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Network analysis has been a major 
research area over the last ten years, driven 
by interest in biological networks, cyber 
attacks, social networks, and criminal or 

terrorist organizations. This range of applications is 
illustrated in Figure 1. Detection of a covert community 
is most likely to be effective if the community exhibits 
high levels of connection activity. However, the covert 
networks of interest to many applications are unlikely to 
cooperate with this optimistic assumption. Indeed, a “fully 
connected network is an unlikely description of the enemy 
insurgent order of battle [1].” A clandestine or covert 
community is more likely to appear cellular and distrib-
uted [2]. Communities of this type can be represented 
with “small world” models [3]. The covert networks of 
interest in this paper exist to accomplish nefarious, illegal, 
or terrorist goals while “hiding in plain sight [4, 5].” 

Covert networks necessarily adopt operational pro-
cedures to remain hidden and robustly adapt to losses 
of parts of the network. For example, during the Alge-
rian Revolution, the National Liberation Front’s (FLN)  
Autonomous Zone of Algiers (ZAA) military command 
was ‘‘carefully kept apart from other elements of the 
organization, the network was broken down into a num-
ber of quite distinct and compartmented branches, in 
communication only with the network chief,” allowing 
ZAA leader Yassef Saadi to command “within 200 yards 
from the office of the [French] army commandant... and 
remain there several months [6].” Valdis Krebs’ recon-
struction of the 11 September 2001 terrorist network 
details the strategy for keeping cell members distant 
from each other and from other cells, and notes Osama 

Covert network detection is an important 
capability in areas of applied research in which 
the data of interest can be represented as 
a relatively small subgraph in an enormous, 
potentially uninteresting background. This 
aspect characterizes covert network detection 
as a “Big Data” problem. In this article, a new 
Bayesian network detection framework is 
introduced that partitions the graph on the basis 
of prior information and direct observations. We 
also explore a new generative stochastic model 
for covert networks and analyze the detection 
performance of both classes of optimal 
detection techniques.
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bursts of activity that a covert community may be most vul-
nerable to detection [1].

Because the connections between nodes are observ-
able only when they are active, there are two basic strat-
egies for detecting a covert threat: (1) subject-based 
Bayesian models that correlate a priori information or 
observations of the observed network connections; (2) 
pattern-based (predictive) methods that look for known 
patterns of organization and behavior to infer nefarious 
activity [4, 10]. Subject-based methods follow established 
principles of police investigations to accrue evidence 
based upon observed connections and historical data. 
The dependency of predictive methods on known patterns, 
however, makes them difficult to apply to rare and widely 
different covert threats: “there are no meaningful patterns 

bin Laden’s description of this organization: “those... 
who were trained to fly didn’t know the others. One 
group of people did not know the other group [7].” 
This type of organization is characterized by a tree, as 
shown in Figure 2. A covert network does not have to 
be human to be nefarious; the widespread Flashback 
malware attack on Apple’s OS~X computers employed 
switched load balancing between servers to avoid detec-
tion [8], mirroring the ZAA’s tree structure for robust 
covert network organization.

In order to accomplish its goals, the covert net-
work must judiciously use “transitory shortcuts [9].” For 
example, in the 9/11 terrorism operation, after coordina-
tion meetings connected distant parts of the network, the 
“cross-ties went dormant [7].” It is during these occasional 

That’s why we don’t know
our adversaries.

1 commander of armed
groups of the district

1 deputy to the
group commander

Letter drops

3 leaders of
armed groups
3 deputies to
group leaders

9 cells of 3 men

FIGURE 1. Network detection or discovery is the primary objective in many applications, including 
problems in intelligence, surveillance, and reconnaissance (ISR) and the frontiers of biological knowl-
edge. This figure illustrates how networks of interactions are contructed from (a) protein-protein 
interactions and (b) multi-intelligent datasets, such as text communications, ground moving-target 
indication (GMTI), and wide-area motion imagery (WAMI).

FIGURE 2. Covert networks are often organized as tree structures to avoid detection. The network illustrated is the FLN’s 
Autonomous Zone of Algiers (ZAA) from Trinquier’s monograph and the film Battle of Algiers [6, 11].
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that show what behavior indicates planning or preparation 
for terrorism [4].” The real-world consequences of apply-
ing an inappropriate model to detect a threat may include 
an unacceptable number of false positives and an erosion 
of individual privacy rights and civil liberties [4, 10].

