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Securing critical computer systems 
against cyber attacks is a continual struggle 
for system managers. Attackers often need 
only find one vulnerability (a flaw or bug that 

an attacker can exploit to penetrate or disrupt a system) 
to successfully compromise systems. Defenders, however, 
have the technically difficult task of discovering and fixing 
every vulnerability in a complex system, which usually 
comprises an operating system, device drivers, numerous 
software applications, and hardware components. Within 
cyberspace, this imbalance between a simple, one-vulner-
ability attack tactic and a complicated, multipart defense 
strategy favors attackers. While defensive applications 
have grown significantly in complexity and size over many 
years, malicious software, i.e., malware, has remained rel-
atively simple, computationally small, and still effective in 
bypassing defensive applications [1]. 

A major contributing factor to the imbalanced 
security of cyberspace is the static nature of systems and 
defenses. The same copy of a popular software application 
with the same internals developed by a major software 
vendor may run on millions of machines. As a result, an 
attack designed to infect that software application is likely 
to compromise millions of machines. Similarly, many 
defensive applications are static; they discover suspicious 
inputs by applying a set of rules and checks commonly 
used by software built to detect attacks. Therefore, clever 
cyber invaders can craft attacks to bypass existing defenses 
by analyzing local copies of readily available defensive 
applications and then exploiting the weaknesses within 
those applications.

Cyber moving target techniques involve 
randomizing cyber system components to 
reduce the likelihood of successful attacks, 
adding dynamics to a system to shorten 
attack lifetime, and diversifying otherwise 
homogeneous collections of systems to limit 
attack damage. A review of five dominant 
categories of cyber moving target techniques 
assesses their benefits and weaknesses.

»
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A promising approach to defense that attempts to 
rebalance the cyber landscape is known as cyber moving 
target (MT) defense (or just moving target). Moving 
target techniques change the static nature of computer 
systems to increase both the difficulty and the cost (in 
effort, time, and resources) of mounting attacks. Simply 
put, these techniques turn systems into moving targets 
that will be hard for cyber villains to hit. Defenders using 
MT techniques pursue any or all of the following goals: 
make computer systems more dynamic by changing their 
properties over time, make internals of computer systems 
more random and nondeterministic, and make computer 
systems more diverse. 

Although numerous techniques categorized as MT 
have been offered in the academic literature, we are 
limiting our overview of dynamic MT techniques to those 
in five computer domains—platforms, runtime environ-
ment, software, data, and network. Readers can find a 
more detailed discussion of these five categories of MT 
techniques in Okhravi et al. [2]. 

Moving Target Overview
An overview of different components of a computer 
system is a good place to start to understand the 
domains of MT techniques. For ease of design and 
implementation, a computer system (e.g., a desktop or 
laptop machine, a mobile device, or a process control 

machine in an industrial control system) often consists 
of multiple layers of software and hardware. These layers 
are commonly referred to as the software stack although 
the stack includes the hardware elements as well. Each 
layer relies on other layers for its proper operation and 
function. Figure 1 presents one representation of such a 
layered design. At the very bottom of the software stack 
are the hardware components of the machine: the pro-
cessor, the motherboard, the memory cards, and other 
peripheral devices and cards, such as the sound card and 
video card. Above this layer resides the operating system, 
which is responsible for controlling and managing the 
hardware components and providing an abstraction of 
them to the application. This abstraction is key to the 
interoperability and compatibility of the applications 
because the vast majority of the applications do not 
interact directly with the hardware components; rather, 
they use the operating system’s abstraction. The abstrac-
tion layer, which is the interface that the operating system 
provides to the application, is sometimes referred to as 
the runtime environment. The hardware and operating 
system of a machine are collectively called the platform. 
Above the operating system reside the applications that 
are used to process and present data. The data themselves 
and their representation can be considered a layer atop 
the application. Finally, many systems do not operate 
as isolated devices but, in fact, are connected to other 

FIGURE 1. On the right side of the figure is a depiction of the software stack. The layers of the stack address the five different 
domains of cyber moving target techniques (explained in text at the figure edges) that are assessed in this article.

