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As early as 2002, the U.S. government 
was seeking a courier believed to be con-
nected to Osama bin Laden. The courier 
was known as Abu Ahmed al-Kuwaiti, 

and his identity had been confirmed by more than one 
captured high-level al-Qaeda operative. In 2010, a tele-
phone wiretap of a suspect led intelligence analysts to al-
Kuwaiti. On the basis of this connection, al-Kuwaiti was 
eventually located in August 2010 and was tracked to a 
compound near Abottabad, Pakistan. After intelligence 
analysts gathered corroborating evidence, U.S. Navy 
SEALs raided the compound, and Osama bin Laden was 
found and killed. 

Working from tips and cues, such as that of al-
Kuwaiti, and tracking them back through network 
connections created by communications, personal move-
ment, and monetary transactions, intelligence analysts 
are able to uncover criminal and terrorist networks. By 
following the connections, rather than relying solely on 
the tips or cues, analysts can find higher-level network 
operatives, and network operations can be more com-
pletely disrupted. 

However, exploiting such connections requires resolv-
ing two related problems: network discovery and network 
exploration. The network-discovery problem consists of 
uncovering the subset of vertices within a network that 
exhibit a particular attribute or activity of interest. For 
example, given a social network, one may wish to detect 
all individuals belonging to a particular faction or gang. 

A related problem is network exploration. Often, the 
activities used to construct a graph (such as communica-
tions between computers or transit between locations) 

Analysts can glean much useful intelligence 
information from identifying relationships 
between individuals and groups, and tracking 
their activities. However, detecting networks 
of people and then investigating their activities 
are difficult tasks, especially in this era of 
information overload. Graph analysis has 
proven to be a useful tool for addressing these 
tasks, but it can be labor-intensive. To aid in 
this analysis, Lincoln Laboratory researchers 
developed a diffusion-based analytic that helps 
solve the problems of network discovery and 
prioritized exploration. This analytic, called 
threat propagation, has been demonstrated 
to effectively handle network detection and 
exploration tasks, and has been integrated into 
an interactive tool for generating networks from 
wide-area motion imagery.

»
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Multi-intelligence Graphs 
Mathematically, a graph G is simply a collection of vertices 
and edges, G = (V , E ). The vertices represent the entities in 
the network, and the edges represent relationships between 
entities. In a multi-intelligence (multi-INT) graph, the 
entities encoded by the vertices are observable across a 
range of sensor modalities, and the relationships encoded 
in the edges can represent correspondence between the 
entities in any of those modalities. For example, in a graph 
with geolocations represented as vertices, edges between 
them may arise because an electro-optical or infrared sen-
sor (supplying imagery intelligence [IMINT]) detected 
transit between the two locations. Alternatively, an edge 
may exist because human intelligence (HUMINT) assets 
report that a single individual owns both properties. Or 
perhaps a particular radio signature (signal intelligence, 
or SIGINT) was observed at both locations. A multi-INT 
graph integrates all available relational information to cre-
ate a unified topological view of the entities and their inter-
actions. Figure 1 depicts a small multi-INT graph. 

When the relations between entities are time-vary-
ing, the graph used to represent those relationships must 
also vary with time. A space-time graph is a sequence of 
graphs, Gt

{ }
t = 0

T  , that represents the sequence of interac-
tions between graph entities. This notion of a space-time 
graph is particularly useful when the data underlying the 
graph are inherently transactional, such as vehicle tracks 
connecting geolocations or e-mails connecting users. 
Without the loss of generality, it can be assumed that the 
set of vertices in a space-time graph is identical across all 
time samples, and that only the edge set is varying. Thus, 
the set of vertices in a space-time graph will be denoted 
as V (as in the static graph), but the sequence of edge sets 
will be denoted as Et. 

Bayesian Diffusion 
The concept of diffusion has been a very useful paradigm 
for performing various graph-based inference problems 
such as graph partitioning [4], attribute inference [5], 
and ranking [6]. At their heart, diffusion-based algo-
rithms are based on the assumption that for a vertex in 
the graph, its features (e.g., importance or group mem-
bership) are correlated with those of its neighbors. Math-
ematically, such assumptions are often justified through 
the use of Markov random walk models, in which the 
transition between two vertices that are “close” to each 

take time and effort to verify. Given the scale of modern 
networks, constructing them edge by edge and link by 
link can be prohibitively costly in terms of the number 
of analyst hours required. For situations in which only 
a subset of the network or graph is of interest, a method 
to prioritize particular connections for investigation can 
dramatically reduce the amount of time and effort ana-
lysts must exert to construct the network graph. 

Solving these complementary problems of graph dis-
covery and exploration is a common objective in a wide 
variety of applications, including social network analysis, 
web advertising, law enforcement, and counterterrorism. 
A particular application of interest is the identification 
of geographic sites connected together by a set of time-
stamped tracks [1–3]. As demonstrated by the example 
of bin Laden’s courier, tracking individuals’ movements 
from locations of known threatening activity to new loca-
tions can lead to significant intelligence gains. 

