker
has an exploit that works on the Windows host, the attacker
simply needs to wait until the application migrates to the
Window host to launch the exploit and compromise the
application. Making the program migration less predict-
able can help, provided that the attacker cannot reliably
guess which platform is running the application.

Dynamic platform techniques are only effective
defenses when the attacker must compromise all platforms
(i.e., an in-series configuration) not just one platform (i.e.,
an in-parallel configuration). If the attack requires a long
time to succeed (a long-duration disruption of service), a
dynamic platform approach can be helpful in thwarting
the attack; for short-duration attacks, that approach can
be detrimental to security because the attacker’s goal may
be accomplished on one platform.

Dynamic Runtime Environment
Techniques in the dynamic runtime environment domain
dynamically change or randomize the abstraction provided
by the operating system to the applications, without hin-
dering any important functions of the system. One of
the most important abstractions in a computer system is
how memory is presented to the applications. For various
reasons, including isolation of different applications, com-
patibility, and interoperability, a memory location that is

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 103

HAMED OKHRAVI, WILLIAM W. STREILEIN, AND KEVIN S. BAUER

presented to an application in most modern computer
systems is not a direct representation of the actual
physical memory. Rather, a redirection is applied by the
operating system, i.e., an abstraction known as the virtual
memory. A well-known dynamic runtime environment
MT technique randomizes what addresses in the virtual
memory are used by the application. The technique is typ-
ically referred to as address space layout randomization
(ASLR) [6] and is implemented in most modern oper-
ating systems, including Linux, Windows, Mac OS X,
Android, and iOS. By randomizing the addresses, ASLR
makes exploit development significantly more difficult for
attackers because they do not know where to place their
malicious code on the system. Other dynamic runtime
environment techniques include those that change the
processor instruction encoding (also called instruction
set randomization) or finer-grained variants of ASLR in
which smaller regions of memory are randomized.

Dynamic runtime environments are among the most
practical and widely deployed MT techniques. Despite the
success of this MT domain, two important weaknesses can
allow an attacker to circumvent the defense. First, ASLR
requires memory secrecy. If the contents of memory are
disclosed or leaked to an attacker, the attacker may be able
to use this information to defeat ASLR. Such memory dis-
closures are possible via separate vulnerabilities, known
as buffer over-read vulnerabilities, in which the contents
of memory are read beyond the allowed boundary, dis-
closing how memory has been randomized. Without strict
memory secrecy, an attacker can circumvent the ASLR
protections to launch code injection or code reuse attacks.
Second, the low granularity of randomization in many
ASLR implementations reduces the overall protection
provided by the technique. For example, in Linux, only the
start location of certain memory regions (e.g., dynamically
linked libraries) is randomized by default, and the execut-
able program code itself is often not compiled with ASLR
support. As such, this section of the program’s memory is
not protected and can be a vector for exploitation.

Dynamic Software
In the dynamic software domain, MT techniques
randomize or diversify the internals of the software appli-
cation. One technique, the multicompiler [7], creates
different versions of software executables (binaries) from
the same source code (e.g., written in C) that perform the

same function. Variations in the versions can arise from
the use of different but equivalent processor instructions
utilized during the compilation process or from the use of
the same instructions utilized in different locations inside
the executable. Note that a given copy of the executable
with a given set of internals may never change, but various
machines in an enterprise may run different executables.
In other words, this technique can create spatial diver-
sity (i.e., diversity among many machines) as opposed
to temporal diversity (i.e., diversity in one machine over
time). The major benefit of dynamic software techniques
is that they mitigate the impact of large-scale attacks. If
an exploit is designed against a given variant of the exe-
cutable, that exploit will have a small chance of working
against other variants of the executable. Hence, an
attacker cannot compromise many machines at once.
This situation is contrary to the current one in which an
attacker develops malware that can successfully compro-
mise many machines running the same target application.
In recent sophisticated breaches, attackers reuse parts of
the benign code of the target application itself to achieve
malicious behavior. Known as code reuse attacks, or
return-oriented programming attacks [8], these attacks
can successfully circumvent existing defenses that detect
and stop foreign pieces of code. By varying the benign
application code, dynamic software techniques can effec-
tively stop code reuse attacks.