DataDynamic data techniques
Change data format or representation

Software application
Dynamic software techniques
Change application code

Runtime environmentDynamic runtime environment techniques
Change execution environment

Operating system
Dynamic platform techniques
Change platform properties

Dynamic network
techniques
Change network 
properties and 
configurations

Memory NetworkProcessor



102 LINCOLN LABORATORY JOURNAL  n  VOLUME 22, NUMBER 1, 2016

MOVING TARGET TECHNIQUES: LEVERAGING UNCERTAINTY FOR CYBER DEFENSE

machines through a network. In general, five domains of 
MT techniques address dynamically changing the above-
mentioned software stack layers.

Dynamic Platform
The dynamic platform domain consists of cyber defen-
sive techniques that dynamically change the properties 
of the computing platform. Consider a system that runs 
a given application on top of multiple operating systems 
and hardware architectures. The application can run on 
top of a platform consisting of the Fedora operating system 
and x86 processor architecture or a platform consisting of 
the FreeBSD operating system and ARM processor archi-
tecture. Such a system can be implemented by compiling 
the application for different processor architectures and 
employing a platform-independent checkpointing mech-
anism to preserve the current state of the application 
during platform changes [3]. This type of system illus-
trates a dynamic platform MT technique. Other examples 
of dynamic platform techniques include a voting system 
that runs an application on top of different platforms, each 
platform voting on the output of the system [4], or a system 
that randomizes the operating system’s internals that are 
unimportant for the correct functionality of the application.

The major benefit of a dynamic platform technique is 
that it can prevent platform-dependent attacks. Crafting 
a successful exploit against a system usually requires that 
an attacker consider the exact platform of that system. By 
varying the computing platform, an MT technique can 
mitigate attacks that are platform-dependent. An attacker 
can develop a strong attack by incorporating different 
exploits against different platforms, but this approach 
increases the cost (in time and/or computation complexity) 
of developing the attack. Note that dynamic platform 
techniques cannot mitigate attacks that target a higher- 
level application logic flaw and that do not depend on 
the platform. For example, SQL1 injection attacks, which 
inject malicious commands into a database application by 
leveraging a flaw in the application’s high-level logic, are 
typically not mitigated by dynamic platform techniques.

While dynamic platform MT techniques offer the 
potential to defeat platform-dependent attacks, these tech-
niques can increase the complexity of the overall system, 

1 SQL stands for Structured Query Language, a standardized program-
ming language for requesting information from a database.

are generally difficult to effectively manage, and can 
actually be detrimental to security if used inappropriately 
[5]. Perhaps the greatest challenge from a system com-
plexity and management perspective is the synchronization 
of application state across the set of diverse platforms. 
Examples of application states could include information 
about open data files, user input from a keyboard or mouse, 
or network traffic that needs to be correctly delivered to 
a specific running process (while correctly maintaining 
connection-specific state in the kernel). Synchronizing 
these resources among the dynamic platforms in real time 
requires a complex management infrastructure that can 
migrate state with speed and agility. Such a management 
infrastructure increases system complexity considerably. 

Another potential limitation of dynamic platform 
techniques is that the use of multiple distinct platforms 
can actually increase the system’s attack surface, that is, the 
components of the system that are exposed to and could be 
targeted by a potential attacker. Suppose that a dynamic 
platform MT technique migrates an application between 
three platforms: Linux, Windows, and Mac. If the attacker 
has an exploit that works on the Windows host, the attacker 
simply needs to wait until the application migrates to the 
Window host to launch the exploit and compromise the 
application. Making the program migration less predict-
able can help, provided that the attacker cannot reliably 
guess which platform is running the application. 