Lincoln Laboratory researchers have developed a dif-
fusion-based analytic that can be used to solve the prob-
lems of network detection and prioritized exploration. We 
have applied this analytic, called threat propagation, to 
the problem of network detection, demonstrating theo-
retically and empirically the effectiveness of the threat 
propagation metric. The threat propagation metric has 
also been adapted to the problem of prioritized explora-
tion and has been integrated into an interactive tool for 
aiding intelligence analysts in creating threat networks 
from wide-area motion imagery (WAMI) data. 

Analytic Framework 
Starting from a classical definition of a graph, we have 
developed the conceptual basis of threat propagation, 
and then introduced a new graph concept: the space-
time graph, which can be thought of as a time-sampled 
graph with a specific edge set. Using a continuous time 
stochastic process model, we show that the simple alge-
braic rules of the threat propagation algorithm accurately 
estimate the threat at specific vertices in the space-time 
graph. Additionally, the threat propagation algorithm can 
be viewed as the harmonic solution to Laplace’s equation 
on the graph, and the corresponding algorithmic imple-
mentation is called harmonic threat propagation. We 
have also developed an alternative implementation, based 
on the application of the Perron-Frobenius theorem to a 
particular stochastic model. 
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FIGURE 1. Multi-intelligence (Multi-INT) graphs fuse and enrich multimodal spatial-temporal data by adding asso-
ciations and interactions between entities.
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other in graph space is more likely than the transition 
between vertices that are “further apart.” 

The dynamic threat propagation algorithm pre-
sented in this article uses a diffusion process to predict 
which vertices in a space-time graph are expected to be 
interesting, given an observed cue. The mathematical 
formalism of this concept can be found in the compan-
ion article “Covert Network Detection” [7], in which it 
is shown that the basic equations of threat propagation 
follow directly from Bayes rule, given certain modeling 
assumptions and approximations. Detailed discussion of 
this concept can be found in the companion article, but a 
brief summary of the model is presented here. 

At each vertex v, independent of interactions with 
other vertices, the presence or absence of threat is 
denoted by a binary stochastic process Θv(t), which 
is assumed to have the following dynamics: transi-
tions from state 1 to state 0 follow a Markov jump 
process with Poisson rate λv , and no endogenous 
transitions occur from state 0 to state 1. Interactions 
between vertices affect the process in the following 
way: when vertex u interacts with vertex v beginning 
at time tu and ending at tv , with some fixed probability  
P(v ← u), Θv(tv ) ← Θu(tu ), where ← indicates an assign-
ment of one stochastic variable to the value of the other. 

Conceptually, in this model “threat” can be viewed as a 
virus that infects vertices for a random length of time and 
can replicate across vertices at the times of interactions.

 
Network Discovery 
The network-discovery problem consists of uncovering 
within a network the subset of vertices that exhibits a 
particular attribute or activity of interest. It is closely 
related to the problem of graph partitioning in that it 
partitions the graph into two subsets (the foreground 
and the background); however, it differs in that most 
approaches to graph partitioning focus solely on the 
graph topology, while the network-discovery problem 
may incorporate additional information about the ver-
tices. In our case, this additional information takes the 
form of tips: vertices that have been predetermined via 
some exogenous intelligence process to belong with 
some high probability to one of the partition elements. 
By using a diffusion process similar to that described 
in the section on Bayesian diffusion, the threat (mean-
ing the probability a vertex belongs to the foreground) 
can be propagated to other vertices in the graph. The 
specific mechanism for diffusing this threat depends 
on whether the graph is a traditional (i.e., static) or 
space-time graph. 
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Propagation on Static Graphs 
Starting with the static local community-detection prob-
lem, we assume that the presence and weight of each edge 
in the graph is known and fixed for all time. For example, 
in the case of an e-mail contact network, once an edge 
weight between a pair of vertices has been determined 
by integrating the history of e-mails between them, the 
actual timing of the e-mails is ignored. We detect vertices 
that belong to the community of interest by propagating 
the threat from tip vertex to other vertices along edges 
that represent interactions. 

Similar propagation-based approaches have been 
effectively employed in a variety of network application 
areas. For example, in the spread of infectious disease, 
infectious agents are deposited at sites and transmitted 
from person to person as infection propagates throughout 
the graph. In social network analysis, the concept of eigen-
vector centrality (which posits that each vertex’s importance 
is proportional to the sum of its neighbors’ importances) 
can be calculated through distributed message propagation 
[8]. Google’s PageRank algorithm [6] adapts eigenvector 
centrality to the information retrieval domain and posits 
that a web page has high rank if highly ranked pages link to 
it. Similarly, Kleinberg’s HITS (for hyperlink-induced topic 
search) algorithm [9] defines hub and authority scores1 
in a mutually recursive way: the hub score of a page is a 
function of the authority scores of the pages that link to it, 
and the authority of a page is a function of the hub scores 
of the pages that link to it. When PageRank and HITS are 
computed iteratively by using power iteration to find the 
relevant dominant eigenvectors, the quantities of interest 
can be viewed as propagating along hyperlinks. 

