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Size, weight, and power constraints 
limit the number and types of sensors and 
data processors that autonomous vehicles, 
such as mobile robots, can carry. When 

an autonomous vehicle (AV) operates in a netcentric 
environment, it can augment its onboard capabilities 
by accessing resources on the network, including data 
collected by sensors that are on other robots, airborne 
platforms, and the ground, and by utilizing offboard 
processing resources for world modeling, mission 
planning, perception, and navigation. When an AV uses 
these offboard resources, the robotic system effectively 
becomes distributed, with the mobile AV platform acting 
as an end effector that carries only those sensors and 
processing capabilities needed for the AV to execute its 
mission. This arrangement is referred to as distributed 
robotics in a netcentric environment (DRONE). 

The available communications bandwidth between 
the AV and the network will drive the overall system design 
of what must be on the AV and what can be on the network. 
The physics of the sensing and perception process, such as 
the required aperture, range to target, or view angle, will 
require that certain mission-critical sensors are carried on 
the mobile platform. Additionally, fast reaction for critical 
sensing-based decision making will mandate that other 
sensing and processing capabilities be integrated onto the 
mobile platform. However, all other processing of the sen-
sor data collected by the AV could be sent to a network if 
enough bandwidth were available. Likewise, data collected 
by offboard sensors and information extracted from such 
data could be sent to the AV for processing, especially if 
they were combined with local sensor data.

Small autonomous vehicles can carry only a 
limited assortment of sensing and computational 
devices. One method of increasing these 
vehicles’ capabilities is to utilize offboard, 
networked resources. A useful resource for 
robotic systems would be a three-dimensional 
model of the environment, continually updated 
and made available via netcentric applications. 
Researchers at Lincoln Laboratory are exploring 
the use of such a world model by autonomous 
vehicles to improve the detection of objects of 
interest.

»
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a receiver operating characteristic (ROC) curve. In such 
a classical detection problem, the detection threshold is 
typically calculated using the costs of events, such as miss-
ing a true detection or declaring a false detection as true 
(i.e., a false alarm). 

The specific class of detection problems that our 
research addressed is one in which a high cost is asso-
ciated with missing a detection. For example, a mobile 
robot operating in an urban war zone, where any encoun-
tered human is a potential threat, relies on precise iden-
tifications of humans. Another high cost within this type 
of detection problem results when resources are uti-
lized to screen or react to false alarms. In a typical ROC 
curve, a high PD is associated with a high PFA because 
lowering the detection threshold to increase the num-
ber of true detections also tends to increase the number 
of false alarms. If a filtering strategy can be employed 
to reduce the instances of false alarms while not signifi-
cantly decreasing the number of true detections, then the 
overall detection performance can be improved.

We employed a false-alarm filtering strategy that 
uses a prior 3D model of buildings and the ground to 
geometrically filter out detections that are physically 
impossible. For example, if the DPM algorithm detected 
a person whose size in the 2D image places him or her 
at a certain distance from the camera, but there is an 
intervening building wall between the camera and the 
potentially detected person, then clearly this detection 
is a false alarm and can be disregarded.

The above technique was implemented as a post-
processing filter after the DPM algorithm was run on 
a photograph because existing DPM software was used 
and resources were not available to modify its code. 
Alternatively, this filtering approach could be imple-
mented as part of the DPM processing by projecting the 
3D geometry into the 2D image and then limiting the 
candidate object scales in different parts of the image. 
This second technique could reduce the overall process-
ing load.

Different types of 3D world models were needed for 
two different aspects of the DPM false-alarm filtering. 
One critical step is finding the camera’s 3D position and 
orientation, or pose, relative to a 3D coordinate frame. 
For that step, 3D point clouds of Scale Invariant Fea-
ture Transform (SIFT) features were used. The second 
critical step is the geometric reasoning of where detected 

One potentially useful resource on a network is a 
world model built and updated from sensors and other 
data sources. An example would be a three-dimensional 
(3D) world model built from airborne 3D lidar and video 
as described in Felzenszwalb et al. [1]. Such a model 
could be employed by an AV for many tasks: mission 
planning, localization, navigation, and local sensor data 
processing for perception of the environment.