Dynamic platform techniques are only effective 
defenses when the attacker must compromise all platforms 
(i.e., an in-series configuration) not just one platform (i.e., 
an in-parallel configuration). If the attack requires a long 
time to succeed (a long-duration disruption of service), a 
dynamic platform approach can be helpful in thwarting 
the attack; for short-duration attacks, that approach can 
be detrimental to security because the attacker’s goal may 
be accomplished on one platform.

Dynamic Runtime Environment
Techniques in the dynamic runtime environment domain 
dynamically change or randomize the abstraction provided 
by the operating system to the applications, without hin-
dering any important functions of the system. One of 
the most important abstractions in a computer system is 
how memory is presented to the applications. For various 
reasons, including isolation of different applications, com-
patibility, and interoperability, a memory location that is 
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presented to an application in most modern computer 
systems is not a direct representation of the actual 
physical memory. Rather, a redirection is applied by the 
operating system, i.e., an abstraction known as the virtual 
memory. A well-known dynamic runtime environment 
MT technique randomizes what addresses in the virtual 
memory are used by the application. The technique is typ-
ically referred to as address space layout randomization 
(ASLR) [6] and is implemented in most modern oper-
ating systems, including Linux, Windows, Mac OS X, 
Android, and iOS. By randomizing the addresses, ASLR 
makes exploit development significantly more difficult for 
attackers because they do not know where to place their 
malicious code on the system. Other dynamic runtime 
environment techniques include those that change the 
processor instruction encoding (also called instruction 
set randomization) or finer-grained variants of ASLR in 
which smaller regions of memory are randomized.

Dynamic runtime environments are among the most 
practical and widely deployed MT techniques. Despite the 
success of this MT domain, two important weaknesses can 
allow an attacker to circumvent the defense. First, ASLR 
requires memory secrecy. If the contents of memory are 
disclosed or leaked to an attacker, the attacker may be able 
to use this information to defeat ASLR. Such memory dis-
closures are possible via separate vulnerabilities, known 
as buffer over-read vulnerabilities, in which the contents 
of memory are read beyond the allowed boundary, dis-
closing how memory has been randomized. Without strict 
memory secrecy, an attacker can circumvent the ASLR 
protections to launch code injection or code reuse attacks. 
Second, the low granularity of randomization in many 
ASLR implementations reduces the overall protection 
provided by the technique. For example, in Linux, only the 
start location of certain memory regions (e.g., dynamically 
linked libraries) is randomized by default, and the execut-
able program code itself is often not compiled with ASLR 
support. As such, this section of the program’s memory is 
not protected and can be a vector for exploitation.

Dynamic Software
In the dynamic software domain, MT techniques 
randomize or diversify the internals of the software appli-
cation. One technique, the multicompiler [7], creates 
different versions of software executables (binaries) from 
the same source code (e.g., written in C) that perform the 

same function. Variations in the versions can arise from 
the use of different but equivalent processor instructions 
utilized during the compilation process or from the use of 
the same instructions utilized in different locations inside 
the executable. Note that a given copy of the executable 
with a given set of internals may never change, but various 
machines in an enterprise may run different executables. 
In other words, this technique can create spatial diver-
sity (i.e., diversity among many machines) as opposed 
to temporal diversity (i.e., diversity in one machine over 
time). The major benefit of dynamic software techniques 
is that they mitigate the impact of large-scale attacks. If 
an exploit is designed against a given variant of the exe-
cutable, that exploit will have a small chance of working 
against other variants of the executable. Hence, an 
attacker cannot compromise many machines at once. 
This situation is contrary to the current one in which an 
attacker develops malware that can successfully compro-
mise many machines running the same target application. 
In recent sophisticated breaches, attackers reuse parts of 
the benign code of the target application itself to achieve 
malicious behavior. Known as code reuse attacks, or 
return-oriented programming attacks [8], these attacks 
can successfully circumvent existing defenses that detect 
and stop foreign pieces of code. By varying the benign 
application code, dynamic software techniques can effec-
tively stop code reuse attacks.