The general problem of network detection is referred 
to as graph partitioning, wherein a large graph is subdi-
vided into all of its component subgraphs. Covert network 
detection for discovering clandestine behavior is a special 
case in which the desired graph partition is binary: the 
covert subgraph is discovered on the basis of the existence 
of observed activities (see Figure 3). In this article, the 
focus will be on observations of network activities using 
intelligence, surveillance, and reconnaissance (ISR) sen-
sors, such as wide-area motion imagery (WAMI). Covert 
networks engaged in terrorist attacks with improvised 
explosive devices (IEDs) comprise loosely connected cells 
with various functions, such as finance, planning, opera-
tions, logistics, security, and propaganda.

A new model of covert threat for detection analysis 
that accounts for the realities of dynamic foreground net-
works in large backgrounds is a specially adapted version 
of a mixed-membership stochastic block model [12]. The 
terrorist cells of interest are embedded into a background 
consisting of many “neutral” communities that represent 
business, homes, industry, religion, sports, etc. Because 
in real life people wear different “hats” depending upon 
the communities with which they interact, their propor-

tions of membership in multiple communities (lifestyles) 
can be adjusted to control the occasional coordination 
between the foreground and background networks. The 
new generative block model approach introduced in the 
section entitled “Network Models and Performance” 
leads to an analytically tractable tool with sufficient 
parameters to exhibit realistic coordinated activity levels 
and interactions.

Network Detection
Network Detection is Graph Partitioning
Network detection is a special case of the general graph-
partitioning (GP) problem in which the parts of a graph 
must be divided into a set of similar classes. There are 
simply two classes for network detection: membership or 
non-membership. In general, there could be many classes, 
and typically graph partitioning is an “NP-hard” prob-
lem, meaning that GP almost certainly cannot be solved 
in “polynomial time” because of GP’s intrinsically com-
binatoric characteristics, and that GP has prohibitively 
terrible scaling properties as the size of the graph grows. 
Fortunately, the solutions to a great many GP problems 
may be cast as approximate solutions to various optimi-
zation problems that are solvable in polynomial time and 
thereby possess practical computational and scaling prop-
erties (Figure 4). 

The solution to many special cases of graph par-
titioning may be cast as a semidefinite-programming 

FIGURE 3. Network detection is a special case of the graph partitioning problem in which a graph must be divided 
into related subgraphs. The examples shown here are (a) the European Science in Society study [13] and (b) the 
foreground and representative background from the simulated insurgent network illustrated later in Figure 10.
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(SDP) method, offering both practical and oftentimes 
theoretically attractive approximation to GP [14, 15]. 
In general, practical GP approaches exploit a variety of 
global and local connectivity properties to divide a graph 
into many subgraphs. Decreasing algorithmic complex-
ity is achieved in certain domains that may be cast as 
quadratic optimization problems that yield eigenvalue- 
or spectral-based methods. The lowest-cost graph par-
titioning problems involve diffusion on the graph, which 
is solved with a set of linear equations. Network detec-
tion may be cast as either an optimization problem in 
which a connectivity measure of the detected network is 
optimized, or as a Bayesian detection problem in which 
the probability of network detection is optimized given 
a set of observations. Approaches based on optimizing 
connectivity are generally called community detection, 
and Bayesian approaches based on diffusion models 
and optimizing detection probability are called threat 
propagation [16–18].

This article describes these approaches to network 
detection applied to covert networks. It is demonstrated 
that space-time threat propagation (STTP) optimizes the 

probability of network detection in a Neyman-Pearson 
sense, given prior information and/or direct observations, 
meaning that the detection probability is maximized 
given a fixed false alarm, also known as a false-positive 
probability. This property is important because it provides 
a practical optimum algorithm in many settings, and it 
provides a performance bound on detection performance. 
Remarkably, the two apparently different optimal net-
work detection approaches are related to each other by 
using insights from algebraic graph theory. Both spectral-
based and Neyman-Pearson network-detection methods 
are described in the following section. Network-detection 
performance is assessed using a new stochastic block 
model for small, dynamic foreground networks embed-
ded within a large background [12].