While based on the family of eigenvector centrality 
techniques, our approach to estimating threat general-
izes previous developments in two key ways. First, we 
incorporate existing knowledge through threat estimates 
for tip vertices. In this framework, there can be multiple 
tip vertices—negative tip vertices (i.e., vertices with zero 
probability of threat) or tip vertices with any level of prob-
ability between zero and one. Second, we use a nonlinear 
propagation function that can vary by vertex type. This 
function adds flexibility in modeling the propagation 
“physics” for a particular domain. 

Let G = (V, E) be a graph, and denote the threat at 
vertex i as Pi . Denote the tip set to be T ⊂ V and the threat 
assessment π: T → [0, 1]. Define N: V → 2V (where 2V 

denotes the power set of V) to be the neighborhood func-
tional (i.e., j ∈ N(i) iff (i , j ) ∈ E). We estimate Pi using a 
function of the estimated threat at neighboring vertices 
as follows: 

 π (i),
Pi = { (λμα i + (1 –   ) maxλ

j ∈ N(i)
Pj),

i ∈T

i ∉T

 

(1)

where μ i  = λ
|N(i)| j ∈ N(i)

Pj
∑  , α  ∈ (0, 1) is a dampening fac-

tor, and λ  ∈ [0, 1] varies the relative contributions of 
the mean and max terms in the propagation function. In 
this development, we assume the parameters α and λ are 
fixed, but in general they could be made to vary depending 
on some attribute of vertex i. 

As a special case of Equation (1), if λ =1, then P is 
simply the eigenvector centrality of the graph. Alterna-
tively, if λ =0 then ∀i ∉ T , Pi = C, where C = max i ∈T π ( i ). 
Philosophically, the mean term in Equation (1) assumes 
each vertex’s attributes are defined by the average of their 
neighbors’ attributes, while the max term assumes they 
are defined by the most extreme values of the neighbors’ 
attrributes. Practically, λ trades off the impact of high-
degree2 vertices in defining the threat across the graph; 
when λ is small, individual tip vertices can have dramatic 
impact on the graph, but when λ is large (i.e., close to 
one), tip vertices with low degree will have relatively mod-
est effects on the graph. 

Computationally, estimates for non-tip vertices can 
be computed iteratively by updating Pi using estimates 
of neighboring vertices from the previous iteration. The 
algorithm stops when the maximum change in estimated 
threat from one iteration to the next is small—essentially 
a form of fixed-point iteration. Similar to other tech-
niques in the eigenvector centrality family, convergence 
is guaranteed with λ =1. For a general propagation func-
tion, it has not been shown that the proposed technique 
has a guarantee of convergence. However, in practice, 
we observed convergence for a wide range of λ over all 
datasets evaluated.

1. Web pages known as hubs are large directories of links to 
information on a particular topic; pages called authorities 
contain focused information on one topic. A high hub score 
indicates the page points to many others; a high authority 
score indicates that many hubs point to it.
2. In graph theory, the degree of a vertex is the number of 
edges connected to that vertex.
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Propagation on Space-Time Graphs 
The threat propagation algorithm diffuses estimates of 
a vertex’s foreground membership attribute (i.e., threat) 
through interactions with its local neighborhood. We 
have extended this concept to allow a vertex’s threat 
to vary over time. By tracking threat over time, we can 
determine when a vertex is acting as a member of the 
foreground, controlling how and when threat propa-
gates through the network. Details of the algorithms 
presented here were first reported in Smith et al. [3] 
and Philips et al. [10]. 

In the scenario depicted in Figure 2, the red vertex 
interacts with the black vertex at times t1 and t2. The blue 
vertex interacts with the black vertex at time t3. Given the 
time-varying threat signatures of the red and blue vertices 
shown in the accompanying graphs, in order to estimate 
the threat signature of the black vertex, we must make 
some assumptions about the dynamic process governing 
the foreground behavior we wish to detect. 

