
 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 31

Network Discovery with
Multi-intelligence Sources
Michael J. Yee, Scott Philips, Gary R. Condon, Peter B. Jones, Edward K. Kao,

Steven T. Smith, Christian C. Anderson, and Frederick R. Waugh

As early as 2002, the U.S. government
was seeking a courier believed to be con-
nected to Osama bin Laden. The courier
was known as Abu Ahmed al-Kuwaiti,

and his identity had been confirmed by more than one
captured high-level al-Qaeda operative. In 2010, a tele-
phone wiretap of a suspect led intelligence analysts to al-
Kuwaiti. On the basis of this connection, al-Kuwaiti was
eventually located in August 2010 and was tracked to a
compound near Abottabad, Pakistan. After intelligence
analysts gathered corroborating evidence, U.S. Navy
SEALs raided the compound, and Osama bin Laden was
found and killed.

Working from tips and cues, such as that of al-
Kuwaiti, and tracking them back through network
connections created by communications, personal move-
ment, and monetary transactions, intelligence analysts
are able to uncover criminal and terrorist networks. By
following the connections, rather than relying solely on
the tips or cues, analysts can find higher-level network
operatives, and network operations can be more com-
pletely disrupted.

However, exploiting such connections requires resolv-
ing two related problems: network discovery and network
exploration. The network-discovery problem consists of
uncovering the subset of vertices within a network that
exhibit a particular attribute or activity of interest. For
example, given a social network, one may wish to detect
all individuals belonging to a particular faction or gang.

A related problem is network exploration. Often, the
activities used to construct a graph (such as communica-
tions between computers or transit between locations)

Analysts can glean much useful intelligence
information from identifying relationships
between individuals and groups, and tracking
their activities. However, detecting networks
of people and then investigating their activities
are difficult tasks, especially in this era of
information overload. Graph analysis has
proven to be a useful tool for addressing these
tasks, but it can be labor-intensive. To aid in
this analysis, Lincoln Laboratory researchers
developed a diffusion-based analytic that helps
solve the problems of network discovery and
prioritized exploration. This analytic, called
threat propagation, has been demonstrated
to effectively handle network detection and
exploration tasks, and has been integrated into
an interactive tool for generating networks from
wide-area motion imagery.

»

32 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

Multi-intelligence Graphs
Mathematically, a graph G is simply a collection of vertices
and edges, G = (V , E). The vertices represent the entities in
the network, and the edges represent relationships between
entities. In a multi-intelligence (multi-INT) graph, the
entities encoded by the vertices are observable across a
range of sensor modalities, and the relationships encoded
in the edges can represent correspondence between the
entities in any of those modalities. For example, in a graph
with geolocations represented as vertices, edges between
them may arise because an electro-optical or infrared sen-
sor (supplying imagery intelligence [IMINT]) detected
transit between the two locations. Alternatively, an edge
may exist because human intelligence (HUMINT) assets
report that a single individual owns both properties. Or
perhaps a particular radio signature (signal intelligence,
or SIGINT) was observed at both locations. A multi-INT
graph integrates all available relational information to cre-
ate a unified topological view of the entities and their inter-
actions. Figure 1 depicts a small multi-INT graph.

When the relations between entities are time-vary-
ing, the graph used to represent those relationships must
also vary with time. A space-time graph is a sequence of
graphs, Gt

{ }
t = 0

T , that represents the sequence of interac-
tions between graph entities. This notion of a space-time
graph is particularly useful when the data underlying the
graph are inherently transactional, such as vehicle tracks
connecting geolocations or e-mails connecting users.
Without the loss of generality, it can be assumed that the
set of vertices in a space-time graph is identical across all
time samples, and that only the edge set is varying. Thus,
the set of vertices in a space-time graph will be denoted
as V (as in the static graph), but the sequence of edge sets
will be denoted as Et.

Bayesian Diffusion
The concept of diffusion has been a very useful paradigm
for performing various graph-based inference problems
such as graph partitioning [4], attribute inference [5],
and ranking [6]. At their heart, diffusion-based algo-
rithms are based on the assumption that for a vertex in
the graph, its features (e.g., importance or group mem-
bership) are correlated with those of its neighbors. Math-
ematically, such assumptions are often justified through
the use of Markov random walk models, in which the
transition between two vertices that are “close” to each

take time and effort to verify. Given the scale of modern
networks, constructing them edge by edge and link by
link can be prohibitively costly in terms of the number
of analyst hours required. For situations in which only
a subset of the network or graph is of interest, a method
to prioritize particular connections for investigation can
dramatically reduce the amount of time and effort ana-
lysts must exert to construct the network graph.

Solving these complementary problems of graph dis-
covery and exploration is a common objective in a wide
variety of applications, including social network analysis,
web advertising, law enforcement, and counterterrorism.
A particular application of interest is the identification
of geographic sites connected together by a set of time-
stamped tracks [1–3]. As demonstrated by the example
of bin Laden’s courier, tracking individuals’ movements
from locations of known threatening activity to new loca-
tions can lead to significant intelligence gains.

Lincoln Laboratory researchers have developed a dif-
fusion-based analytic that can be used to solve the prob-
lems of network detection and prioritized exploration. We
have applied this analytic, called threat propagation, to
the problem of network detection, demonstrating theo-
retically and empirically the effectiveness of the threat
propagation metric. The threat propagation metric has
also been adapted to the problem of prioritized explora-
tion and has been integrated into an interactive tool for
aiding intelligence analysts in creating threat networks
from wide-area motion imagery (WAMI) data.

Analytic Framework
Starting from a classical definition of a graph, we have
developed the conceptual basis of threat propagation,
and then introduced a new graph concept: the space-
time graph, which can be thought of as a time-sampled
graph with a specific edge set. Using a continuous time
stochastic process model, we show that the simple alge-
braic rules of the threat propagation algorithm accurately
estimate the threat at specific vertices in the space-time
graph. Additionally, the threat propagation algorithm can
be viewed as the harmonic solution to Laplace’s equation
on the graph, and the corresponding algorithmic imple-
mentation is called harmonic threat propagation. We
have also developed an alternative implementation, based
on the application of the Perron-Frobenius theorem to a
particular stochastic model.