Optimum Network Detection
The objective of any network-detection method is the 
computation of the degree to which each vertex in a graph 
belongs to a network. In Bayesian network detection, for 
example, the probability of threat at a particular vertex is 
determined. Because the likelihood of threat at every ver-
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Covert network detection 

NP-hard
solutions

• Normalized cut/
 Conductance

• Maximum flow

• Multiresolution
 methods (MR)

• Latent semantic
 indexing (LSI)
• k-means clustering

• Manifold learning (ML)

• Spectral methods

• Heat kernel/random walks
• Personalized Page Rank (PPR)

• Bayesian or space-time
 threat propagation (STTP)

• General approach for 
 many partitioning problems
• O (polynomial size) 
 complexity

• Eigensolver formulation
• O (n•log n) to O (n3)
 complexity (sparsity 
 dependent)

• Matrix inverse formulation
• O (n•log n) to O (n2)
 complexity (sparsity 
 dependent)

Computational complexity

Laplacian
Lv = 0

Spectral/SVD/PCA
Av = λv

SDP/LP
minx C • X : Ak • X ≤ bk , X ≥ 0

FIGURE 4. A taxonomy of network-detection algorithms, ranging from general graph partitioning methods that 
solve a semidefinite-programming problem, to spectral methods that optimize connectivity, to Bayesian or Lapla-
cian methods that optimize detection probability. This article focuses on local spectral and harmonic methods for 
network detection. (Images used from various sources; clockwise from upper left [19–24]).
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tex necessarily depends upon its neighbors connected to 
that vertex in the graph, the probability of threat at every 
vertex is a function of the probability of threat of the ver-
tices’ neighbors. A graph G = (V, E) is defined by two sets, 
the vertices V of G, and the edges E ⊂ [V]2 ⊂ 2V of G, in 
which [V]2 denotes the set of 2-element subsets of V [25]. 
For example, the sets V ={ 1, 2, 3} and E= {{ 1, 2}, { 2, 3}} 
describe a simple graph with undirected edges between 
vertices 1 and 2, and 2 and 3: 1      2      3 .

SPACE-TIME THREAT PROPAGATION

Consider the probability of threat at vertex v in Figure 5. 
Under independence and first-order approximation 
assumptions [17], the probability of threat at vertex v 
given an observation z, denoted P (v | z ), is represented 
by the linear approximation 

 
 

P (v | z ) ≈ P (1 | z ) P (1 〉 v ) +
P (2 | z ) P (2 〉 v ) + P (3 | z ) P (3 〉 v ),

where, as illustrated in the example in Figure 5, v is con-
nected to the vertices 1, 2, and 3. The probability P (u 〉 v ) 
represents the probability that the threat moves along 
the connection from u to v and is called the propagation 
model. By applying this argument to the remaining verti-
ces in Figure 5, the probability of threat at vertices 2, 3, ... 
is given by the linear equations 

 

P (2 | z ) ≈ P (v | z ) P (v 〉 2 ) +
P (4 | z ) P (4 〉 2 ) + P (5 | z ) P (5 〉 2 )

 
 

P (3 | z ) ≈ P (v | z ) P (v 〉 3 ) +
P (10 | z ) P (10 〉 3 ) + P (11 | z ) P (11 〉 3 )

 . . .   . . .   . . .   . . .   . . .   . . .  

At the vertex or vertices with an observed threat, the 
threat is fixed by using the observation model P (1 | z ) ∝ 
P (z | 1 ). The most basic model is P (1 | z ) ≡ 1 if there is 
a threat observed at node 1. There are, in general, time  
stamps associated with each edge, and space-time threat 
propagation over these edges and times is modeled with 
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iFIGURE 5. Mathematical representation of propagating 
and solving Bayesian threat over a network, given a specific 
set of observations. Bayes’ rule, along with threat propaga-
tion models, implies that the probability of threat at a spe-
cific vertex is equal to a weighted average of the threat at 
neighboring vertices. This Bayesian threat can be solved by 
inverting the graph Laplacian matrix, which depends upon 
the graph adjacency matrix A.
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a jump process, yielding a space-time threat kernel [17]. 
This system of linear equations determines the unknown 
threat probabilities at vertices for which no threats are 
directly observed but are connected by one or more hops 
through the graph to observed threats.