Recalling our definition of a space-time graph Gt = 
(V, Et ), we will abuse notation by letting E denote a set 
of triples of the form (i, j, t ), where (i, j, t ) ∈ E iff (i, j ) 
∈ Et . Furthermore, let E(i)= { ( j, t ) | (i, j, t ) ∈ E }. Equa-
tion (2) generalizes Equation (1) to allow for time-varying 
probabilities,

 

  
Pi (t) = (α + (1 –   ) maxλ

eij ∈ E(i)
g (t | eij ) ),

λ
iμ (t)

 
(2)

where μ i(t) = |E(i)|
1 ∑ g (t | eij )

eij ∈ E(i)  . The function g (t|eij ) 
is an application-specific interaction model describing 
the effect of an edge between vertex i and j over all time. 
This function g can naturally be divided into two terms. 
The first term is a scale factor defined by the probabil-
ity of threat transferred from j evaluated at the time that 
the edge is created. The second term is a kernel function 
defining how the probability of threat changes for times 
different from the edge creation time, 

 (3)

 

Pj (teij) K (t – teij ) . g (t | eij ) = 

 
Naturally, the kernel function K(t) must be defined on an 
application-specific basis because the effect of an edge 
on community membership may change depending 
upon the process governing the community one wishes 
to detect. In the example of a group of collaborating 

colleagues, it is expected that people in the same com-
munity are ones who attend the same meetings at the 
same time. Therefore, the interaction kernel could be a 
Gaussian function whose width is defined by the dura-
tion of a typical meeting. In a disease-spreading applica-
tion, a person may not be infectious until 24 to 48 hours 
after contracting the virus. In this situation, the desired 
kernel should be centered not at the time of interaction, 
but sometime after the interaction occurs. As defined in 
Equation (2), the overall estimated threat on vertex i is 
a weighted combination of all kernel functions arising 
from incoming edges. This property provides a smoothly 
varying function of threat that depends upon interac-
tion times as well as the community membership ker-
nel (as shown in Figure 3). Note that this formulation 
of community membership does not necessarily state 
that a vertex is a member of either the foreground or the 
background at any specific time. Rather, it provides the 
probability that the vertex is acting as a member of that 
community at a given time. This is analogous to the role 
indicator variable Z in “Mixed-Membership Stochastic 
Blockmodels” by Airoldi et al. [11].

Empirical Results 
Membership propagation is evaluated on two simulated 
datasets as well as on the Enron e-mail dataset [12]. 
Clauset’s local modularity maximization [13] and a cued 
version of Miller’s eigenspace analysis [1, 2] are used 
as baselines for performance comparisons against the 
methods proposed in this article. These three approaches 
represent a diverse range of cued community-detection 
techniques, all of which leverage the modularity matrix. 
Results show that dynamic membership propagation is 

FIGURE 2. Notional example of the dynamic community-
detection problem. Given threat over time on the outside 
red and blue vertices as well as edge times, one can esti-
mate the continuous time-varying probability of threat on 
the center vertex.
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?

t3t2t1 t1 t2 t3
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able to identify community membership better than the 
other two techniques because of its ability to leverage cor-
relations between edges over time. 

METHODOLOGY 

Because the methods discussed in this article are local 
(or cued) methods, performance inherently depends on 
the tip into the community of interest. Depending on 
the location of the tip vertex, performance will naturally 
increase or decrease on the basis of the information con-
tained in the tip. Therefore, detection results are calcu-
lated independently by using every possible tip into the 
foreground. Results are then averaged over all possible 
tips. This average result is then used to compare detec-
tion results across all methods. It is important to note 
that, unlike other methods, threat propagation is more 
general with the concept of a tip vertex. Threat propaga-
tion can take into account any type of prior information 
one may have about the network in question. In space-
time threat propagation, tip vertices can even vary their 
probability over time. To create a fair comparison, we 
only use one tip vertex at a time and keep its value con-
stant over all time (Ptip(t ) = 1). 

Declaration of community membership is carried out 
by setting a desired threshold on the threat level. In space-
time threat propagation, that probability can vary over 
time. Therefore, for the purpose of making a single dec-
laration on each vertex, the threat on each vertex is aver-
aged over time. The assumption here is that vertices that 
spend more time acting as members of the community of 
interest are more likely to be members of that community. 

DATA

The performance of each community-detection tech-
nique was determined by applying the techniques to 
three network datasets. A key feature of each dataset is 
that the communities within each network are defined 
by the coordinated dynamic interactions between their 
members and not necessarily by the static topology of 
the network. For each dataset, a subset of the network 
is chosen as the community of interest (the foreground) 
that the community-detection algorithms are tasked 
with distinguishing from the other remaining vertices 
(the background). 
Recursive matrix data. The first dataset consists of a net-
work topology that was constructed using the R-MAT 