Dynamic software techniques often employ spe-
cialized compiler techniques to produce executable
software variants with different and unpredictable
memory layouts. These variants may use padding (adding
meaningless bytes of data) to make the size of memory
regions unpredictable. They also may contain within the
executable code a no-operation (NOP) instruction that
does not perform any operation but can make code reuse
attacks hard to launch because the instruction changes
the location of other instructions.

Dynamic software techniques suffer from a variety
of weaknesses. Recompilation to produce a software
variant requires access to a program’s source code and
is not possible with proprietary, third-party software for
which source code is not made available. Furthermore,
ensuring correct operation of the compiled variant can
be challenging because one cannot simply verify a known
integrity measurement of the executable file to guarantee
that the code has not been (maliciously) modified.

104 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

MOVING TARGET TECHNIQUES: LEVERAGING UNCERTAINTY FOR CYBER DEFENSE

Another drawback of dynamic software methods is
that software is often compiled with special optimization
flags that reduce the space and/or computational com-
plexity of the compiled binary code. An MT technique
that explicitly compiles the software to introduce random-
ness in the memory layout (by randomizing the size and/
or location of objects) may not be compatible with the
space saving or compute-time saving optimization passes
performed by the compiler. Consequently, the dynamic
software is unlikely to maintain the same performance
properties as the ideally optimized compiled code.

In addition, dynamic software techniques that use
execution monitors to instrument and compare multiple
versions of an executable introduce significant perfor-
mance costs. For example, if an MT technique compares
execution for an application that has two variants, there
is at least a twofold performance cost relative to native
execution of the application (in terms of processor,
memory, and input/output utilization). This cost may
be reasonable for protecting one or two applications
for which the highest degree of security is required, but
the cost is likely to be unacceptable for the protection
of all applications running on a host. Techniques in the
dynamic software domain may also be subverted by
information leakage attacks. If attackers can expose how
an executable has been diversified, they can attack it as
if it were not diversified at all.

Dynamic Data
Moving target techniques under the dynamic data
domain change the format, syntax, representation, or
encoding of the application data to make attacks more
difficult. In this domain, the diversity can be temporal
or spatial. For example, to protect a Linux operating
system, a defender could dynamically change the rep-
resentation of the user identifier (UID) that determines
what access rights a user has. This defense is effective
against attempts that seek to increase a user’s access
rights; for example, an attacker may attempt to change
the UID to that of a privileged administrator so that the
attacker can exploit the expanded rights to access sen-
sitive resources. This type of attack is one example of a
larger class known as privilege escalation actions that
can be mitigated by UID randomization.

Dynamic data techniques offer the promise of pro-
tecting data from theft or unauthorized modification, but

these techniques suffer from two important weaknesses.
First, the number of acceptable data encodings is limited.
For example, for encoding binary data either the base64
or the hexadecimal encoding scheme would most likely be
used because there are few other accepted standards for
data encoding. Nonstandardized schemes are certainly
possible, but these may increase the complexity of the
interoperation among system components. Second, the
use of additional data encodings may also increase the
attack surface of the software. For each encoding type, the
software must have the proper parsing code to encode and
decode the data. This additional parsing code itself could
have security-relevant software bugs.

Dynamic Network
Techniques in the dynamic network domain change the
properties of the network to complicate network-based
attacks. One such technique frequently changes the
Internet protocol (IP) addresses of the machines in an
enterprise network [9]. This IP rotation technique can
thwart rapidly propagating worms that use a fixed hit
list of IP addresses to infect a network. Another tech-
nique, known as an overlay network, creates dynamically
changing encrypted tunnels (i.e., encrypted communica-
tion connections over public networks).

Dynamic networks is an appealing class of techniques
to reduce an adversary’s ability to conduct reconnais-
sance on a network, map a defended network, or select
specific hosts for a targeted attack. However, these tech-
niques face two important obstacles to deployment.
First, because many dynamic network techniques lack
a well-articulated threat model, it may be unclear to
network defenders what threat needs to be mitigated and
thus how best to deploy the defensive technique. Consider
a technique that isolates a small group of machines from
the larger network (or Internet). If hosts within the
isolated network can still communicate to hosts beyond
the isolated network, protected hosts may be vulnerable
to any number of client-side attacks that exploit vulner-
abilities within the unprotected hosts’ web browsers or
document viewers. For example, targeted spear phishing
(fraudulent email messages that try to elicit information
such as passwords to Internet accounts) could penetrate
a protected network through the network’s connections
to unprotected hosts. Dynamic network–based MT tech-
niques do not address these types of attacks.