GRAPH THEORY

The set of linear equations that defines the threat proba-
bilities is easily solved by expressing these equations using 
matrix notation (Figure 5). The set of threat probabilities 
forms the column vector 

 

ϑ = 

P (1 | z )

P (12 | z )

P (2 | z )
•
•
•⎩

⎧ ⎩
⎧,

 
where in the example the vertex v is numbered as ver-
tex 12. As illustrated in Figure 5, the square matrix A is 
formed whose elements (i , j ) are set to 1 along row i if 
vertex i is connected to vertex j. Otherwise, the matrix is 
zero if there is no direct connection between i and j. This 
matrix is called the adjacency matrix of the graph. It is a 
symmetric matrix (Aij = Aji ); if vertex i is connected to 
vertex j implies vertex j is connected to vertex i. It is also 
typically a sparse matrix because most elements of this 
matrix equal zero. A simple threat propagation model 
is the nearest-neighbor average assumption P (u 〉 v ) ∝ 
d(u)–1 in which d(u) is the number of neighbors of ver-
tex u called the degree of u. The diagonal degree matrix 
D = diag (d(1), d(2), ... , d (12)) accounts for the degrees of 
all vertices in the graph. Using the adjacency and degree 
matrices, the system of linear equations that determines 
the threat probabilities is written as the matrix-vector 
multiplication 

 D–1 A ϑ  = ϑ  ,

where D–1
 = diag (d(1)–1, d(2)–1, ... , d (12)–1 ) is the inverse of 

the diagonal matrix such that D–1 D = I and I = diag(1, ... ,1) 
is the identity matrix. This matrix equation is solved for 
the threat probability vector ϑ by subtracting D–1 Aϑ from 
both sides of the equation to obtain the equation 

 ϑ  – D–1 A ϑ  = (I – D–1 A) ϑ  = L ϑ .

Finally, the unknown threat probabilities are deter-
mined by treating this “harmonic” system of equations 
as a boundary value problem in which the observed cue 
vertices are treated as known boundary values, and the 
unknown vertices are treated as interior points whose 
values must be computed. This separation between verti-
ces with observations (marked with  ) and those without 
(unmarked) is also depicted in Figure 5.

The matrix L = I – D–1 A is called the (asymmetric) 
Laplacian matrix. It is related to the graph Laplacian 
matrix L = I – D–1/2 AD–1/2 = D–1/2 LD–1/2 and the graph Kir-
choff matrix Q = D – A = D1/2 LD1/2 via matrix similarity and 
congruence transformations [26]. This fact is of funda-
mental importance because it connects Bayesian threat 
propagation to a multitude of problems in graph theory, 
network detection methods, and harmonic analysis. The 
graph Laplacian L is the discretized Laplacian operator 

Δ = ∂2/∂x2 + ∂2/∂y2 + ... that appears in numerous physi-
cal applications, and the asymmetric Laplacian L plays an 
important role in mean-value theorems involving solu-
tions to Laplace’s equation Lϑ  = 0.  This harmonic equa-
tion will be seen to be the motivating equation behind 
several network-detection algorithms. Given a cue at 
boundary vertices represented by the threat vector ϑ b , 
the harmonic threat at the remaining interior vertices is 
the solution 

 
ϑ

i = Lii
–1 (Lib

ϑ
b ).  

This highly sparse linear system may be solved by 
iterative methods such as the biconjugate gradients, 
which provide a practical computational approach that 
scales well to graphs with thousands of vertices and thou-
sands of time samples, resulting in space-time graphs of 
order 10 million or more. In practice, significantly smaller 
subgraphs are encountered in applications such as threat 
network discovery, for which linear solvers with sparse 
systems are extremely fast [27].

Many important network detection applications, 
especially networks based on vehicle tracks and com-
puter communication networks, involve directed graphs 
in which the edges have departure and arrival times 
associated with their initial and terminal vertices [17]. 
In such scenarios, the time-stamped graph G = (V, E) 
may be viewed as a space-time graph GT = (V × T, E T ) 
in which T is the set of sample times and ET ⊂ [V × T]2 
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is an edge set determined by the temporal correlations 
between vertices at specific times. Two space-time graphs 
are illustrated in Figure 6.