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 33

MICHAEL J. YEE, SCOTT PHILIPS, GARY R. CONDON, PETER B. JONES, EDWARD K. KAO,

STEVEN T. SMITH, CHRISTIAN C. ANDERSON, AND FREDERICK R. WAUGH

FIGURE 1. Multi-intelligence (Multi-INT) graphs fuse and enrich multimodal spatial-temporal data by adding asso-
ciations and interactions between entities.

Multi-INT dynamic graphs

l

j

al(t)

i

k

ai(t)

ak(t)

aj(t)
aik(t)

akj(t)

ail(t)

MOVINT

SIGINT

HUMINT
Person Person

Device

Device Device

Device

Track
Site

Site

Site
Track

i lkjai(t) al(t)ak(t)aj(t)

Tim
e

Spatial-temporal activity data

Graph
construction

transaction

track

track

HUMINT

other in graph space is more likely than the transition
between vertices that are “further apart.”

The dynamic threat propagation algorithm pre-
sented in this article uses a diffusion process to predict
which vertices in a space-time graph are expected to be
interesting, given an observed cue. The mathematical
formalism of this concept can be found in the compan-
ion article “Covert Network Detection” [7], in which it
is shown that the basic equations of threat propagation
follow directly from Bayes rule, given certain modeling
assumptions and approximations. Detailed discussion of
this concept can be found in the companion article, but a
brief summary of the model is presented here.

At each vertex v, independent of interactions with
other vertices, the presence or absence of threat is
denoted by a binary stochastic process Θv(t), which
is assumed to have the following dynamics: transi-
tions from state 1 to state 0 follow a Markov jump
process with Poisson rate λv , and no endogenous
transitions occur from state 0 to state 1. Interactions
between vertices affect the process in the following
way: when vertex u interacts with vertex v beginning
at time tu and ending at tv , with some fixed probability
P(v ← u), Θv(tv) ← Θu(tu), where ← indicates an assign-
ment of one stochastic variable to the value of the other.

Conceptually, in this model “threat” can be viewed as a
virus that infects vertices for a random length of time and
can replicate across vertices at the times of interactions.

Network Discovery
The network-discovery problem consists of uncovering
within a network the subset of vertices that exhibits a
particular attribute or activity of interest. It is closely
related to the problem of graph partitioning in that it
partitions the graph into two subsets (the foreground
and the background); however, it differs in that most
approaches to graph partitioning focus solely on the
graph topology, while the network-discovery problem
may incorporate additional information about the ver-
tices. In our case, this additional information takes the
form of tips: vertices that have been predetermined via
some exogenous intelligence process to belong with
some high probability to one of the partition elements.
By using a diffusion process similar to that described
in the section on Bayesian diffusion, the threat (mean-
ing the probability a vertex belongs to the foreground)
can be propagated to other vertices in the graph. The
specific mechanism for diffusing this threat depends
on whether the graph is a traditional (i.e., static) or
space-time graph.

34 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

Propagation on Static Graphs
Starting with the static local community-detection prob-
lem, we assume that the presence and weight of each edge
in the graph is known and fixed for all time. For example,
in the case of an e-mail contact network, once an edge
weight between a pair of vertices has been determined
by integrating the history of e-mails between them, the
actual timing of the e-mails is ignored. We detect vertices
that belong to the community of interest by propagating
the threat from tip vertex to other vertices along edges
that represent interactions.

Similar propagation-based approaches have been
effectively employed in a variety of network application
areas. For example, in the spread of infectious disease,
infectious agents are deposited at sites and transmitted
from person to person as infection propagates throughout
the graph. In social network analysis, the concept of eigen-
vector centrality (which posits that each vertex’s importance
is proportional to the sum of its neighbors’ importances)
can be calculated through distributed message propagation
[8]. Google’s PageRank algorithm [6] adapts eigenvector
centrality to the information retrieval domain and posits
that a web page has high rank if highly ranked pages link to
it. Similarly, Kleinberg’s HITS (for hyperlink-induced topic
search) algorithm [9] defines hub and authority scores1
in a mutually recursive way: the hub score of a page is a
function of the authority scores of the pages that link to it,
and the authority of a page is a function of the hub scores
of the pages that link to it. When PageRank and HITS are
computed iteratively by using power iteration to find the
relevant dominant eigenvectors, the quantities of interest
can be viewed as propagating along hyperlinks.

While based on the family of eigenvector centrality
techniques, our approach to estimating threat general-
izes previous developments in two key ways. First, we
incorporate existing knowledge through threat estimates
for tip vertices. In this framework, there can be multiple
tip vertices—negative tip vertices (i.e., vertices with zero
probability of threat) or tip vertices with any level of prob-
ability between zero and one. Second, we use a nonlinear
propagation function that can vary by vertex type. This
function adds flexibility in modeling the propagation
“physics” for a particular domain.

Let G = (V, E) be a graph, and denote the threat at
vertex i as Pi . Denote the tip set to be T ⊂ V and the threat
assessment π: T → [0, 1]. Define N: V → 2V (where 2V

denotes the power set of V) to be the neighborhood func-
tional (i.e., j ∈ N(i) iff (i , j) ∈ E). We estimate Pi using a
function of the estimated threat at neighboring vertices
as follows:

 π (i),
Pi = { (λμα i + (1 –) maxλ

j ∈ N(i)
Pj),

i ∈T

i ∉T

(1)

where μ i = λ
|N(i)| j ∈ N(i)

Pj
∑ , α ∈ (0, 1) is a dampening fac-

tor, and λ ∈ [0, 1] varies the relative contributions of
the mean and max terms in the propagation function. In
this development, we assume the parameters α and λ are
fixed, but in general they could be made to vary depending
on some attribute of vertex i.

As a special case of Equation (1), if λ =1, then P is
simply the eigenvector centrality of the graph. Alterna-
tively, if λ =0 then ∀i ∉ T , Pi = C, where C = max i ∈T π (i).
Philosophically, the mean term in Equation (1) assumes
each vertex’s attributes are defined by the average of their
neighbors’ attributes, while the max term assumes they
are defined by the most extreme values of the neighbors’
attrributes. Practically, λ trades off the impact of high-
degree2 vertices in defining the threat across the graph;
when λ is small, individual tip vertices can have dramatic
impact on the graph, but when λ is large (i.e., close to
one), tip vertices with low degree will have relatively mod-
est effects on the graph.