Dynamic software techniques often employ spe-
cialized compiler techniques to produce executable 
software variants with different and unpredictable 
memory layouts. These variants may use padding (adding 
meaningless bytes of data) to make the size of memory 
regions unpredictable. They also may contain within the 
executable code a no-operation (NOP) instruction that 
does not perform any operation but can make code reuse 
attacks hard to launch because the instruction changes 
the location of other instructions. 

Dynamic software techniques suffer from a variety 
of weaknesses. Recompilation to produce a software 
variant requires access to a program’s source code and 
is not possible with proprietary, third-party software for 
which source code is not made available. Furthermore, 
ensuring correct operation of the compiled variant can 
be challenging because one cannot simply verify a known 
integrity measurement of the executable file to guarantee 
that the code has not been (maliciously) modified. 
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Another drawback of dynamic software methods is 
that software is often compiled with special optimization 
flags that reduce the space and/or computational com-
plexity of the compiled binary code. An MT technique 
that explicitly compiles the software to introduce random-
ness in the memory layout (by randomizing the size and/
or location of objects) may not be compatible with the 
space saving or compute-time saving optimization passes 
performed by the compiler. Consequently, the dynamic 
software is unlikely to maintain the same performance 
properties as the ideally optimized compiled code.

In addition, dynamic software techniques that use 
execution monitors to instrument and compare multiple 
versions of an executable introduce significant perfor-
mance costs. For example, if an MT technique compares 
execution for an application that has two variants, there 
is at least a twofold performance cost relative to native 
execution of the application (in terms of processor, 
memory, and input/output utilization). This cost may 
be reasonable for protecting one or two applications 
for which the highest degree of security is required, but 
the cost is likely to be unacceptable for the protection 
of all applications running on a host. Techniques in the 
dynamic software domain may also be subverted by 
information leakage attacks. If attackers can expose how 
an executable has been diversified, they can attack it as 
if it were not diversified at all. 

Dynamic Data
Moving target techniques under the dynamic data 
domain change the format, syntax, representation, or 
encoding of the application data to make attacks more 
difficult. In this domain, the diversity can be temporal 
or spatial. For example, to protect a Linux operating 
system, a defender could dynamically change the rep-
resentation of the user identifier (UID) that determines 
what access rights a user has. This defense is effective 
against attempts that seek to increase a user’s access 
rights; for example, an attacker may attempt to change 
the UID to that of a privileged administrator so that the 
attacker can exploit the expanded rights to access sen-
sitive resources. This type of attack is one example of a 
larger class known as privilege escalation actions that 
can be mitigated by UID randomization.

Dynamic data techniques offer the promise of pro-
tecting data from theft or unauthorized modification, but 

these techniques suffer from two important weaknesses. 
First, the number of acceptable data encodings is limited. 
For example, for encoding binary data either the base64 
or the hexadecimal encoding scheme would most likely be 
used because there are few other accepted standards for 
data encoding. Nonstandardized schemes are certainly 
possible, but these may increase the complexity of the 
interoperation among system components. Second, the 
use of additional data encodings may also increase the 
attack surface of the software. For each encoding type, the 
software must have the proper parsing code to encode and 
decode the data. This additional parsing code itself could 
have security-relevant software bugs. 

Dynamic Network
Techniques in the dynamic network domain change the 
properties of the network to complicate network-based 
attacks. One such technique frequently changes the 
Internet protocol (IP) addresses of the machines in an 
enterprise network [9]. This IP rotation technique can 
thwart rapidly propagating worms that use a fixed hit 
list of IP addresses to infect a network. Another tech-
nique, known as an overlay network, creates dynamically 
changing encrypted tunnels (i.e., encrypted communica-
tion connections over public networks).