NEYMAN-PEARSON OPTIMALITY
Detection optimality means optimality in the Neyman-
Pearson sense in which the probability of detection is 
maximized at a fixed false-alarm rate. In the context of net-
works, the probability of detection (PD) refers to the frac-
tion of vertices detected belonging to the threat subgraph, 
and the probability of false alarm (PFA) refers to the frac-
tion of non-threat vertices detected. As in classical detec-
tion theory [28], the optimal detector is a threshold of the 
log-likelihood ratio (LLR). A new Bayesian framework for 
network detection is developed in this section. The distinc-
tion between classical detection theory and network detec-
tion theory is not in the form of the optimal detector—the 
log-likelihood ratio—but in distinct mathematical formula-
tions. Whereas linear algebra is the foundation for classical 
detection theory, algebraic graph theory is the foundation 
for network detection, as evidenced earlier [29].

Network detection of a subgraph within a graph 
G = ( V, E ) of order n is treated as n independent binary 

hypothesis tests to decide which of the graph’s n vertices do 
belong or do not belong (null hypothesis H0 or hypothesis 
H1) to the network. Maximizing the probability of detection 
(PD) for a fixed probability of false alarm (PFA) yields the 
Neyman-Pearson test involving the log-likelihood ratio of 
the competing hypothesis. The optimal Neyman-Pearson 
detector is given by the likelihood ratio (LR) test, 

 

f (z|Θv = 1)

f (z|Θv = 0)

H1 (v)

H0 (v)
>> λ .=

 

The numerator f (z|Θv = 1) is easily computed using 
standard Bayesian analysis, leading to the threat propa-
gation algorithm for f (Θv| z ) and a connection to the 
Laplacian L described earlier in this section, and the 
denominator f (z|Θv = 0) is determined by prior back-
ground information or simply the “principle of insuf-
ficient reason” in which this term is a constant [30]. 
An application of Bayes’ theorem to the harmonic 
threat provides the optimum Neyman-Pearson detec-
tor because it results in a threshold of the harmonic 
space-time threat propagation vector
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FIGURE 6. A directed space-time graph represents relationships between different vertices at different times. 
Time-stamped tracks or connections between entities determine a space-time graph. The example space-time 
graph shown on the right is the insurgent network illustrated later in Figure 10.
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graph—is quantified by the quadratic form sTQ s, where 
s = (± 1, ... , ± 1)T is a ± 1 vector whose entries are deter-
mined by subgraph membership [34]. Minimizing this 
quadratic form over s, whose solution is an eigenvalue 
problem for the graph Laplacian, provides a network- 
detection algorithm based on the model of minimal 
cut size. However, there is a paradox in the application 
of spectral methods to network detection: the small-
est eigenvalue of the graph Laplacian l0(Q) = 0 corre-
sponds to the eigenvector 1 (constant over all vertices) 
that fails to discriminate between subgraphs. Intuitively, 
this degenerate constant solution makes sense because 
the two subgraphs with minimal (zero) subgraph cut size 
are the entire graph itself, s ≡ 1, or the null graph s ≡ –1. 
This property manifests itself in many well-known results 
from complex analysis, such as the maximum principle.

Fiedler also showed that if instead of using the zeroth 
eigenvector, rather the eigenvector ξ1 corresponding to 
the second smallest eigenvalue l1(Q) of Q is used, then 
for every nonpositive constant c ≤ 0, the subgraph whose 
vertices are defined by the threshold ξ1 ≥ c is necessar-
ily connected. This algorithm is called spectral detection. 
Given a graph G, the number l1(Q) is called the Fiedler 
value of G, and the corresponding eigenvector ξ1(Q) is 
called the Fiedler vector. The Fiedler value is also called 
the algebraic connectivity because the greater the Fiedler 
value, the smaller the graph diameter, implying greater 
graph connectivity. 

 

H1 

H0 
>>threshold,ϑ

 
possibly weighted by a nonuniform null distribution that 
provides an optimum network detection method [17].