Computationally, estimates for non-tip vertices can
be computed iteratively by updating Pi using estimates
of neighboring vertices from the previous iteration. The
algorithm stops when the maximum change in estimated
threat from one iteration to the next is small—essentially
a form of fixed-point iteration. Similar to other tech-
niques in the eigenvector centrality family, convergence
is guaranteed with λ =1. For a general propagation func-
tion, it has not been shown that the proposed technique
has a guarantee of convergence. However, in practice,
we observed convergence for a wide range of λ over all
datasets evaluated.

1. Web pages known as hubs are large directories of links to
information on a particular topic; pages called authorities
contain focused information on one topic. A high hub score
indicates the page points to many others; a high authority
score indicates that many hubs point to it.
2. In graph theory, the degree of a vertex is the number of
edges connected to that vertex.

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 35

MICHAEL J. YEE, SCOTT PHILIPS, GARY R. CONDON, PETER B. JONES, EDWARD K. KAO,

STEVEN T. SMITH, CHRISTIAN C. ANDERSON, AND FREDERICK R. WAUGH

Propagation on Space-Time Graphs
The threat propagation algorithm diffuses estimates of
a vertex’s foreground membership attribute (i.e., threat)
through interactions with its local neighborhood. We
have extended this concept to allow a vertex’s threat
to vary over time. By tracking threat over time, we can
determine when a vertex is acting as a member of the
foreground, controlling how and when threat propa-
gates through the network. Details of the algorithms
presented here were first reported in Smith et al. [3]
and Philips et al. [10].

In the scenario depicted in Figure 2, the red vertex
interacts with the black vertex at times t1 and t2. The blue
vertex interacts with the black vertex at time t3. Given the
time-varying threat signatures of the red and blue vertices
shown in the accompanying graphs, in order to estimate
the threat signature of the black vertex, we must make
some assumptions about the dynamic process governing
the foreground behavior we wish to detect.

Recalling our definition of a space-time graph Gt =
(V, Et), we will abuse notation by letting E denote a set
of triples of the form (i, j, t), where (i, j, t) ∈ E iff (i, j)
∈ Et . Furthermore, let E(i)= { (j, t) | (i, j, t) ∈ E }. Equa-
tion (2) generalizes Equation (1) to allow for time-varying
probabilities,

Pi (t) = (α + (1 –) maxλ

eij ∈ E(i)
g (t | eij)),

λ
iμ (t)

(2)

where μ i(t) = |E(i)|
1 ∑ g (t | eij)

eij ∈ E(i) . The function g (t|eij)
is an application-specific interaction model describing
the effect of an edge between vertex i and j over all time.
This function g can naturally be divided into two terms.
The first term is a scale factor defined by the probabil-
ity of threat transferred from j evaluated at the time that
the edge is created. The second term is a kernel function
defining how the probability of threat changes for times
different from the edge creation time,

 (3)

Pj (teij) K (t – teij) . g (t | eij) =

Naturally, the kernel function K(t) must be defined on an
application-specific basis because the effect of an edge
on community membership may change depending
upon the process governing the community one wishes
to detect. In the example of a group of collaborating

colleagues, it is expected that people in the same com-
munity are ones who attend the same meetings at the
same time. Therefore, the interaction kernel could be a
Gaussian function whose width is defined by the dura-
tion of a typical meeting. In a disease-spreading applica-
tion, a person may not be infectious until 24 to 48 hours
after contracting the virus. In this situation, the desired
kernel should be centered not at the time of interaction,
but sometime after the interaction occurs. As defined in
Equation (2), the overall estimated threat on vertex i is
a weighted combination of all kernel functions arising
from incoming edges. This property provides a smoothly
varying function of threat that depends upon interac-
tion times as well as the community membership ker-
nel (as shown in Figure 3). Note that this formulation
of community membership does not necessarily state
that a vertex is a member of either the foreground or the
background at any specific time. Rather, it provides the
probability that the vertex is acting as a member of that
community at a given time. This is analogous to the role
indicator variable Z in “Mixed-Membership Stochastic
Blockmodels” by Airoldi et al. [11].

Empirical Results
Membership propagation is evaluated on two simulated
datasets as well as on the Enron e-mail dataset [12].
Clauset’s local modularity maximization [13] and a cued
version of Miller’s eigenspace analysis [1, 2] are used
as baselines for performance comparisons against the
methods proposed in this article. These three approaches
represent a diverse range of cued community-detection
techniques, all of which leverage the modularity matrix.
Results show that dynamic membership propagation is

FIGURE 2. Notional example of the dynamic community-
detection problem. Given threat over time on the outside
red and blue vertices as well as edge times, one can esti-
mate the continuous time-varying probability of threat on
the center vertex.

t1 t3

t2

?

t3t2t1 t1 t2 t3

36 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

able to identify community membership better than the
other two techniques because of its ability to leverage cor-
relations between edges over time.

METHODOLOGY

Because the methods discussed in this article are local
(or cued) methods, performance inherently depends on
the tip into the community of interest. Depending on
the location of the tip vertex, performance will naturally
increase or decrease on the basis of the information con-
tained in the tip. Therefore, detection results are calcu-
lated independently by using every possible tip into the
foreground. Results are then averaged over all possible
tips. This average result is then used to compare detec-
tion results across all methods. It is important to note
that, unlike other methods, threat propagation is more
general with the concept of a tip vertex. Threat propaga-
tion can take into account any type of prior information
one may have about the network in question. In space-
time threat propagation, tip vertices can even vary their
probability over time. To create a fair comparison, we
only use one tip vertex at a time and keep its value con-
stant over all time (Ptip(t) = 1).

Declaration of community membership is carried out
by setting a desired threshold on the threat level. In space-
time threat propagation, that probability can vary over
time. Therefore, for the purpose of making a single dec-
laration on each vertex, the threat on each vertex is aver-
aged over time. The assumption here is that vertices that
spend more time acting as members of the community of
interest are more likely to be members of that community.