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 105

HAMED OKHRAVI, WILLIAM W. STREILEIN, AND KEVIN S. BAUER

Second, many dynamic network techniques intro-
duce randomization into the fundamental protocols that
are used on the Internet. However, the effectiveness of
this randomization at stopping attacks is unclear. Suppose
an MT technique randomizes network identifiers (such
as an IP address). If service discovery protocols such
as the domain name service (DNS) are used to convert
human-readable domain names to machine-readable
IP addresses, these services may undo any potential
security benefit obtained through the MT technique itself,
provided that the attacker can issue DNS queries.

Summary
One way to understand the benefits of MT techniques is to
look at the steps of a cyber attack that these techniques are
trying to mitigate. To successfully compromise a system, an
attacker must progress through the several phases depicted
in Table 1. The first phase is conducting reconnaissance; an
attacker collects information about the target. The second
phase is accessing the victim; the attacker collects enough
information about the configurations, applications, and
software versions that are running on the target machine
to develop an attack against it. During the third phase, the
attacker develops an exploit against a vulnerability in the
target machine. Next is the launch of the attack, which
may include, for example, sending a malicious network
packet to the target machine, luring the user to click on a
maliciously crafted link, or using a malicious thumb drive.
After the attack is launched and verified, the attacker may
take additional steps to maintain a foothold on the target

machine (i.e., persistence). These phases, together referred
to as the cyber kill chain, are correlated in Table 1 with
the MT technique domain that is aimed at mitigating the
effectiveness of each step.

Evaluating MT Techniques
Because attackers need only exploit the weakest link in
any MT technique to bypass it or render it ineffective, it
is difficult for researchers to evaluate the fundamental
effectiveness of the technique. Lincoln Laboratory
researchers have been developing MT evaluation and
assessment capabilities to further their understanding
of the techniques’ efficacy.

Quantifying Information Leakage Attacks
Although a variety of classes of attacks have been used
against MT techniques, for the sake of brevity in our
discussion, we describe a class of cyber attacks known
as information leakage to illustrate our evaluation capa-
bilities. Information leakage attacks are a crucial class to
consider when one is measuring the effectiveness of MT
techniques because these attacks are widely employed.

Information leakage attacks, through which an
attacker can discover how a system has been random-
ized or diversified, can be achieved in two ways: (1) by
exploiting a vulnerability that forces a system to include
its randomized internals directly in its output, thereby
allowing the attacker to observe those internals (this
type of attack is also referred to as a memory disclosure
attack) or (2) by using remote side-channel attacks, i.e.,

Table 1. Primary Attack Phases Disrupted by Techniques in the Five MT Domains
MT DOMAINS ATTACK PHASES

RECONNAISSANCE ACCESS DEVELOPMENT LAUNCH PERSISTENCE

Dynamic networks

Dynamic platforms

Dynamic runtime
environments

Dynamic software

Dynamic data

106 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

MOVING TARGET TECHNIQUES: LEVERAGING UNCERTAINTY FOR CYBER DEFENSE

ones in which the randomized internals of a system are
not leaked directly through the output but through an
indirect property of the output, such as its timing.

Lincoln Laboratory researchers have discovered
various new classes of side-channel attacks, including
remote timing and fault-analysis attacks (which will be dis-
cussed in the following paragraphs), and have performed
in-depth evaluations of their impact and how much infor-
mation they can reveal to an attacker [10]. These attacks
are particularly important in the context of dynamic
software and runtime environment MT techniques.

Consider the code snippet below:

1 i = 0;
2 while (i < ptr->value)
3 i++;

Attackers can redirect the pointer ptr to a chosen
location in the memory. In such cyber attacks, the
timing of the loop (a sequence of instructions repeated
until the desired result is achieved) will depend on the
byte value at that memory location. If the byte value is
high, the loop takes a long time to terminate; if it is low,
the loop terminates rapidly. By remotely observing these
timing differences, an attacker can infer byte values in
memory, thus undoing the impact of software random-
ization or diversification.