The block diagram for threat propagation is illustrated 
in Figure 7. The graph is constructed from knowledge of new 
vertices and edges. Specific observations at any of these verti-
ces are incorporated by using the observation model. Bayes’ 
rule is applied, and the solution to the harmonic space-time 
threat is computed as a function of both space and time, 
yielding the (unnormalized) probability of threat for all 
vertices and times. Finally, this probability is thresholded 
by using the Neyman-Pearson likelihood ratio test, and the 
most likely vertices are declared to be the detected network.

Community Detection
The spectral methods in this section solve the graph parti-
tioning problem by optimizing various subgraph connec-
tivity properties. Efficient graph-partitioning algorithms 
and analysis appeared in the 1970s with Donath and Hoff-
man’s eigenvalue-based bounds for graph-partitioning [31] 
and Fiedler’s connectivity analysis and graph-partitioning 
algorithm [32, 33], which established the connection 
between a graph’s algebraic properties and the spectrum 
of its Kirchhoff Laplacian matrix Q = D – A. 

The cut size of a subgraph—the number of edges 
necessary to remove to separate the subgraph from the 

Graph Observations Bayes’ rule Detector

New connections New observations

Bayesian update: xi (k+1) = xi (k) + Lii
–1(Lib(k+1)·xb(k+1))
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Threshold threat
probability

Subgraph threshold/
detection

xi = Lii
–1(Lib· xb) 0
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Covert tree
network

Covert tree
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FIGURE 7. The block diagram of space-time threat propagation involves forming a graph, making observations at spe-
cific graph vertices and times, applying Bayes’ rule to determine the probability of threat over all vertices and time, then 
applying a threshold to this probability and declaring a threat network.
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Newman introduced the alternate criterion of sub-
graph “modularity” for subgraph detection [35] because, 
in practice, spectral detection with its implicit assumption 
of minimizing the cut size oftentimes does not detect an 
intuitively appealing subgraph. Rather than minimizing 
the cut size, Newman modularity maximizes the sub-
graph connectivity relative to background graph connec-
tivity, which yields the quadratic maximization problem 
maxs s

TMs, where M = A – V 
–1ddT is Newman’s modu-

larity matrix, A is the adjacency matrix, (d)i = di is the 
degree vector, and V = 1Td is the graph volume [35]. New-
man’s modularity-based graph-partitioning algorithm, 
also called community detection, involves thresholding 
the values of the principal eigenvector of M, defined by 
columns of the matrix U in the equation 

 M := ULUT. 

Miller et al. [36–38] also consider thresholding arbitrary 
eigenvectors of the modularity matrix, which by the Courant 
minimax principle biases the Newman community-detec-
tion algorithm to smaller subgraphs, a desirable property 
for many applications. They also outline an approach for 
exploiting observations within the spectral framework [36].

The block diagram for community detection is illus-
trated in Figure 8. The graph is constructed from knowl-
edge of new vertices and edges. The modularity matrix is 
formed, implicitly or explicitly, from the graph’s adjacency 
matrix, and eigensolvers are used in conjunction with a 
subspace selection algorithm to compute a two-dimen-

sional scatterplot. The resulting scatterplot is clustered 
by using a k-means clustering algorithm, and the smaller 
cluster is declared to be the detected network.

Network Models and Performance
Analyzing and predicting the performance of detection 
methods are essential for data collection and system design. 
Currently, only a few limited methods are used to assess 
network-detection performance, though several areas for 
future research are promising. There are two ways to dem-
onstrate network-detection performance: empirical and 
theoretical, both of which depend on detailed knowledge 
of network behavior and dynamics. Figure 9 illustrates the 
challenges in assessing network-detection performance for 
covert networks—a notional representation of the perfor-
mance fidelity is plotted against the number of real-world 
or simulation cases currently available. Ideally, we would 
like full knowledge of an entire covert network and its 
activities, including its connectivity to the benign or “gray” 
background network and multiple real-world examples 
from diverse scenarios. However, the authors are unaware 
of even a single example of such a dataset, not surpris-
ingly because full knowledge of real-world covert network 
behavior is, by design, extraordinarily rare or nonexistent. 
In some cases, partial information about covert networks 
has been integrated over time [5]. Empirical detection 
performance is demonstrated with either a real-world or 
simulated dataset for which the truth is at least partially 
known, and theoretical performance predictions are 
derived from statistical assumptions about the foreground 
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and background networks. To date, closed-form analytic 
performance predictions have been accomplished for very 
simple network models, e.g., cliques embedded within 
Erdös-Rényi backgrounds [39–42], and there are no theo-
retical results at all for space-time graphs or realistic mod-
els appropriate for covert networks. Therefore, realistic 
models are essential for performance analysis of network-
detection algorithms. There are two basic approaches to 
modeling networks: stochastic models, which attempt to 
capture the aggregate statistical properties of networks, 
and agent-based models, which attempt to describe specific 
behaviors. In general, stochastic models have greater trac-
tability because they do not rely on the detailed description 
of actions or objectives of a specific network.