Perception Algorithms and False-Alarm 
Filtering 
Perception algorithms for use on AVs endeavor to 
detect and characterize objects in the local environ-
ment. Historically, such algorithms employ only their 
own local sensor data and their own world models 
built up during their missions. However, prior knowl-
edge embodied in a shared world model could be used 
to create perception algorithms that perform better or 
that are simplified. For example, a perception algo-
rithm designed to detect people in an urban environ-
ment could leverage known locations of buildings, 
streets, and sidewalks to reduce false detections by 
reasoning about the areas in which people physically 
can walk and thus the places within those areas in 
which they are more apt to walk. 

The use of a shared 3D world model was investigated 
as a method to improve the performance of local percep-
tion algorithms. This shared perception model was built 
from datasets emulating collections made by offboard 
sensor systems and other AVs. The local perception 
problems selected were the detection of people and cars 
in the urban environment of the eastern section of the 
MIT campus, hereafter referred to as MIT East Campus.

The perception algorithm used was the deformable 
parts models (DPM) object detector [1]. Existing DPM 
software and trained DPM classifiers for detecting people 
and cars were used in this research [2]. The DPM algo-
rithm takes an arbitrary image or photograph and runs a 
classifier across the entire two-dimensional (2D) image 
at various scales and generates candidate detections, 
with a resulting probability of detection (PD) and prob-
ability of false alarm (PFA) dependent on the final detec-
tion threshold used in the presence of noise (note that 
in this project, false-alarm rate per photograph was used 
rather than PFA). Varying this detection threshold results 
in a typical PFA versus PD curve, commonly referred to as 
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objects can be seen, given (1) the camera’s position and 
pose, and (2) any intervening objects and the ground. 
Reasonable assumptions, such as the supposition that 
people and cars do not float above the ground, were also 
applied. To ascertain objects’ positions, 3D models of 
buildings and the ground were used. Finally, problem-
specific 3D models of areas of interest can also be used 
to filter for false alarms; for example, maps of known 
parking lots and streets can be applied to the task of 
detecting and counting parked cars.

Leveraged Technologies 
Several existing technologies supported this research 
effort.

Structure from Motion 
A significant body of work describes the structure from 
motion (SfM) technique for processing large sets of pho-
tographs, such as tourist photographs. The SfM approach 
entails detecting and matching SIFT [3] features among 
photographs, estimating the relative position and pose of 
the cameras that took them, and finally generating a 3D 
point cloud of the SIFT features [4]. The process for gen-
erating a camera’s position and pose needed for projecting 
DPM detections into the 3D world can be used as the first 
step in false-alarm filtering. Code from Snavely et al. [4] 
via the Bundler website [5] and from the VisualSfM [6] 
software package was used on this project.

Localization Technique
The SfM approach processes all N photographs together 
to estimate position and pose of all the camera instances 
that took them. This step can be thought of as a mobile 
robotics post-processing task in which an AV collects a 
set of photographs and then builds a 3D model of the 
SIFT features in the scene. A related problem is to take 
an N + 1st  photograph and match it to a preexisting 3D 
point cloud of SIFT features. A robot could use such a 
capability in the DRONE context to estimate its posi-
tion and pose by taking a photograph and matching 
it to a prior world model of SIFT features generated 
by other robots, other sensors, or tourist photographs.

Two previous Lincoln Laboratory programs 
explored this N + 1st photograph approach to estimat-
ing pose and position. The technique was developed 
under the Scalable Image Graph Matching and Analy-

sis (SIGMA) program [7, 8] and employed in a previ-
ous DRONE program [9] that explored its use in robot 
navigation. 

Deformable Part Models 
Object detection, which is one of the fundamental prob-
lems in computer vision and robotics, can help a navi-
gating AV localize a target or obstacles. However, this 
detection is challenging because an object’s appearance 
varies greatly because of illumination changes, various 
poses, and nonrigid deformation of the object’s parts.

Deformable part models detect a generic object 
by localizing its parts in a deformable configuration 
[1]. DPMs learn visual grammars parameterized by the 
appearance of each part and a geometric model that 
captures spatial relationships among parts. The DPM 
system has gained popularity for discrimination tasks, 
and it has achieved state-of-the-art results in interna-
tional PASCAL Visual Object Classes Recognition chal-
lenges [10].