DATA

The performance of each community-detection tech-
nique was determined by applying the techniques to
three network datasets. A key feature of each dataset is
that the communities within each network are defined
by the coordinated dynamic interactions between their
members and not necessarily by the static topology of
the network. For each dataset, a subset of the network
is chosen as the community of interest (the foreground)
that the community-detection algorithms are tasked
with distinguishing from the other remaining vertices
(the background).
Recursive matrix data. The first dataset consists of a net-
work topology that was constructed using the R-MAT

(named for recursive matrix) graph generator [14],
which produced a simulated network of 256 vertices
and 3045 edges. A 16-vertex subset of the network was
selected as the foreground community. A “rumor” was
placed on one vertex in the foreground community. At
each discrete time step, each foreground vertex commu-
nicates with a random subset of its neighbors at rates
governed by a Poisson process, propagating the rumor.
After a large number of time steps, the rumor will inevi-
tably spread to every member of the foreground commu-
nity. This foreground community is embedded within the
remaining 240 background vertices through the R-MAT
generation process. Unlike the foreground community,
the background vertices do not interact in a coordinated
fashion, but instead interact with neighbors at random.
Figure 4a illustrates the topology of the rumor-spreading
graph in a force-directed layout, with the foreground ver-
tices shown in red and the background vertices in gray.
Note that the foreground community is highly connected
to the background vertices.
Enron e-mail corpus. The second dataset is the Enron
e-mail corpus [12], consisting of time-stamped e-mails
exchanged between employees at the Enron Corporation.
The entire network consists of 156 vertices and 38,390
interactions, where a vertex corresponds to an individual
employee and an interaction corresponds to an e-mail
sent from one employee to another. The foreground com-
munity for this network was chosen to be the 25 employ-
ees that the corpus identifies as members of the Enron
legal department. The topology of this network is shown
in Figure 4b; once again vertices with membership in the
foreground community are colored red.
Vehicle movement simulation. The third and final data-
set is a simulation of vehicle movement over a 48-hour
time period in an urban environment. The simulation

FIGURE 3. Notional result from dynamic membership
propagation using a Gaussian kernel function. The black
curve is a weighted combination of the red and blue mem-
bership kernels as defined in Equations (2) and (3).

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 37

MICHAEL J. YEE, SCOTT PHILIPS, GARY R. CONDON, PETER B. JONES, EDWARD K. KAO,

STEVEN T. SMITH, CHRISTIAN C. ANDERSON, AND FREDERICK R. WAUGH

was constructed by the National Geospatial-Intelligence
Agency (NGA). The vertices in this network correspond
to buildings at different locations within the city, and an
edge between two vertices exists if a vehicle has traveled
between the corresponding buildings. There are approxi-
mately 4400 vertices and over 116,000 edges in the net-
work. A small subset of this network corresponds to the
operations of an insurgent cell that conducts activities
at 31 different vertices over the course of the 48-hour
period. Time stamps corresponding to departure and
arrival times for each vehicle track allow exploitation
of the dynamic properties of the dataset. The topology
of this network is not shown here because the size and
extensive connectivity of the network render its visual-
ization impractical for this article. For a more detailed
discussion of this dataset, see Smith et al. [3].

DETECTION PERFORMANCE

Figure 5 shows detection performance curves for all
three networks. Results on the simulated rumor-spread-
ing graph are shown in Figure 5a. Both the eigenspace
and local modularity methods are performing near
chance. These results are not surprising, given that these
methods are both designed to identify tightly connected

communities and that the topology of this dataset was
specifically designed to be the same for the foreground
and the background. Static threat propagation shows
detection performance well above chance. This perfor-
mance increase demonstrates the potential power of a
tip vertex even in the absence of static structure. While
methods such as local modularity also use a tip vertex,
they force a hard decision at every iteration of the algo-
rithm. A bad decision, once made, is compounded as the
method proceeds. In contrast, threat propagation passes
soft probability estimates at every iteration, postponing
a decision until the end. This feature mitigates the effect
of any bad decision. Finally, space-time threat propaga-
tion shows the best performance of all. This boost above
static threat propagation is due to space-time propaga-
tion’s ability to utilize the correlations between interac-
tions over time.

Figures 5b and 5c show detection performance for
the Enron e-mail graph and the simulated vehicle move-
ment graph, respectively. Both plots show similar per-
formance to the previous results, with space-time threat
propagation having the best detection performance.
Static threat propagation and eigenspace detection per-
formance fall off because of their inability to leverage

FIGURE 4. Graph representation of the (a) simulated rumor-spreading network and (b) Enron e-mail network datasets
used to evaluate community-detection algorithms. Foreground community vertices for each dataset are colored red, and
background vertices are colored gray.

Foreground community vertices

Background vertices

(a) Rumor-spreading graph (b) Enron e-mail graph

38 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

the dynamic process. In both cases, local modularity ini-
tially has a large increase in probability of detection at
very low probabilities of false alarm, but at some point
in the calculation a wrong decision is made, and perfor-
mance plateaus.

Network Exploration
Real-world networks can be immense in size or difficult
to construct, rendering data collection and processing on
the entire network infeasible. Efficient sampling strate-
gies are therefore important in order to collect the most
informative parts of the network. An example of a dif-
ficult network-exploration problem is the surveillance of
hidden HIV populations [16], for which Magnani et al.
investigated several sampling strategies, including the
well-known “snowball” sampling and respondent-driven
sampling. Similarly, for local community detection
starting from a set of tip vertices, an efficient sampling
strategy explores a small fraction of the complete net-
work while maximizing the end detection performance.
Threat propagation offers a natural way for prioritizing
network exploration. Intuitively, edges that propagate a
higher amount of threat potential should be prioritized.
Results on the simulated insurgent network data show
that propagation-driven sampling is able to explore a
very small fraction of the network while achieving good
detection performance.

Exploration of a moving intelligence3 (MOVINT)
graph is a manually intensive process. For example,
automatic tracking of cars in dense urban environments
is subject to many types of errors. Establishing connec-
tions between two locations requires a semiautomated
approach with a human in the loop to correct potential
tracking errors. The resulting workflow is a cued graph
exploration approach whereby a location of interest is
identified (a cue) and a graph is grown beginning at the
cue location. This cue location is assumed to be known
a priori and represents a site used by the foreground com-
munity. Beginning with a cue allows analysts to focus
their attention on vehicles in a local region (in graph
space) around a known foreground location.