We have evaluated the effectiveness of a remote
timing side-channel attack against Apache, the most
popular web server on the Internet. As the results of the
assessment of this attack illustrate (Figure 2), the cumu-
lative delay in a webpage request that can be observed
by an attacker correlates well with the sensitive byte
values from the diversified software of Apache stored
in memory.

Figure 3 illustrates a more general result for the
amount of information leaked to an attacker via timing
for Linux’s main system library, libc. Here the x-axis
indicates a metric called uncertainty set size (USS),
which measures the uncertainty in attackers’ knowl-
edge of the target system if they are able to observe the
timing information. The y-axis denotes the fraction of
the diversified software’s functions from which attackers
can infer information through timing attacks. The
different lines indicate the number of timing values
observable by attackers.

The figure shows that if attackers can observe just
one timing value for the target server, they can narrow
down 45% of all functions to a set of 10 or smaller
(USS = 10). Note that a USS value of zero indicates
the attackers made a correct identification of an exact
function without any uncertainty. The figure also illus-
trates that by measuring a handful of timing samples,
attackers can infer a lot of information from a diversified
software application, thus negating the effect of random-
ization for the majority of functions.

Side-channel attacks can also be performed by
using fault analysis, i.e., influencing a system to cause an
error that the attacker can examine to gain insight into
the system’s internal operation. For example, the code
snippet below indicates a side-channel attack in which the
attacker can infer on the basis of the output of the applica-
tion whether a byte value is zero or nonzero. If the output
is “SUCCESS,” ptr points to a byte value of nonzero; if the
output is “ERROR,” the byte value is zero.

1 recv(socket, buf, input);
2 if (ptr->value)
3 rv = SUCCESS;
4 else
5 rv = ERROR;
6 send(socket, &rv, length);

C
um

ul
at

iv
e

de
la

y
(m

s)

0

200

400

600

800

1000

Number of webpage requests
0 20 40 60 80 100

0
1
5
10
40
80

120
160
200
240
255

Byte value

FIGURE 2. The data show the the correlation between
cumulative delays in Apache webpage requests and the
byte values stored in memory. By measuring the delay, an
attacker can perform a remote timing attack and nullify the
effectiveness of software diversification.

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 107

HAMED OKHRAVI, WILLIAM W. STREILEIN, AND KEVIN S. BAUER

Figure 4 illustrates the results for the fault-analysis
attack for libc. Similar to timing side-channel attacks,
fault side-channel attacks can leak valuable information to
an attacker. For example, merely knowing the location of
four zero bytes in the entire libc library allows an attacker
to uniquely fingerprint 38% of functions (USS = 0) and
narrow down 70% of the functions to a set of 10 or smaller
(USS = 10), as shown in the figure by the green line on
these points: (x = 0, y = 0.38) and (x = 10, y = 0.7).

To summarize, our findings indicate that MT tech-
niques can be maliciously bypassed using side-channel
attacks. Our evaluations indicate that even a small
number of timing or fault-analysis samples can leak a
significant amount of information to an attacker. These
results suggest that MT techniques must rerandomize
system internals periodically to be resilient against infor-
mation leakage attacks [11].

Practical Considerations
When deciding to deploy an MT technique, system
defenders have many practical issues to consider. They
should understand the potential impact of the MT tech-
nique on the system’s performance. Many MT techniques
offer security against strong adversaries, but incur per-
formance penalties that for some applications could be

prohibitively high. Recognizing the performance require-
ments of the system and the expected performance costs
of the MT technique can help defenders make the right
decision about deploying MT defenses.

Defenders should also understand the effectiveness
of an MT technique against a relevant threat model
before it is deployed. Techniques that have shown high
effectiveness against realistic attack models should be
selected before those that have uncertain benefits or
those that protect against an unrealistic threat. Hence, it
is important to have access to a well-defined attack model
that describes the exact types of attacks that are of concern
and that are relevant to the system being protected.