DPMs use supervised learning to train linear filters 
that detect deformable parts of objects. The filters are 
templates that represent histogram-oriented gradient 
features. Templates are built in a pyramid structure so 
that a coarse global template covers an entire object 
and higher-resolution parts templates cover individ-
ual parts of the object that may move relative to each 
other, such as an arm or a leg. Parts templates are com-
puted at multiple resolution levels, and these hierar-
chical templates form a feature pyramid. Scores that 
represent the confidence that the filters have detected 
a part are computed from the filter responses at dif-
ferent locations in the image. A final DPM score for 
the object model is determined by combining these 
individual part scores with variable constraints that 
limit the allowable relative position and orientation of 
parts with respect to each other. A detection threshold 
is then applied to the final score to decide whether an 
object is detected or not.

The final outputs for each detection are the upper 
right and lower left vertices of a rectangular bounding 
box with a final confidence score. From the vertices, 
the pixel location of the bounding box in the 2D image 
is known, and the area of the bounding box can be cal-
culated. Note that detections of objects closer to the 
camera will have larger bounding boxes.
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We obtained DPMs for human and car detections 
from the Discriminatively Trained DPMs Release Ver-
sion 4 [2]. Figure 1 illustrates human and car templates 
trained with the Visual Object Classes 2009 Challenge 
dataset. Each object model has three components. For 
example, the human model is categorized into body part 
from head to chest, body part from head to waist, and full 
body. The car model has three components that specify 
car appearances from different viewing perspectives, 
such as side, front, or backend views. Each component 

has a root filter and eight part filters. For object detec-
tion, left-right flipped versions of the three components 
are added per class, so each object model ends up with six 
components. Figure 2 illustrates detected bounding boxes 
for human and car detection.

Exploiting the Photograph Dataset
A 2009 set of photographs, used in earlier work on devel-
oping 3D models from 2D images, and several existing 
technologies were employed to support this research effort.

FIGURE 1. These examples show a human deformable part model (DPM) (a) and a car DPM (b). For each DPM, the first 
column indicates the root filter, the second column is part filters, and the third column is the deformation model. Each row 
indicates the component.

FIGURE 2.  Bounding boxes are shown for a human detection (a) and a car detection (b). We applied detection thresh-
old values to the DPM scores recommended by the DPM developers [1]: –0.5288 for human detection and –1.2009 for car 
detection. For each candidate object detection whose combined score is larger than the detection threshold, DPM outputs a 
bounding box with deformed part locations.

(a) (b)

(a) (b)
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Photograph Dataset 
We built on the work of Cho and Snavely [11], who 
used a set of 2317 tourist-like photographs of MIT East 
Campus from July 2009 and SfM techniques to build a 
georegistered 3D model of SIFT features in that urban 
area. A by-product of this work was the geolocation and 
pose of the photographs used. We obtained this data-
set to use in emulating photographs taken by a robot 
whose 3D position and camera pose are known.  

Bias Removal 
The dataset of 2317 MIT photographs (henceforth 
referred to simply as MIT2317) represents a typi-
cal visual environment that people encounter in daily 
urban life. However, MIT2317 is biased because it is an 
aggregate of photographs taken by multiple people and 
contains repeating scenes that feature the same objects. 
Including detection results from multiple identical or 
similar scenes would bias the ROC-curve performance. 
Therefore, we removed the bias resulting from scene 
and object redundancy in MIT2317 to make the data-
set comparable to the entire population of the unknown 
real visual world scenes. This bias removal is depicted in 
Figure 3. To remove bias, we selected a subset of images 
from MIT2317 that maximized the variation in back-
ground, object numbers, and their relative distances to 
the camera sensor by clustering the dataset and selecting 
the images representing individual clusters. Our algo-

rithm performance on this selected subset would then 
be extensible to other unbiased datasets.  

Bias-Removal Algorithm 
To address background variation, we first performed scene 
clustering so that each cluster contained the same scene. 
We clustered scenes in MIT2317 using spectral cluster-
ing. Spectral clustering is useful when images might not 
form convex clusters in the non-Euclidean image space 
[12]. Given n image data points in image set S = {s1,s2,… , 
sn } (n = 2317), we clustered the set S into K subsets. We 
first computed an n × n matrix  A, whose element Ai, j rep-
resents the perceptual scene distance between two images 
i and j. We computed a Laplacian L = D1/2 AD-1/2, where 
D = diag (row sums of  A). We found K largest (column) 
eigenvectors of D and arranged them in an n × k matrix 
X. Then, we performed k-means clustering to obtain 
K clusters. 