Dynamic networks is an appealing class of techniques 
to reduce an adversary’s ability to conduct reconnais-
sance on a network, map a defended network, or select 
specific hosts for a targeted attack. However, these tech-
niques face two important obstacles to deployment. 
First, because many dynamic network techniques lack 
a well-articulated threat model, it may be unclear to 
network defenders what threat needs to be mitigated and 
thus how best to deploy the defensive technique. Consider 
a technique that isolates a small group of machines from 
the larger network (or Internet). If hosts within the 
isolated network can still communicate to hosts beyond 
the isolated network, protected hosts may be vulnerable 
to any number of client-side attacks that exploit vulner-
abilities within the unprotected hosts’ web browsers or 
document viewers. For example, targeted spear phishing 
(fraudulent email messages that try to elicit information 
such as passwords to Internet accounts) could penetrate 
a protected network through the network’s connections 
to unprotected hosts. Dynamic network–based MT tech-
niques do not address these types of attacks.



 VOLUME 22, NUMBER 1, 2016  n  LINCOLN LABORATORY JOURNAL 105

HAMED OKHRAVI, WILLIAM W. STREILEIN, AND KEVIN S. BAUER 

Second, many dynamic network techniques intro-
duce randomization into the fundamental protocols that 
are used on the Internet. However, the effectiveness of 
this randomization at stopping attacks is unclear. Suppose 
an MT technique randomizes network identifiers (such 
as an IP address). If service discovery protocols such 
as the domain name service (DNS) are used to convert 
human-readable domain names to machine-readable 
IP addresses, these services may undo any potential 
security benefit obtained through the MT technique itself, 
provided that the attacker can issue DNS queries.

Summary
One way to understand the benefits of MT techniques is to 
look at the steps of a cyber attack that these techniques are 
trying to mitigate. To successfully compromise a system, an 
attacker must progress through the several phases depicted 
in Table 1. The first phase is conducting reconnaissance; an 
attacker collects information about the target. The second 
phase is accessing the victim; the attacker collects enough 
information about the configurations, applications, and 
software versions that are running on the target machine 
to develop an attack against it. During the third phase, the 
attacker develops an exploit against a vulnerability in the 
target machine. Next is the launch of the attack, which 
may include, for example, sending a malicious network 
packet to the target machine, luring the user to click on a 
maliciously crafted link, or using a malicious thumb drive. 
After the attack is launched and verified, the attacker may 
take additional steps to maintain a foothold on the target 

machine (i.e., persistence). These phases, together referred 
to as the cyber kill chain, are correlated in Table 1 with 
the MT technique domain that is aimed at mitigating the 
effectiveness of each step.

Evaluating MT Techniques 
Because attackers need only exploit the weakest link in 
any MT technique to bypass it or render it ineffective, it 
is difficult for researchers to evaluate the fundamental 
effectiveness of the technique. Lincoln Laboratory 
researchers have been developing MT evaluation and 
assessment capabilities to further their understanding 
of the techniques’ efficacy.

Quantifying Information Leakage Attacks 
Although a variety of classes of attacks have been used 
against MT techniques, for the sake of brevity in our 
discussion, we describe a class of cyber attacks known 
as information leakage to illustrate our evaluation capa-
bilities. Information leakage attacks are a crucial class to 
consider when one is measuring the effectiveness of MT 
techniques because these attacks are widely employed. 

Information leakage attacks, through which an 
attacker can discover how a system has been random-
ized or diversified, can be achieved in two ways: (1) by 
exploiting a vulnerability that forces a system to include 
its randomized internals directly in its output, thereby 
allowing the attacker to observe those internals (this 
type of attack is also referred to as a memory disclosure 
attack) or (2) by using remote side-channel attacks, i.e., 

Table 1. Primary Attack Phases Disrupted by Techniques in the Five MT Domains
MT DOMAINS ATTACK PHASES

RECONNAISSANCE ACCESS DEVELOPMENT LAUNCH PERSISTENCE

Dynamic networks  

Dynamic platforms   

Dynamic runtime 
environments  

Dynamic software  

Dynamic data  
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ones in which the randomized internals of a system are 
not leaked directly through the output but through an 
indirect property of the output, such as its timing.