The empirical detection performance of the covert 
network-detection algorithms described earlier will be 
computed using a Monte Carlo analysis based upon a new 
stochastic block model. Empirical performance predic-
tions may also be based on a single dataset, oftentimes a 

practical necessity for real-world measurements. Detec-
tion performance for specific, real-world single datasets is 
illustrated in an accompanying article entitled “Network 
Discovery with Multi-intelligence Sources” [43].

Empirical Data Performance
A simulated empirical dataset is used to evaluate space-
time threat propagation performance [27]. These data are  
derived from a scripted scenario performed by the Insti-
tute for Defense Analyses (IDA) that contains a clandestine 
insurgent network, illustrated in Figure 10. The simulated 
data covers a 48-hour time period and consists of approxi-
mately 116,720 vehicle tracks between 4478 locations made 
by 4623 individual actors. Of these, 31 locations and 22 
actors are part of the insurgent network. The simulated 
tracks in these data are perfectly accurate and unambigu-
ous. The receiver operating characteristic (ROC) plot on 
the right-hand side of Figure 10 shows the performance 
of the space-time threat propagation algorithm by quan-
tifying the fraction of the true covert network detected as 
a function of the number or rate of false alarms from the 
background. In this particular example, a 50% probability 
of detection is achievable with a 2% false-alarm number. 
This quantification of detection performance provides 
insight into examples in which these data are representa-
tive; however, a single example is not statistically significant 
and does not allow generalization to different scenarios.

Covert Network Stochastic Block Model
Real-world networks are sparse, have power-law degree 
distribution, and display community structure based on 
membership. Furthermore, activities on these networks 
tend to be coordinated (e.g., meetings and dispatches). To 
study detection performance adhering to real-world appli-
cations, we developed a generating model that captures 
these network phenomenologies. Our model is described 
in the plate diagram in Figure 11. We discuss the interac-
tion model and the temporal model separately in the next 
sections. (Greater details and more results on detection 
performance using this model are available in [17].)

INTERACTION MODEL

The interaction model combines three well-known 
network models: (1) Erdös-Rényi for sparsity [44]; 
(2) Chung-Lu for power-law degree distribution [45]; 
(3) mixed-membership stochastic block model for com-

FIGURE 9. The challenges assessing network-detection 
performance depend upon the desired fidelity of the perfor-
mance prediction and the number of available cases. Empir-
ically, more cases provide greater statistical significance and 
therefore higher fidelity. Analytically, closed-form analysis 
of realistic network models also provides higher fidelity. At 
present, there are no full real-world covert networks known, 
and no closed-form results for complex network models, 
leaving only single experiments, Monte Carlo methods, and 
closed-form analysis using very simple models.
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munity structure [12]. Specifically, the rate lij of interac-
tions between nodes i and j is given by the product

 

.λ
i j = Iij  · 

S
λ

i 
λ

j

∑k 
λ

k

zi→j B zi→j
T  ,

 
where the term Iij

S represents the (modified) Erdös-Rényi 
model, the term λ i 

λ
j ∑k 

λ
k represents the Chung-Lu 

model, and the term zi→j B zi→j
T  represents the stochastic 

block model.
The indicator function Iij

S turns an edge on with 
probability p on the basis of the memberships of node i 
and j; p is typically small to achieve sparsity. The Chung-
Lu term λ i 

λ
j ∑k 

λ
k is determined by the per-node 

expected degrees li , i = 1, ... , N, which are themselves 
drawn from a power-law distribution of parameter a ∈ R. 
This term makes highly active nodes interact more. The 
block model term zi→j B zi→j