Matrix A was formed using histogram intersection as 
a scene-distance metric that measures perceptual scene 
similarities [13, 14]. Scene matching was performed by 
the spatial pyramid histogram matching on SIFT fea-
tures extracted from individual photos [13]. The spatial 
pyramid matching code used can be found at a website 
hosted at the Department of Computer Science at the 
University of Illinois at Urbana-Champaign [15]. The 
multiscale histogram intersection metric H was learned 
from MIT2317, specifying image similarities. The n × n 
matrix A is defined as Ai,j = H(si, sj ), i ≠ j and Ai, i = 0 for 
i, j = 1,…, n. 

We chose K = 50 such that the clusters had optimally 
minimal within-cluster variation and thereby obtained 
a minimal image subset with maximum scene variation. 
While this clustering step maximized the variation among 
scenes, across the scenes each cluster could have incon-
sistent detection performance caused by illumination 
variation, slight camera pose changes, different object 
types, or the objects’ changed locations. We divided each 
scene cluster into multiple subclusters in terms of DPM 
detection numbers and bounding box sizes, which could 
specify such changes in the same scenes. 

Subgrouping with maximum variation in detection 
numbers was performed by computing a histogram of 
differences in detection numbers at two different DPM 
thresholds. From eight thresholds, we chose two consec-
utive DPM thresholds (–0.8 and –0.4) that significantly 

Entire population

MIT2317

MIT2317 subset
(Bias removed)

FIGURE 3.  In this visual representation of bias-removal 
in the MIT2317 photograph dataset, the chosen subset 
removes multiple redundant images of the same scene and 
is more representative of the scene variation that would be 
encountered by a single robotic platform.
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decrease the positive detections. The detection number 
differences at the two DPM thresholds can effectively 
address various scenarios with false-alarm reduction 
because detections at threshold –0.8 are grossly true 
positives while those at threshold –0.4 include both true 
and false positives. A sparse histogram was computed 
with fixed bin size covering the wide range of differences 
in detection number. We randomly selected one image 
per histogram bin and none if the bin was empty for all 
clusters. To obtain a subgroup with maximum variation 
in detection sizes, we repeated the same process using 
the total area of DPM detection bounding boxes.

Using the method described above, we created an 
unbiased image subset of MIT2317 for testing the per-
formance of both the baseline DPM algorithm and our 
new algorithm for DPM plus false-alarm filtering. The 
resulting MIT2317 subset contained 495 images for peo-
ple detection and 464 images for car detection. 

Ground Truthing 
To measure the performance of a detection algorithm on 
the objects of interest in a set of photographs, one requires 
the “ground truth” knowledge of the objects that are actu-
ally in the photographs and their locations within the 
photographs. This ground truth can then be used to mea-
sure the percentage of existing objects detected and the 
number of false detections (false alarms) generated; sub-
sequently, this information can be applied to estimating 
the probability of detection (PD) and probability of false 
alarm (PFA) for a given detection threshold. Calculated 
at multiple thresholds, these results are used to plot the 
ROC curve.

Ground truthing must usually be done manu-
ally. We developed a MATLAB®-based graphical user 
interface (GUI) for research team members to view 
the MIT2317 subset and manually define rectangular 
bounding boxes around people and cars. The users 
were also asked to estimate what percentage of the 
height and width of the person or car was visible in the 
photograph. Height ratio is defined as the ratio of the 
height of a visible part to the full height of an object. 
Width ratio is the ratio of the width of a visible part 
to the full width of an object. Height ratio, especially, 
is a key factor in our performance evaluation because 
it determines the detection rate of DPM false-alarm 
filtering. In addition, the GUI assisted users in navigat-

ing through the test datasets and displayed previously 
detected bounding boxes. 

The GUI software recorded the truth bounding box 
locations, box dimensions, and visible height and width 
ratios estimated by the user. The output of the ground 
truthing GUI was saved as an n × 4 matrix, where n is 
the number of bounding boxes per image. Each row in 
the matrix indicates the pixel coordinates of the box, 
[r1 c1 r2 c2], where [r1 c1] is the row and column coor-
dinates of the upper left vertex of the bounding box and 
[r2 c2] is the row and column of the lower right ver-
tex of the bounding box (r1 < r2, c1 < c2). Objects that 
were at least 20% to 30% visible in both height and 
width were recorded with the estimated height/width 
ratios. Objects that had low height/width ratios were 
then discarded, and ones that were 70% or more visible 
were taken as ground truth and used in our detection 
performance analysis.