Lincoln Laboratory researchers have discovered 
various new classes of side-channel attacks, including 
remote timing and fault-analysis attacks (which will be dis-
cussed in the following paragraphs), and have performed 
in-depth evaluations of their impact and how much infor-
mation they can reveal to an attacker [10]. These attacks 
are particularly important in the context of dynamic 
software and runtime environment MT techniques.

Consider the code snippet below:

1 i = 0; 
2 while (i < ptr->value) 
3  i++;

Attackers can redirect the pointer ptr to a chosen 
location in the memory. In such cyber attacks, the 
timing of the loop (a sequence of instructions repeated 
until the desired result is achieved) will depend on the 
byte value at that memory location. If the byte value is 
high, the loop takes a long time to terminate; if it is low, 
the loop terminates rapidly. By remotely observing these 
timing differences, an attacker can infer byte values in 
memory, thus undoing the impact of software random-
ization or diversification. 

We have evaluated the effectiveness of a remote 
timing side-channel attack against Apache, the most 
popular web server on the Internet. As the results of the 
assessment of this attack illustrate (Figure 2), the cumu-
lative delay in a webpage request that can be observed 
by an attacker correlates well with the sensitive byte 
values from the diversified software of Apache stored 
in memory.

Figure 3 illustrates a more general result for the 
amount of information leaked to an attacker via timing 
for Linux’s main system library, libc. Here the x-axis 
indicates a metric called uncertainty set size (USS), 
which measures the uncertainty in attackers’ knowl-
edge of the target system if they are able to observe the 
timing information. The y-axis denotes the fraction of 
the diversified software’s functions from which attackers 
can infer information through timing attacks. The 
different lines indicate the number of timing values 
observable by attackers. 

The figure shows that if attackers can observe just 
one timing value for the target server, they can narrow 
down 45% of all functions to a set of 10 or smaller 
(USS = 10). Note that a USS value of zero indicates 
the attackers made a correct identification of an exact 
function without any uncertainty. The figure also illus-
trates that by measuring a handful of timing samples, 
attackers can infer a lot of information from a diversified 
software application, thus negating the effect of random-
ization for the majority of functions. 

Side-channel attacks can also be performed by 
using fault analysis, i.e., influencing a system to cause an 
error that the attacker can examine to gain insight into 
the system’s internal operation. For example, the code 
snippet below indicates a side-channel attack in which the 
attacker can infer on the basis of the output of the applica-
tion whether a byte value is zero or nonzero. If the output 
is “SUCCESS,” ptr points to a byte value of nonzero; if the 
output is “ERROR,” the byte value is zero.

1 recv(socket, buf, input); 
2 if (ptr->value)
3  rv = SUCCESS; 
4 else 
5  rv = ERROR; 
6 send(socket, &rv, length);
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FIGURE 2. The data show the the correlation between 
cumulative delays in Apache webpage requests and the 
byte values stored in memory. By measuring the delay, an 
attacker can perform a remote timing attack and nullify the 
effectiveness of software diversification.
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Figure 4 illustrates the results for the fault-analysis 
attack for libc. Similar to timing side-channel attacks, 
fault side-channel attacks can leak valuable information to 
an attacker. For example, merely knowing the location of 
four zero bytes in the entire libc library allows an attacker 
to uniquely fingerprint 38% of functions (USS = 0) and 
narrow down 70% of the functions to a set of 10 or smaller 
(USS = 10), as shown in the figure by the green line on 
these points: (x = 0, y = 0.38) and (x = 10, y = 0.7).

To summarize, our findings indicate that MT tech-
niques can be maliciously bypassed using side-channel 
attacks. Our evaluations indicate that even a small 
number of timing or fault-analysis samples can leak a 
significant amount of information to an attacker. These 
results suggest that MT techniques must rerandomize 
system internals periodically to be resilient against infor-
mation leakage attacks [11].