(named for recursive matrix) graph generator [14], 
which produced a simulated network of 256 vertices 
and 3045 edges. A 16-vertex subset of the network was 
selected as the foreground community. A “rumor” was 
placed on one vertex in the foreground community. At 
each discrete time step, each foreground vertex commu-
nicates with a random subset of its neighbors at rates 
governed by a Poisson process, propagating the rumor. 
After a large number of time steps, the rumor will inevi-
tably spread to every member of the foreground commu-
nity. This foreground community is embedded within the 
remaining 240 background vertices through the R-MAT 
generation process. Unlike the foreground community, 
the background vertices do not interact in a coordinated 
fashion, but instead interact with neighbors at random. 
Figure 4a illustrates the topology of the rumor-spreading 
graph in a force-directed layout, with the foreground ver-
tices shown in red and the background vertices in gray. 
Note that the foreground community is highly connected 
to the background vertices. 
Enron e-mail corpus. The second dataset is the Enron 
e-mail corpus [12], consisting of time-stamped e-mails 
exchanged between employees at the Enron Corporation. 
The entire network consists of 156 vertices and 38,390 
interactions, where a vertex corresponds to an individual 
employee and an interaction corresponds to an e-mail 
sent from one employee to another. The foreground com-
munity for this network was chosen to be the 25 employ-
ees that the corpus identifies as members of the Enron 
legal department. The topology of this network is shown 
in Figure 4b; once again vertices with membership in the 
foreground community are colored red.  
Vehicle movement simulation. The third and final data-
set is a simulation of vehicle movement over a 48-hour 
time period in an urban environment. The simulation 

FIGURE 3. Notional result from dynamic membership 
propagation using a Gaussian kernel function. The black 
curve is a weighted combination of the red and blue mem-
bership kernels as defined in Equations (2) and (3). 
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was constructed by the National Geospatial-Intelligence 
Agency (NGA). The vertices in this network correspond 
to buildings at different locations within the city, and an 
edge between two vertices exists if a vehicle has traveled 
between the corresponding buildings. There are approxi-
mately 4400 vertices and over 116,000 edges in the net-
work. A small subset of this network corresponds to the 
operations of an insurgent cell that conducts activities 
at 31 different vertices over the course of the 48-hour 
period. Time stamps corresponding to departure and 
arrival times for each vehicle track allow exploitation 
of the dynamic properties of the dataset. The topology 
of this network is not shown here because the size and 
extensive connectivity of the network render its visual-
ization impractical for this article. For a more detailed 
discussion of this dataset, see Smith et al. [3].

DETECTION PERFORMANCE 

Figure 5 shows detection performance curves for all 
three networks. Results on the simulated rumor-spread-
ing graph are shown in Figure 5a. Both the eigenspace 
and local modularity methods are performing near 
chance. These results are not surprising, given that these 
methods are both designed to identify tightly connected 

communities and that the topology of this dataset was 
specifically designed to be the same for the foreground 
and the background. Static threat propagation shows 
detection performance well above chance. This perfor-
mance increase demonstrates the potential power of a 
tip vertex even in the absence of static structure. While 
methods such as local modularity also use a tip vertex, 
they force a hard decision at every iteration of the algo-
rithm. A bad decision, once made, is compounded as the 
method proceeds. In contrast, threat propagation passes 
soft probability estimates at every iteration, postponing 
a decision until the end. This feature mitigates the effect 
of any bad decision. Finally, space-time threat propaga-
tion shows the best performance of all. This boost above 
static threat propagation is due to space-time propaga-
tion’s ability to utilize the correlations between interac-
tions over time. 

Figures 5b and 5c show detection performance for 
the Enron e-mail graph and the simulated vehicle move-
ment graph, respectively. Both plots show similar per-
formance to the previous results, with space-time threat 
propagation having the best detection performance. 
Static threat propagation and eigenspace detection per-
formance fall off because of their inability to leverage 

FIGURE 4. Graph representation of the (a) simulated rumor-spreading network and (b) Enron e-mail network datasets 
used to evaluate community-detection algorithms. Foreground community vertices for each dataset are colored red, and 
background vertices are colored gray. 

Foreground community vertices

Background vertices

(a) Rumor-spreading graph (b) Enron e-mail graph
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the dynamic process. In both cases, local modularity ini-
tially has a large increase in probability of detection at 
very low probabilities of false alarm, but at some point 
in the calculation a wrong decision is made, and perfor-
mance plateaus. 

Network Exploration 
Real-world networks can be immense in size or difficult 
to construct, rendering data collection and processing on 
the entire network infeasible. Efficient sampling strate-
gies are therefore important in order to collect the most 
informative parts of the network. An example of a dif-
ficult network-exploration problem is the surveillance of 
hidden HIV populations [16], for which Magnani et al. 
investigated several sampling strategies, including the 
well-known “snowball” sampling and respondent-driven 
sampling. Similarly, for local community detection 
starting from a set of tip vertices, an efficient sampling 
strategy explores a small fraction of the complete net-
work while maximizing the end detection performance. 
Threat propagation offers a natural way for prioritizing 
network exploration. Intuitively, edges that propagate a 
higher amount of threat potential should be prioritized. 
Results on the simulated insurgent network data show 
that propagation-driven sampling is able to explore a 
very small fraction of the network while achieving good 
detection performance. 