Finally, MT techniques do not necessarily solve
all security problems; rather, they are best suited to
defending against specific threats. Defenders, therefore,
should understand the composability (i.e., combina-
torial possibilities) of MT and non-MT techniques
so that they can enhance protections against cyber
security threats. For example, defenders may want to
guard against code injection attacks by using ASLR.
But to improve security even more, they might add sig-
nature-based network monitoring to examine network
traffic in real time and drop all packets that appear to
contain code injection payloads.

FIGURE 4. The plots show the amount of information
(about functions) that is leaked to an attacker from libc via
a fault-analysis side-channel attack when various byte loca-
tions are known. Again, the x-axis indicates the uncertainty
of the attacker’s knowledge of the system.

FIGURE 3. The plot shows the fraction of information on
system functions (y-axis) leaked to an attacker from libc via
timing side-channel attacks in which the indicated number
of timing values is known. On the x-axis, the numbers rep-
resent measurements of the uncertainty in the attacker’s
knowledge of the target system.

Fr
ac

tio
n

of
 fu

nc
tio

ns

0
0.1

0.2

0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

Uncertainty set size
20100 30 40 50 60 70

1
2

3
4

All
Timing values known

Fr
ac

tio
n

of
 fu

nc
tio

ns

0
0.1

0.2

0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

Uncertainty set size
20100 30 40 50 60 70

1
2

3
4

All
0 × 00 byte locations known

108 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

MOVING TARGET TECHNIQUES: LEVERAGING UNCERTAINTY FOR CYBER DEFENSE

Future Directions
Future research in MT techniques will take multiple
directions. In designing new techniques or evaluating
existing ones, researchers should analyze whether or
not the additional complexity created by the random-
ization or diversification of the system’s components is
actually exposed to a potential attacker. Many MT tech-
niques create complexity in a system component, but
attackers can avoid or bypass the complexity through
attacks that exploit information leakage or attacks that
work regardless of the specific internals of a compo-
nent (e.g., higher-level logic flaws in the application).
The challenge for defenders, then, is to ensure that the
complexity is not exposed to the system’s operators and
maintainers. Ease of deployment, operation, and main-
tenance is important for widespread deployment of
cyber defensive techniques.

Additional work is needed in the area of evaluation
and assessment of MT techniques. For cyber security to
transition from a craft to a science, it is important for
researchers to have concrete, meaningful, and repeatable
evaluation methods. An imperative part of evaluation
is the development of metrics that define measurement
units of security and that can be used to evaluate the
absolute security offered by an MT technique and to com-
paratively assess it against other techniques. Meaningful
and objective evaluation of MT techniques can benefit
from a variety of approaches, including abstract analysis,
modeling and simulation, test bed experimentation, and
real-world measurements in operational systems.

Finally, an important future direction for MT
research is the examination, study, and evaluation of
the composability of MT techniques with other MT and
non-MT defenses. Cyber defenses in general, and MT
techniques specifically, do not provide a “silver bullet,”
protecting against every known cyber attack. Therefore,
in practice, multiple defenses should be combined to
provide adequate protection of systems. Understanding
the impact of these defenses on each other, as well as the
composability challenges arising from these defenses, is
an open research area. Other important areas for further
study include determining if a defense will improve,
co-exist, or conflict with another defense and inves-
tigating how a defense is influenced by second-order
effects, such as an attacker’s reactions to the presence of
a new MT technique.

Acknowledgments
The authors gratefully thank the following colleagues at
Lincoln Laboratory for their contributions and support to
the research on moving target techniques: David Bigelow,
Kevin Carter, Robert Cunningham, Veer Dedhia, Thomas
Hobson, Mark Rabe, James Riordan, Robert Rudd, and
Richard Skowyra.

References
1. D. Kaufman, An Analytical Framework for Cyber Security,

Defense Advanced Research Projects Agency, 2011, available
at www.dtic.mil/dtic/tr/fulltext/u2/a552026.pdf.

2. H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein,
“Finding Focus in the Blur of Moving Target Techniques,”
IEEE Security & Privacy, vol. 12, no. 2, 2014, pp.16–26.

3. H. Okhravi, A. Comella, E. Robinson, and J. Haines,
“Creating a Cyber Moving Target for Critical Infrastructure
Applications Using Platform Diversity,” International
Journal of Critical Infrastructure Protection, vol. 5, no. 1,
2012, pp. 30–39.