FIGURE 5. Community-detection results on the (a) rumor-
spreading graph, (b) Enron e-mail graph, and (c) vehicle
movement graph. Plots compare community-detection per-
formance on a variety of algorithms including eigenspace
detection (magenta), local modularity maximization (green),
threat propagation (blue), and space-time threat propagation
(red). Each of these graphs is a receiver operating character-
istic, or ROC, curve, relating the probability of detection to
the probability of false alarms.

0.5

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

Probability of false alarm
0.30 0.1 0.2 0.4

1

0.8

0.6

0.4

0.2

0

(a)

0.5

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

Probability of false alarm
0.30 0.1 0.2 0.4

1

0.8

0.6

0.4

0.2

0

(c)

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

Probability of false alarm
0.3 0.50 0.1 0.2 0.4

1

0.8

0.6

0.4

0.2

0

(b)

3. Moving intelligence refers to the knowledge gained from
the tracking of moving objects on land or sea.

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 39

MICHAEL J. YEE, SCOTT PHILIPS, GARY R. CONDON, PETER B. JONES, EDWARD K. KAO,

STEVEN T. SMITH, CHRISTIAN C. ANDERSON, AND FREDERICK R. WAUGH

Exploration Strategies

BREADTH-FIRST SEARCH

The breadth-first search (BFS) algorithm [17] provides
a reasonable initial approach for exploration. In BFS, a
graph is initially formed by following all vehicles depart-
ing or arriving at the cue location (vertex). Then for each
location (vertex) found in step one, all vehicles are fol-
lowed again. The priority assigned to exploring edge E in
the graph is therefore given by

 Priority (E) = min d(v(E), Vc) ,

where d is the standard graph distance between vertices,
v(E) are the vertices of edge E, and Vc is the cued vertex.
This procedure is repeated until some fixed number of
tracks are explored. Vertices at the same distance away
from the cue are explored in random order, and vehicles
departing any given vertex are followed in random order.

Figure 6 shows three graphs at various stages of
exploration using BFS on the simulated insurgent net-
work data. Note that while the vehicles may traverse long
distances in physical space, all locations discovered are
within one, two, or three hops from the cue vertex.

DEGREE-WEIGHTED BREADTH-FIRST SEARCH

While BFS is good at exploring a neighborhood of vertices
surrounding a cue vertex, the graph in Figure 6c demon-
strates a major drawback of this approach. The vast major-
ity of an analyst’s time spent on a graph such as in Figure
6c is devoted to exploring tracks leaving a handful of high-
degree vertices. Under a fixed time constraint, this would
not be an efficient use of human resources. This observation
that BFS can be biased toward high-degree vertices has also
been observed in a number of other studies [18, 19].

In order to combat the bias toward high-degree ver-
tices, a degree-weighted BFS approach is implemented.
In degree-weighted BFS, vertices at the same distance
from a cue vertex are explored in order of their degree,
with low-degree vertices explored first and high-degree
vertices explored last. Additional models of vertex rel-
evancy may also be used, depending upon the observable
information available for each vertex and track. Because
vertices represent clustered track destinations, it is pos-
sible to estimate the degree of each vertex by counting the
number of destinations in each cluster, thereby providing
an estimate of vertex degree before the exploration stage.

Degree-weighted BFS improves upon the regular BFS but
still does not fully capture the essence of threat discovery.

PROPAGATION-DRIVEN SAMPLING

Threat propagation, described in the network detection
section, provides a natural measure for prioritization.
Intuitively, vehicle tracks arriving or departing locations
of higher estimated threats at that specific time are of
higher interest. Prioritization based on the estimated
threat performs a propagation-driven sampling on the
network as vertices with higher threat are expanded first
and their threat propagated. This exploration strategy is
tailored specifically to the objective of network discovery.

Exploration Performance
The proposed exploration strategies have been evaluated on
the simulated insurgent network data by using two metrics.
One metric measures time required to explore the graph
(human resources), and another measures efficiency at
uncovering the foreground relative to the background. Three
search strategies—propagation-driven sampling, degree-
weighted BFS, and standard BFS—are compared using each
metric. The dataset used in the analysis is the previously dis-
cussed NGA dataset on vehicle movements, and the results
represent averages across multiple independent runs, each
seeded with a different tip into the foreground network.

Figure 7 shows the percentage of the foreground net-
work found as a function of the number of tracks exam-
ined, which in general is proportional to the amount of
human time required to uncover a certain percentage
of the foreground network. Figure 7 shows that for a
fixed percentage of the foreground network, space-time
threat propagation is able to achieve a fixed percentage
in approximately one-third the time of standard BFS, and
half the time of even the degree-weighted BFS.

Figure 8 shows the average portion of foreground
network found against the average portion of the back-
ground network found. While this plot is similar to
a traditional receiver operating characteristic (ROC)
curve indicating probability-of-detection and probabil-
ity-of-false-alarm performance, there are subtle meth-
odological differences. This figure represents, given a
fixed number of vertices that have been explored, how
much of the foreground and background networks have
been uncovered, and is not immediately comparable to
expected optimal detection performance, such as what

40 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

FIGURE 6. Graphs constructed by following vehicles from one location to another. The left figures show vehicle
movement overlaid on the aerial imagery while the right figures show the same movement represented as graphs.
From top to bottom, each figure shows the graph at various stages of exploration using breadth-first search. The
foreground subgraph is shown using red vertices, and the background graph is shown using gray vertices. The cue
vertex is shown in yellow. The left-hand images are from ©DigitalGlobe.

(b)

(a)

(c)

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 41

MICHAEL J. YEE, SCOTT PHILIPS, GARY R. CONDON, PETER B. JONES, EDWARD K. KAO,

STEVEN T. SMITH, CHRISTIAN C. ANDERSON, AND FREDERICK R. WAUGH

is shown in Figure 5c. In general, after a fixed number of
vertices have been explored, the expected relative propor-
tions of foreground and background vertices uncovered
are maximized by using a propagation-based exploration
method, relative to either of the BFS approaches.