Exploration of a moving intelligence3 (MOVINT)
graph is a manually intensive process. For example, 
automatic tracking of cars in dense urban environments 
is subject to many types of errors. Establishing connec-
tions between two locations requires a semiautomated 
approach with a human in the loop to correct potential 
tracking errors. The resulting workflow is a cued graph 
exploration approach whereby a location of interest is 
identified (a cue) and a graph is grown beginning at the 
cue location. This cue location is assumed to be known 
a priori and represents a site used by the foreground com-
munity. Beginning with a cue allows analysts to focus 
their attention on vehicles in a local region (in graph 
space) around a known foreground location. 

FIGURE 5. Community-detection results on the (a) rumor-
spreading graph, (b) Enron e-mail graph, and (c) vehicle 
movement graph. Plots compare community-detection per-
formance on a variety of algorithms including eigenspace 
detection (magenta), local modularity maximization (green), 
threat propagation (blue), and space-time threat propagation 
(red). Each of these graphs is a receiver operating character-
istic, or ROC, curve, relating the probability of detection to 
the probability of false alarms. 
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3. Moving intelligence refers to the knowledge gained from 
the tracking of moving objects on land or sea.
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Exploration Strategies 

BREADTH-FIRST SEARCH 

The breadth-first search (BFS) algorithm [17] provides 
a reasonable initial approach for exploration. In BFS, a 
graph is initially formed by following all vehicles depart-
ing or arriving at the cue location (vertex). Then for each 
location (vertex) found in step one, all vehicles are fol-
lowed again. The priority assigned to exploring edge E in 
the graph is therefore given by 

  Priority (E ) = min d(v(E), Vc ) , 
 

where d is the standard graph distance between vertices, 
v(E) are the vertices of edge E, and Vc is the cued vertex. 
This procedure is repeated until some fixed number of 
tracks are explored. Vertices at the same distance away 
from the cue are explored in random order, and vehicles 
departing any given vertex are followed in random order. 

Figure 6 shows three graphs at various stages of 
exploration using BFS on the simulated insurgent net-
work data. Note that while the vehicles may traverse long 
distances in physical space, all locations discovered are 
within one, two, or three hops from the cue vertex. 

DEGREE-WEIGHTED BREADTH-FIRST SEARCH

While BFS is good at exploring a neighborhood of vertices 
surrounding a cue vertex, the graph in Figure 6c demon-
strates a major drawback of this approach. The vast major-
ity of an analyst’s time spent on a graph such as in Figure 
6c is devoted to exploring tracks leaving a handful of high-
degree vertices. Under a fixed time constraint, this would 
not be an efficient use of human resources. This observation 
that BFS can be biased toward high-degree vertices has also 
been observed in a number of other studies [18, 19]. 

In order to combat the bias toward high-degree ver-
tices, a degree-weighted BFS approach is implemented. 
In degree-weighted BFS, vertices at the same distance 
from a cue vertex are explored in order of their degree, 
with low-degree vertices explored first and high-degree 
vertices explored last. Additional models of vertex rel-
evancy may also be used, depending upon the observable 
information available for each vertex and track. Because 
vertices represent clustered track destinations, it is pos-
sible to estimate the degree of each vertex by counting the 
number of destinations in each cluster, thereby providing 
an estimate of vertex degree before the exploration stage. 

Degree-weighted BFS improves upon the regular BFS but 
still does not fully capture the essence of threat discovery.

PROPAGATION-DRIVEN SAMPLING

Threat propagation, described in the network detection 
section, provides a natural measure for prioritization. 
Intuitively, vehicle tracks arriving or departing locations 
of higher estimated threats at that specific time are of 
higher interest. Prioritization based on the estimated 
threat performs a propagation-driven sampling on the 
network as vertices with higher threat are expanded first 
and their threat propagated. This exploration strategy is 
tailored specifically to the objective of network discovery. 
 
Exploration Performance 
The proposed exploration strategies have been evaluated on 
the simulated insurgent network data by using two metrics. 
One metric measures time required to explore the graph 
(human resources), and another measures efficiency at 
uncovering the foreground relative to the background. Three 
search strategies—propagation-driven sampling, degree-
weighted BFS, and standard BFS—are compared using each 
metric. The dataset used in the analysis is the previously dis-
cussed NGA dataset on vehicle movements, and the results 
represent averages across multiple independent runs, each 
seeded with a different tip into the foreground network. 

Figure 7 shows the percentage of the foreground net-
work found as a function of the number of tracks exam-
ined, which in general is proportional to the amount of 
human time required to uncover a certain percentage 
of the foreground network. Figure 7 shows that for a 
fixed percentage of the foreground network, space-time 
threat propagation is able to achieve a fixed percentage 
in approximately one-third the time of standard BFS, and 
half the time of even the degree-weighted BFS. 