4. B. Salamat, A. Gal, T. Jackson, K. Manivannan, G.
Wagner, and M. Franz, “Multi-variant Program Execution:
Using Multi-core Systems to Defuse Buffer-Overflow
Vulnerabilities,” Proceedings of the IEEE International
Conference on Complex, Intelligent and Software Intensive
Systems, 2008, pp. 843–848.

5. H. Okhravi, J. Riordan, and K. Carter, “Quantitative
Evaluation of Dynamic Platform Techniques as a Defensive
Mechanism,” pp. 405-425 in Research in Attacks, Intrusions
and Defenses, Lecture Notes in Computer Science, A. Stavrou,
H. Bos, and G. Portokalidis eds. Cham, Switzerland:
Springer International Publishing, 2014.

6. PaX Team, “PaX Address Space Layout Randomization
(ASLR),” 2003, available at https://pax.grsecurity.net/docs/
aslr.txt.

7. M. Franz, “E Unibus Pluram: Massive-Scale Software
Diversity as a Defense Mechanism,” Proceedings of the 2010
Workshop on New Security Paradigms, 2010, pp. 7–16.

8. H. Shacham, “The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86),”
Proceedings of the 14th ACM Conference on Computer and
Communications Security, 2007, pp. 552–561.

9. S. Antonatos, P. Akritidis, E.P. Markatos, and K.G.
Anagnostakis, “Defending Against Hitlist Worms Using
Network Address Space Randomization,” Computer
Networks: The International Journal of Computer and
Telecommunications Networking, vol. 51, no. 12, 2007,
pp. 3471–3490.

10. J. Seibert, H. Okhravi, and E. Söderström, “Information
Leaks Without Memory Disclosures: Remote Side Channel
Attacks on Diversified Code,” Proceedings of the 21st ACM
SIGSAC Conference on Computer and Communications
Security, 2014, pp. 54–65.

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 109

HAMED OKHRAVI, WILLIAM W. STREILEIN, AND KEVIN S. BAUER

11. D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and
H.Okhravi, “Timely Rerandomization for Mitigating
Memory Disclosures,” Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
2015, pp. 268–279.

About the Authors
Hamed Okhravi is a senior staff member
in the Cyber Analytics and Decision
Systems Group at Lincoln Laboratory. He
leads programs and conducts research in
the area of systems security. His research
interests include cyber security, science of
security, security metrics, and operating
systems. Currently, he is developing cyber

attack resilient systems and networks, focusing on analyzing and
creating cyber moving target techniques and resilient systems.
He has served as a program committee member for a number of
academic conferences and workshops, including the Association
for Computing Machinery’s (ACM) Conference on Computer and
Communications Security, International Symposium on Research
in Attacks, Intrusions, and Defenses, ACM Workshop on Moving
Target Defense, and ACM SafeConfig Workshop. He is the recip-
ient of a 2014 MIT Lincoln Laboratory Early Career Technical
Achievement Award and 2015 MIT Lincoln Laboratory Team
Award for his work on cyber moving target research. He holds
master’s and doctoral degrees in electrical and computer engi-
neering from the University of Illinois at Urbana-Champaign.

William W. Streilein is the leader of the
Cyber Analytics and Decision Systems
Group. He initiates and manages research
and development programs in cyber
security. His current research interests
include the application of machine learning
and modeling techniques to problems in
cyber decision making, investigation and

development of quantitative metrics for cyber security, exploration
of moving target techniques to improve the resiliency of cyber and
cyber-enabled systems, and exploration of automated techniques
for discovering ways government missions map to a cyber infra-
structure and for assessing risk to mission systems. He holds a
bachelor’s degree in mathematics from Austin College, a master’s
degree in electronic and computer music from the University
of Miami, and a doctorate in cognitive and neural systems from
Boston University. He is a senior member of the IEEE.

Kevin S. Bauer was a member of the
technical staff in the Laboratory’s Cyber
Systems and Technology Group from
2012 to 2015. His research interests
included privacy-enhancing technologies,
low-latency anonymous communications,
cyber security experimentation, and
network security. He holds a bachelor’s

degree in computer science from the University of Denver and
a doctoral degree in computer science from the University of
Colorado–Boulder.