Intelligence, Surveillance, and Reconnaissance
Network-Discovery Tool
Software components for effective data visualization,
exploration, and graph construction are critical tools for
analysts, particularly when the raw data are voluminous
and originate from diverse sensor types. In a typical net-
work-discovery task, a team of analysts might be tasked
with using wide-area motion imagery (WAMI) data to
construct a network in which vertices are geospatial loca-
tions (sites) and edges are formed by vehicle tracks that
originate from one location and terminate at another.
To build this type of graph, the analysts are given a tip
location from which to begin their analysis. They then
monitor the site over several hours or perhaps even days
of WAMI video in order to identify vehicles arriving at
or departing from the location. Those vehicles are then
tracked back to their points of origin or destination, which
then become new vertices in the network. The process
repeats, starting from the newly discovered vertices.

Although this network construction workflow is
simple and effective, it is time-consuming and manually
intensive. Depending on the size of the dataset and the level

of activity at the locations of interest, analysts may spend
large fractions of their time on tedious tasks; they may need
to view several minutes of video simply to find a vehicle
to track, and then spend several more minutes tracking
the vehicle frame by frame. Furthermore, analysts typi-
cally require multiple software applications for exploitation
and dissemination. For example, an analyst might use one
tool to view the WAMI data and track vehicles, another to
build and visualize a graph, and yet others to display and
communicate their findings to their collaborating analysts.
Many software packages excel at those tasks individually,
but none are optimized for the workflows inherent to the
collaborative network-discovery task.

BlueStreak Exploitation Tool
To address this problem of a labor-intensive process that
requires multiple tools, we developed a software exploita-
tion system named BlueStreak that supports data visualiza-
tion, graph construction, algorithm services, and analyst
collaboration within the network-discovery framework. The
system, shown in Figure 9, is composed of analyst user inter-
faces (clients) that are connected via a collaboration server.
Additional modular services, such as data-retrieval services,
tracking services, or graph-exploitation algorithms, can be
“plugged in” to the collaboration infrastructure as desired to
provide additional functionality. Consequently, the clients’
main responsibility is data visualization, and heavy compu-
tation is carried out on the servers.

FIGURE 8. Comparison of exploration outcomes of space-
time threat propagation (red), degree-weighted breadth first
search (BFS) (blue), and standard BFS (green). For a given
operating point (i.e., number of vertices explored), propaga-
tion-based exploration generally uncovers more threatening
vertices than either of the breadth-first methods.

Fo
re

gr
ou

nd
 fo

un
d

(%
)

Background found (%)
60 1000 20 40 80

100

80

60

40

20

0

Space-time propagation
Degree-weighted BFS
BFS

FIGURE 7. Comparison of operator exploration efficiency
of space-time threat propagation (red), degree-weighted
breadth-first search (BFS) (blue), and standard BFS
(green). Propagation-based exploration uncovers the net-
work approximately twice as fast as either of the breadth-
first search methods.

Fo
re

gr
ou

nd
 fo

un
d

(%
)

Tracks examined
3000 50000 1000 2000 4000

100

80

60

40

20

0

Space-time propagation
Degree-weighted BFS
BFS

42 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

demand” from those services as they require the data.
If new data sources become available and are exposed
as services, the clients can be configured to ingest and
display them. In this way, several modes of intelligence
are able to be displayed simultaneously in the client. In
addition, the modular “plug-and-play” nature of the sys-
tem provides easy deployment of new capabilities and
updating of older ones.

Multi-INT Workflow
With the BlueStreak tool, the operator’s network-discov-
ery workflow, shown in Figure 10, is enhanced. As in the
manual workflow, the analyst begins from a tip site. How-
ever, instead of manually tracking movers to construct
the network, the user has the ability to nominate a space-
time region around the site of interest. This nomination is
converted into “region-tracking” requests, which are then
sent over the publish/subscribe channel to an on-demand
tracking service. Tracking jobs are carried out on high-per-
formance computing resources, and any tracks that begin
or terminate within the space-time region are displayed

The BlueStreak client serves as the user interface and
is built using the NetBeans Rich Client Platform (RCP)
and other open-source components. The geospatial visual-
ization component of the tool is based on the NASA World
Wind Java SDK (software development kit). The tool also
features a built-in graph construction capability using the
Java Universal Network/Graph (JUNG) framework.

The BlueStreak collaboration server runs on Apache
Tomcat and uses an in-house application framework called
Maestro that allows deployment of modular services into
the system. The clients and the servers communicate over
a publish/subscribe channel, which is implemented using
the Apache ActiveMQ message broker. This channel is
shared among all clients, the collaboration server, and
other services to synchronize information among them.

This service-oriented architecture offers several
practical advantages. Because the major computational
work is performed on the server side, the clients do
not have to incorporate or even be physically close to
a data storage and processing infrastructure. Data are
made available as services, and users request data “on

FIGURE 9. Screenshot of the BlueStreak client. The largest windows in the tool represent the map viewer (for displaying
imagery and geospatial data) and the integrated graph viewer.

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 43

MICHAEL J. YEE, SCOTT PHILIPS, GARY R. CONDON, PETER B. JONES, EDWARD K. KAO,

STEVEN T. SMITH, CHRISTIAN C. ANDERSON, AND FREDERICK R. WAUGH

to the user. These tracks are automatically extended by
entity trackers that attempt to track the vehicle to its point
of origin or destination. Automatic trackers are occasion-
ally prone to swaps, breaks, and other errors, so the cli-
ent includes two track-repair tools that enable the user to
throw out erroneous track points and restart an automatic
tracker on the appropriate vehicle. As a failsafe measure,
the analyst can at any point seamlessly revert back to a
more manual tracking mode, in which mouse clicks on the
image data generate and extend tracks.

Once the track is complete, the analyst can annotate a
new location of interest at its endpoint. This new annota-
tion automatically appears as a vertex in the graph com-
ponent of the BlueStreak client. When the user performs
a link action to connect the track to a location, the track
automatically appears as an edge in the graph viewer.
Thus, graph construction proceeds as a natural extension
of the tracking workflow.