Figure 8 shows the average portion of foreground 
network found against the average portion of the back-
ground network found. While this plot is similar to 
a traditional receiver operating characteristic (ROC) 
curve indicating probability-of-detection and probabil-
ity-of-false-alarm performance, there are subtle meth-
odological differences. This figure represents, given a 
fixed number of vertices that have been explored, how 
much of the foreground and background networks have 
been uncovered, and is not immediately comparable to 
expected optimal detection performance, such as what 
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FIGURE 6. Graphs constructed by following vehicles from one location to another. The left figures show vehicle 
movement overlaid on the aerial imagery while the right figures show the same movement represented as graphs. 
From top to bottom, each figure shows the graph at various stages of exploration using breadth-first search. The 
foreground subgraph is shown using red vertices, and the background graph is shown using gray vertices. The cue 
vertex is shown in yellow. The left-hand images are from ©DigitalGlobe. 
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is shown in Figure 5c. In general, after a fixed number of 
vertices have been explored, the expected relative propor-
tions of foreground and background vertices uncovered 
are maximized by using a propagation-based exploration 
method, relative to either of the BFS approaches. 

Intelligence, Surveillance, and Reconnaissance 
Network-Discovery Tool 
Software components for effective data visualization, 
exploration, and graph construction are critical tools for 
analysts, particularly when the raw data are voluminous 
and originate from diverse sensor types. In a typical net-
work-discovery task, a team of analysts might be tasked 
with using wide-area motion imagery (WAMI) data to 
construct a network in which vertices are geospatial loca-
tions (sites) and edges are formed by vehicle tracks that 
originate from one location and terminate at another. 
To build this type of graph, the analysts are given a tip 
location from which to begin their analysis. They then 
monitor the site over several hours or perhaps even days 
of WAMI video in order to identify vehicles arriving at 
or departing from the location. Those vehicles are then 
tracked back to their points of origin or destination, which 
then become new vertices in the network. The process 
repeats, starting from the newly discovered vertices. 

Although this network construction workflow is 
simple and effective, it is time-consuming and manually 
intensive. Depending on the size of the dataset and the level 

of activity at the locations of interest, analysts may spend 
large fractions of their time on tedious tasks; they may need 
to view several minutes of video simply to find a vehicle 
to track, and then spend several more minutes tracking 
the vehicle frame by frame. Furthermore, analysts typi-
cally require multiple software applications for exploitation 
and dissemination. For example, an analyst might use one 
tool to view the WAMI data and track vehicles, another to 
build and visualize a graph, and yet others to display and 
communicate their findings to their collaborating analysts. 
Many software packages excel at those tasks individually, 
but none are optimized for the workflows inherent to the 
collaborative network-discovery task. 

BlueStreak Exploitation Tool 
To address this problem of a labor-intensive process that 
requires multiple tools, we developed a software exploita-
tion system named BlueStreak that supports data visualiza-
tion, graph construction, algorithm services, and analyst 
collaboration within the network-discovery framework. The 
system, shown in Figure 9, is composed of analyst user inter-
faces (clients) that are connected via a collaboration server. 
Additional modular services, such as data-retrieval services, 
tracking services, or graph-exploitation algorithms, can be 
“plugged in” to the collaboration infrastructure as desired to 
provide additional functionality. Consequently, the clients’ 
main responsibility is data visualization, and heavy compu-
tation is carried out on the servers.  

FIGURE 8. Comparison of exploration outcomes of space-
time threat propagation (red), degree-weighted breadth first 
search (BFS) (blue), and standard BFS (green). For a given 
operating point (i.e., number of vertices explored), propaga-
tion-based exploration generally uncovers more threatening 
vertices than either of the breadth-first methods. 
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FIGURE 7. Comparison of operator exploration efficiency 
of space-time threat propagation (red), degree-weighted 
breadth-first search (BFS) (blue), and standard BFS 
(green). Propagation-based exploration uncovers the net-
work approximately twice as fast as either of the breadth-
first search methods.
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demand” from those services as they require the data. 
If new data sources become available and are exposed 
as services, the clients can be configured to ingest and 
display them. In this way, several modes of intelligence 
are able to be displayed simultaneously in the client. In 
addition, the modular “plug-and-play” nature of the sys-
tem provides easy deployment of new capabilities and 
updating of older ones. 

Multi-INT Workflow 
With the BlueStreak tool, the operator’s network-discov-
ery workflow, shown in Figure 10, is enhanced. As in the 
manual workflow, the analyst begins from a tip site. How-
ever, instead of manually tracking movers to construct 
the network, the user has the ability to nominate a space-
time region around the site of interest. This nomination is 
converted into “region-tracking” requests, which are then 
sent over the publish/subscribe channel to an on-demand 
tracking service. Tracking jobs are carried out on high-per-
formance computing resources, and any tracks that begin 
or terminate within the space-time region are displayed 

The BlueStreak client serves as the user interface and 
is built using the NetBeans Rich Client Platform (RCP) 
and other open-source components. The geospatial visual-
ization component of the tool is based on the NASA World 
Wind Java SDK (software development kit). The tool also 
features a built-in graph construction capability using the 
Java Universal Network/Graph (JUNG) framework. 