T  introduces community struc-
ture between nodes with mixed membership. This value 
is high if the community of i interacts frequently with the 
community of j. Specifically, it is determined by B, a K-by-
K matrix of the rate of interaction between communities 
zi→j ∈ RK and zj→i ∈ RK.   zi→j ∈ RK, an indicator (01)-vector, 
is the community to which node i belongs when interact-
ing with node j. Similarly, zj→i ∈ RK is the community to 
which node j belongs when interacting with node i. zi→j 

and zj→i are drawn from a multinomial over π i ∈ RK and 
π

j ∈ RK, the i and j node distribution over communities. 
Finally, the distribution of p is drawn from a Dirichlet 
random variable, with concentration parameter Ii

  X T . 
Node i’s lifestyle, Ii , is a multinomial drawn with the life-
style probability φ  ∈ RL. This way, each node may belong 
to a number of communities (i.e., mixed membership) 
with its proportion of membership pi depending on its 
lifestyle Ii. However, when two nodes interact, they each 
assume a certain community membership zi→j and zj→i 

.

TEMPORAL MODEL

After the number of interactions, mij , between nodes 
are drawn, the time for each interaction is generated. 
Real-world interactions are often coordinated, with 
many individuals arriving at or leaving from a location 
at a set of predefined times. We generate this behav-
ior as a Poisson process, parameterized by an average 
number of meeting times Ψ ∈ RK for each community. 
Smaller ψk yields a community whose activities are 
tightly coordinated because there are only a couple of 
times for the members to meet. On the other hand, 
a higher expected number of meeting times (e.g.,  
ψk = 20) yields a community whose activities are 
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loosely coordinated because interactions may occur 
at any one of a large number of meeting times. The 
meetings times themselves are chosen uniformly over 
time, and each node arrives at the meeting time per-
turbed by a zero-mean Gaussian random variable with 
a parameterized variance.

Performance
To demonstrate the effect of network composition on 
detectability, we use the previously mentioned R-MAT 
model to generate graphs of different sizes with different 
embedded foregrounds. We provide STTP with a single 
random observation into a foreground subgraph of 30 
nodes. We create networks of 100, 1000, and 10,000 
nodes and embed either a minimally connected Erdös-
Rényi random covert network or a tree covert network. 
The results for the 1000-trial Monte Carlo experiment 
are shown in Figure 12. As predicted, detection becomes 

harder as the background grows larger compared to the 
foreground, and the more realistic tree network is harder 
to detect because of the smaller connectivity.

Summary
The problem of covert network detection is analyzed from 
the perspectives of graph partitioning and algebraic graph 
theory. Network detection is addressed as a special case 
of graph partitioning in which membership in a small 
subgraph of interest must be determined, and a common 
framework is developed to analyze and compare different 
network-detection methods. A new Bayesian network-
detection framework called space-time threat propaga-
tion is introduced that partitions the graph on the basis 
of prior information and direct observations. Space-time 
threat propagation is shown to be optimum in the Ney-
man-Pearson sense, subject to the assumption that threat 
networks are connected by edges temporally correlated to 
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a cue or observation. Bayesian space-time threat propaga-
tion is interpreted as the solution to a harmonic boundary 
value problem on the graph, in which a linear approxima-
tion to Bayes’ rule determines the unknown probability 
of threat on the uncued nodes (the interior) on the basis 
of threat observations at cue nodes (the boundary). This 
new method is compared to well-known spectral meth-
ods by examining competing notions of network detection 
optimality. Finally, a new generative mixed-membership 
stochastic block model is introduced for performance-pre-
diction network-detection algorithms. The parameterized 
model combines key real-world aspects of several random 
graph models: Erdös-Rényi for sparsity and connectiv-
ity, Chung-Lu for power-law degree distributions, and a 
mixed-membership stochastic block model for distinctive 
community-based interaction and dynamics. This model is 
used to compute empirical detection performance results 
for the detection algorithms described in the article as 

both foreground coordination and activity levels are var-
ied. Though the results here are empirical, it is our hope 
that both the analytic results and performance modeling 
will be useful in future closed-form analysis of real-world 
covert network detection problems. n
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