When vertices and edges are created, update messages
are sent over the publish/subscribe channel to a graph algo-
rithm service. This service uses the space-time threat propa-
gation algorithm to propagate threat from the tip site(s) to

other vertices in the graph. A list of sites ordered by threat
level is presented on a separate window in the BlueStreak
client in order to help the analysts prioritize their efforts to
sites with the highest threat level. Tracks are also prioritized
according to the level of threat that they carry, permitting
users to select the next highest threatening track as their
next analysis task. This feature is particularly useful when
several tracks are generated from a region-tracking request,
and the user must decide which of those tracks to follow first.

The BlueStreak collaboration server plays a critical role
in the workflow. The service-oriented architecture allows
many clients to access the same data and same graph simul-
taneously; therefore, multiple analysts may build the same
graph at the same time. Each connected user can see the
tracks, graph vertices, and graph edges generated by other
analysts, so dissemination of the analysts’ work occurs
organically. However, the danger of such an arrangement
is that multiple analysts follow the same track, duplicating
effort and wasting valuable time. To mitigate the chances of
such an event, the collaboration server maintains a check-
in, check-out system for tracking tasks. When a region-
tracking request returns tracks to the client, each track is

FIGURE 10. Schematic of the BlueStreak architecture. The publish/subscribe channel serves as the messaging backbone
between the clients and various services. The system accommodates data services, algorithm services, and storage services.

BlueStreak clients

Generate
requests

Receive
messages

Publish/Subscribe channel

Analytics services

WAMI data
service

Other data
services

On-demand
tracking
service

Graph
analytics
service

Processed data archive

Other
services

Data services

Track database Graph database

44 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

assigned a unique task identification. The users can check
out a particular task, and the checked-out status becomes
visible to other analysts. When the tracking task is com-
plete, the user who checked it out marks it as such. If this
system is used optimally, the chance that effort is duplicated
becomes extremely remote.

Future Directions
The methodology described in this article addresses the
complementary problems of cued network discovery and
exploration. Given a sequence of dynamic point-to-point con-
nections and a set of known points of interest, the dynamic
threat propagation algorithm can infer where to look for
additional connections, as well as which currently known
points are of primary interest. The dynamic threat propaga-
tion algorithm has been shown to be effective for network
discovery and exploration on a diverse collection of datasets,
including the Enron e-mail corpus, a set of vehicle tracks, and
an artificially constructed rumor-spreading graph.

Future enhancements to the algorithm include
(1) improving the process by which the temporal kernel is
selected and (2) automatically tuning the Bayesian diffu-
sion model. In the current implementation, the temporal
kernel was selected by the analyst to provide optimal per-
formance. Also, the kernel is identical for all connection
events. In the future, the threat propagation kernel will
be automatically chosen and tuned to the particular sta-
tistical characteristics of the connection event.

A second area of potential improvement is the exten-
sion of the diffusion model to account for constrained paths
of diffusion. Currently, all temporal diffusion paths are
treated equally by the algorithm; however, some types of
multi-INT information may restrict or constrain the threat
diffusion paths. Incorporating these types of information
into the multi-INT algorithm will broaden the applicability
of the method and improve its inferential ability.

References
1. B. Miller, M. Beard, and N. Bliss, “Eigenspace Analysis

for Threat Detection in Social Networks,” Proceedings of
the 14th International Conference on Information Fusion
(FUSION), 2011.

2. B. Miller, N. Bliss, and P. Wolfe, “Subgraph Detection Using
Eigenvector L1 Norms,” Proceedings of the 2010 Neural
Information Processing Systems (NIPS) Conference,
pp. 1633–1641.

3. S.T. Smith, A. Silberfarb, S. Philips, E.K. Kao, and C. Ander-
son, “Network Discovery Using Wide-Area Surveillance
Data,” Proceedings of the 14th International Conference on
Information Fusion (FUSION), 2011.

4. R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, F. Warner,
and S. Zucker, “Geometric Diffusions as a Tool for Harmonic
Analysis and Structure Definition of Data: Diffusion Maps,”
Proceedings of the National Academy of Sciences, vol. 102,
no. 21, 2005, pp. 7426–7431.

5. R.I. Kondor and J. Lafferty, “Diffusion Kernels on Graphs and
Other Discrete Structures,” Proceedings of the 19th Interna-
tional Conference on Machine Learning, 2002, pp. 315–322.

6. S. Brin and L. Page, “The Anatomy of a Large-Scale Hyper-
textual Web Search Engine,” Proceedings of the 7th Interna-
tional Conference on World Wide Web (WWW), vol. 30, no.
1–7, 1998, pp. 107–117.

7. S. Smith, K. Senne, S. Philips, E. Kao, and G. Bernstein,
“Covert Network Detection,” Lincoln Laboratory Journal,
vol. 20, no. 1, 2013, pp. 47–61.

8. P. Bonacich, “Power and Centrality: A Family of Measures,”
American Journal of Sociology, vol. 92, no. 5, 1987,
pp. 1170–1182.

9. J. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” Journal of the ACM, vol. 46, no. 5, 1999, pp. 604–632.

10. S. Philips, E.K. Kao, M. Yee, and C. Anderson, “Detecting
Activity-Based Communities Using Dynamic Membership
Propagation,” Proceedings of the 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing,
pp. 2085–2088.

11. E. Airoldi, D. Blei, S. Fienberg, and E. Xing, “Mixed Mem-
bership Stochastic Blockmodels,” Journal of Machine Learn-
ing Research, vol. 9, 2008, pp. 1981–2014.

12. W. Cohen, “Enron E-mail Dataset,” http://www.cs.cmu.
edu/~enron/, 2009.

13. A. Clauset, “Finding Local Community Structure in Net-
works,” Physical Review E, vol. 72, 026132, 2005.

14. D. Chakrabarti, Y. Zhan, and C. Faloutsos, “RMAT: A Recur-
sive Model for Graph Mining,” SIAM International Confer-
ence on Data Mining, 2004.

15. P. Perry and P. Wolfe, “Point Process Modeling for Directed
Interaction Networks,” arXiv:1011.1703v1 [stat.ME], 2010.