The BlueStreak collaboration server runs on Apache 
Tomcat and uses an in-house application framework called 
Maestro that allows deployment of modular services into 
the system. The clients and the servers communicate over 
a publish/subscribe channel, which is implemented using 
the Apache ActiveMQ message broker. This channel is 
shared among all clients, the collaboration server, and 
other services to synchronize information among them. 

This service-oriented architecture offers several 
practical advantages. Because the major computational 
work is performed on the server side, the clients do 
not have to incorporate or even be physically close to 
a data storage and processing infrastructure. Data are 
made available as services, and users request data “on 

FIGURE 9. Screenshot of the BlueStreak client. The largest windows in the tool represent the map viewer (for displaying 
imagery and geospatial data) and the integrated graph viewer. 
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to the user. These tracks are automatically extended by 
entity trackers that attempt to track the vehicle to its point 
of origin or destination. Automatic trackers are occasion-
ally prone to swaps, breaks, and other errors, so the cli-
ent includes two track-repair tools that enable the user to 
throw out erroneous track points and restart an automatic 
tracker on the appropriate vehicle. As a failsafe measure, 
the analyst can at any point seamlessly revert back to a 
more manual tracking mode, in which mouse clicks on the 
image data generate and extend tracks. 

Once the track is complete, the analyst can annotate a 
new location of interest at its endpoint. This new annota-
tion automatically appears as a vertex in the graph com-
ponent of the BlueStreak client. When the user performs 
a link action to connect the track to a location, the track 
automatically appears as an edge in the graph viewer. 
Thus, graph construction proceeds as a natural extension 
of the tracking workflow. 

When vertices and edges are created, update messages 
are sent over the publish/subscribe channel to a graph algo-
rithm service. This service uses the space-time threat propa-
gation algorithm to propagate threat from the tip site(s) to 

other vertices in the graph. A list of sites ordered by threat 
level is presented on a separate window in the BlueStreak 
client in order to help the analysts prioritize their efforts to 
sites with the highest threat level. Tracks are also prioritized 
according to the level of threat that they carry, permitting 
users to select the next highest threatening track as their 
next analysis task. This feature is particularly useful when 
several tracks are generated from a region-tracking request, 
and the user must decide which of those tracks to follow first. 

The BlueStreak collaboration server plays a critical role 
in the workflow. The service-oriented architecture allows 
many clients to access the same data and same graph simul-
taneously; therefore, multiple analysts may build the same 
graph at the same time. Each connected user can see the 
tracks, graph vertices, and graph edges generated by other 
analysts, so dissemination of the analysts’ work occurs 
organically. However, the danger of such an arrangement 
is that multiple analysts follow the same track, duplicating 
effort and wasting valuable time. To mitigate the chances of 
such an event, the collaboration server maintains a check-
in, check-out system for tracking tasks. When a region-
tracking request returns tracks to the client, each track is 

FIGURE 10. Schematic of the BlueStreak architecture. The publish/subscribe channel serves as the messaging backbone 
between the clients and various services. The system accommodates data services, algorithm services, and storage services. 
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assigned a unique task identification. The users can check 
out a particular task, and the checked-out status becomes 
visible to other analysts. When the tracking task is com-
plete, the user who checked it out marks it as such. If this 
system is used optimally, the chance that effort is duplicated 
becomes extremely remote.  

Future Directions
The methodology described in this article addresses the 
complementary problems of cued network discovery and 
exploration. Given a sequence of dynamic point-to-point con-
nections and a set of known points of interest, the dynamic 
threat propagation algorithm can infer where to look for 
additional connections, as well as which currently known 
points are of primary interest. The dynamic threat propaga-
tion algorithm has been shown to be effective for network 
discovery and exploration on a diverse collection of datasets, 
including the Enron e-mail corpus, a set of vehicle tracks, and 
an artificially constructed rumor-spreading graph. 

Future enhancements to the algorithm include  
(1) improving the process by which the temporal kernel is 
selected and (2) automatically tuning the Bayesian diffu-
sion model. In the current implementation, the temporal 
kernel was selected by the analyst to provide optimal per-
formance. Also, the kernel is identical for all connection 
events. In the future, the threat propagation kernel will 
be automatically chosen and tuned to the particular sta-
tistical characteristics of the connection event. 

A second area of potential improvement is the exten-
sion of the diffusion model to account for constrained paths 
of diffusion. Currently, all temporal diffusion paths are 
treated equally by the algorithm; however, some types of 
multi-INT information may restrict or constrain the threat 
diffusion paths. Incorporating these types of information 
into the multi-INT algorithm will broaden the applicability 
of the method and improve its inferential ability. 
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