Practical Considerations
When deciding to deploy an MT technique, system 
defenders have many practical issues to consider. They 
should understand the potential impact of the MT tech-
nique on the system’s performance. Many MT techniques 
offer security against strong adversaries, but incur per-
formance penalties that for some applications could be 

prohibitively high. Recognizing the performance require-
ments of the system and the expected performance costs 
of the MT technique can help defenders make the right 
decision about deploying MT defenses.

Defenders should also understand the effectiveness 
of an MT technique against a relevant threat model 
before it is deployed. Techniques that have shown high 
effectiveness against realistic attack models should be 
selected before those that have uncertain benefits or 
those that protect against an unrealistic threat. Hence, it 
is important to have access to a well-defined attack model 
that describes the exact types of attacks that are of concern 
and that are relevant to the system being protected.

Finally, MT techniques do not necessarily solve 
all security problems; rather, they are best suited to 
defending against specific threats. Defenders, therefore, 
should understand the composability (i.e., combina-
torial possibilities) of MT and non-MT techniques 
so that they can enhance protections against cyber 
security threats. For example, defenders may want to 
guard against code injection attacks by using ASLR. 
But to improve security even more, they might add sig-
nature-based network monitoring to examine network 
traffic in real time and drop all packets that appear to 
contain code injection payloads.

FIGURE 4. The plots show the amount of information 
(about functions) that is leaked to an attacker from libc via 
a fault-analysis side-channel attack when various byte loca-
tions are known. Again, the x-axis indicates the uncertainty 
of the attacker’s knowledge of the system.

FIGURE 3. The plot shows the fraction of information on 
system functions (y-axis) leaked to an attacker from libc via 
timing side-channel attacks in which the indicated number 
of timing values is known. On the x-axis, the numbers rep-
resent measurements of the uncertainty in the attacker’s 
knowledge of the target system.
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Future Directions
Future research in MT techniques will take multiple 
directions. In designing new techniques or evaluating 
existing ones, researchers should analyze whether or 
not the additional complexity created by the random-
ization or diversification of the system’s components is 
actually exposed to a potential attacker. Many MT tech-
niques create complexity in a system component, but 
attackers can avoid or bypass the complexity through 
attacks that exploit information leakage or attacks that 
work regardless of the specific internals of a compo-
nent (e.g., higher-level logic flaws in the application). 
The challenge for defenders, then, is to ensure that the 
complexity is not exposed to the system’s operators and 
maintainers. Ease of deployment, operation, and main-
tenance is important for widespread deployment of 
cyber defensive techniques. 

Additional work is needed in the area of evaluation 
and assessment of MT techniques. For cyber security to 
transition from a craft to a science, it is important for 
researchers to have concrete, meaningful, and repeatable 
evaluation methods. An imperative part of evaluation 
is the development of metrics that define measurement 
units of security and that can be used to evaluate the 
absolute security offered by an MT technique and to com-
paratively assess it against other techniques. Meaningful 
and objective evaluation of MT techniques can benefit 
from a variety of approaches, including abstract analysis, 
modeling and simulation, test bed experimentation, and 
real-world measurements in operational systems.

Finally, an important future direction for MT 
research is the examination, study, and evaluation of 
the composability of MT techniques with other MT and 
non-MT defenses. Cyber defenses in general, and MT 
techniques specifically, do not provide a “silver bullet,” 
protecting against every known cyber attack. Therefore, 
in practice, multiple defenses should be combined to 
provide adequate protection of systems. Understanding 
the impact of these defenses on each other, as well as the 
composability challenges arising from these defenses, is 
an open research area. Other important areas for further 
study include determining if a defense will improve, 
co-exist, or conflict with another defense and inves-
tigating how a defense is influenced by second-order 
effects, such as an attacker’s reactions to the presence of 
a new MT technique.
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