16. R. Magnani, K. Sabin, T. Saidel, and D. Heckathorn, “Review
of Sampling Hard-to-Reach and Hidden Populations for
HIV Surveillance,” AIDS, vol. 19, suppl 2:S, 2005, pp. 67–72.

17. M.E.J. Newman, Networks: An Introduction. Oxford, UK:
Oxford University Press, 2010.

18. L. Becchetti, C. Castillo, D. Donato, and A. Fazzone, “A Com-
parison of Sampling Techniques for Web Graph Charac-
terization,” Proceedings of the Workshop on Link Analysis
(LinkKDD), 2006.

19. M. Kurant, A. Markopoulou, and P. Thiran, “On the Bias of
BFS (Breadth First Search),” Proceedings of the 22nd Inter-
national Teletraffic Congress (ITC), 2010.

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 45

MICHAEL J. YEE, SCOTT PHILIPS, GARY R. CONDON, PETER B. JONES, EDWARD K. KAO,

STEVEN T. SMITH, CHRISTIAN C. ANDERSON, AND FREDERICK R. WAUGH

Gary R. Condon is the associate leader
of the Intelligence and Decision Technolo-
gies Group. His research focuses on the
applications of machine learning and
human workflow optimization to improve
the exploitation of sensor data to support
military and intelligence decision making.
Since joining Lincoln Laboratory in 1999,

he has led the development of novel analytic tools and techniques
for intelligence users, participating in the design and demonstra-
tion of advanced battle management capabilities for conventional
and Special Operations Forces, and supported the architectural
development and operational evaluation of various intelligence,
surveillance, and reconnaissance (ISR) systems. From 2011 to
2013, he served as the Science & Technology Advisor to the ISR
Task Force in the Office of the Under Secretary of Defense for
Intelligence, where he focused on quick-reaction capabilities in
support of Operation Enduring Freedom in Afghanistan. He earned
a bachelor’s degree in astronomy from the University of Massa-
chusetts in Amherst, where he studied the formation of stars and
planets, and a doctoral degree in physics from the University of
New Mexico, where he developed the photometric field-emission
electron microscope.

Michael J. Yee is a a member of the tech-
nical staff in the Intelligence and Decision
Technologies Group. Since joining the
Laboratory in 2006, his research activi-
ties have included information retrieval,
graph visualization, and text analytics. He
received a bachelor’s degree in math and
computer science from Gordon College

and master’s and doctoral degrees in operations research from
MIT, where his research focused on inferring decision-making heu-
ristics. He interned at Lincoln Laboratory for a summer, investigat-
ing techniques for visualizing and analyzing social networks.

Scott Philips is currently a data scientist
at Palantir Technologies. Before join-
ing Palantir, Scott spent five years as a
member of the technical staff in the Intel-
ligence and Decision Technologies Group.
While he was at Lincoln Laboratory, his
research focused on developing statisti-
cal algorithms for the exploitation of data

from intelligence, surveillance, and reconnaissance sensors. Scott
received his doctoral degree in electrical engineering in 2007
from the University of Washington, where his research focused on
signal processing and machine learning algorithms for the detec-
tion and classification of sonar signals.

Peter B. Jones is a member of the techni-
cal staff in the Intelligence and Decision
Technologies Group. He joined Lincoln
Laboratory in 2002 after receiving a bach-
elor’s degree in electrical engineering from
Brigham Young University. He subsequently
received the master’s and doctoral degrees
in electrical engineering from MIT through

the Lincoln Scholars program in 2005 and 2011, respectively. His
research focus is on applying information and decision theory to the
estimation and control of graph-based processes.

Edward K. Kao is a Lincoln Scholar in
the Intelligence and Decision Technolo-
gies Group. Since joining the Laboratory
in 2008, he has been working on graph-
based intelligence, in which actionable
intelligence is inferred from interactions
and relationships between entities. Applica-
tions include wide-area surveillance, threat

network detection, homeland security, and cyber warfare. In 2011,
he entered the doctoral program at Harvard University in the statis-
tics department. Current research topics include causal inference
on peer influence effects, statistical models for community member-
ship estimation, information content in network inference, and opti-
mal sampling and experimental design for network inference.

Steven T. Smith is a senior staff member
of the Intelligence and Decision Tech-
nologies Group with many distinguished
accomplishments in radar, sonar, and sys-
tems concept development. His contribu-
tions span all aspects of signal processing,
from data modeling and measurement,
to novel signal detection and estimation

algorithms, to target tracking. Professional and career highlights
involve novel solutions and analysis in new problems, such as
geometric optimization for signal processing, statistical resolution
limits, bounds for nonlinear parameter estimation, and optimum
network detection. He is the recipient of outstanding paper awards
from the IEEE and SIAM. He received his bachelor’s degree in
electrical engineering and mathematics from the University of Brit-
ish Columbia, Vancouver, and his doctoral degree in applied math-
ematics from Harvard University.

About the Authors

46 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NETWORK DISCOVERY WITH MULTI-INTELLIGENCE SOURCES

Frederick R. Waugh is a member of the
technical staff in the Intelligence and Deci-
sion Technologies Group. His work at Lin-
coln Laboratory has included algorithms
for and design of processing, exploitation,
and dissemination software systems;
systems analysis of counterterrorism
technologies; planning and managing

of complex multisensor test exercises; and algorithm develop-
ment for active imaging sensors. Prior to joining the Laboratory
in 2002, he worked on remote sensing and image processing at
Photon Research Associates in San Diego, California. He received
a bachelor’s degree in physics from Princeton University in 1986
and a doctoral degree in physics from Harvard University in 1994,
with thesis research on neural networks and quantum confinement
in nanostructures.

Christian C. Anderson is a member of
the technical staff in the Intelligence and
Decision Technologies Group. He joined
Lincoln Laboratory in 2010 after receiv-
ing a doctoral degree in physics from
Washington University in St. Louis, where
his primary research interests involved
solving inverse problems related to ultra-

sonic imaging and tissue characterization. His focus since joining
the Laboratory has been on the development of multi-intelligence
exploitation algorithms and architectures, including fusion, graph
analytics, and Red/Blue exercises applied to intelligence, surveil-
lance, and reconnaissance scenarios.