Manual Ground-Truthing Instructions for the Subset 
of MIT2317 Photographs 
Ground truthing requires somewhat subjective decisions. 
Human errors are unavoidable because it is impossible to 
draw a bounding box that specifies a full extent of an object 
with heavy occlusion or a tilted surface. Because object 
appearance can be truncated, the bounding box may not 
correspond to the full area of the object, e.g., an image of 
a person from the chest up. Another issue is occlusion by 
another object as illustrated in Figure 4. In addition, some 
images contain objects that are visible but unidentifiable 
without the use of context. Four different team members 
ground truthed the dataset. We provided written instruc-
tions to each team member to keep the ground truth as 
consistent and objective as possible.

MIT2317  SUBSET— PEOPLE DETECTIONS 
The ground-truthing instructions used for people detec-
tions are as follows:

1. Draw a bounding box on the visible part of a person as 
“tight” as possible.

2. Allow for variations in a person’s size or appearance 
resulting from different viewpoints.

3. Draw a bounding box as far as a person’s head and 
neckline if these parts are not occluded. Draw a bound-
ing box when other body parts, e.g., leg, arm, and torso, 
are occluded.



 VOLUME 22, NUMBER 2, 2017  LINCOLN LABORATORY JOURNAL 97

HERBERT E.M. VIGGH, DANELLE C. SHAH, PETER L. CHO, NICHOLAS L. ARMSTRONG-CREWS, MYRA NAM, AND GEOFFREY BROWN

4.   Draw a bounding box specifying the visible extent of a    
       human, even when a person is behind a fence.

MIT2317 SUBSET—CAR DETECTIONS
The ground-truthing instructions used for car detections 
are as follows:

1.  Draw a bounding box on a visible portion of the car 
only.

2.  A car appearance can be divided into multiple seg-
ments by an obstacle. This segmentation happens 
when a car is occluded by a pole, person, bush, fence, 
or other object. Draw a bounding box on the entire 
visible portion of the car.

3.  The height ratio is defined as {height of the car that 
appears in the image}/{actual height of the car if 
there is no occlusion}. The numerator is the fact, and 
the denominator is an estimate made by using your 
perception. The same rule applies to the width ratio: 
{width of the car that appears in the image}/{actual 
width of the car if there is no occlusion}. For the width 
ratio, ignore the car orientation.

4.   DPM detects pickup trucks, minivans, and utility vans.   
     It detects just the front parts of utility vans because of  
      their sedan shape. Mark pickup trucks and vans as well    
     as sedans.

Three-Dimensional Model Construction
Building Models 
Three-dimensional models of the buildings (and 
ground) of MIT East Campus were needed to imple-
ment geometric false-alarm filtering. Our approach to 
generating 3D models of the MIT East Campus build-
ings involved manually finding footprint outlines of 
building roofs in aerial photos and then using airborne 
lidar to define the height of the buildings. 

To pursue this approach, we obtained orthorectified 
aerial imagery collected over MIT East Campus from the 
Massachusetts Office of Geographic Information (Mass-
GIS) website [16]. The airborne lidar was used to deter-
mine the building heights. Representative samples of the 
2D and 3D imagery over MIT East Campus are displayed 
in Figure 5.

Photographs and lidar point clouds represent low-
level data products that contain millions of pixels and 
voxels. For data-fusion purposes, it is much more useful 
to work with higher-level models that abstract out geo-
metrical invariants common to all views. Consequently, 
a semiautomatic method was developed for constructing 
3D building models from the aerial imagery.

First, footprints were manually extracted from 
the orthorectified aerial photographs (Figure 6a). 
Each footprint corresponded to some part of a build-
ing with approximately constant height. Judgment was 
exercised as to a reasonable contour level of detail for 
complex urban structures. After we extracted 2D foot-
prints of buildings, we developed software to automati-
cally extrude them in the z direction using lidar data to 
determine absolute heights above sea level. The result-
ing prisms capture basic shape information for a single 
building (Figure 6b).

This semiautomatic modeling procedure was 
applied to 29 buildings around MIT East Campus. The 
models appear superposed against the lidar point cloud 
fused with the orthorectified aerial image in Figure 7. It 
is worth noting that the ground surface for this part of 
eastern Cambridge, Massachusetts, is well represented 
by a constant 2.5-meter plane relative to sea level. This 
ground plane may also be simply modeled via a 3D prism, 
but it is not displayed in the figure for clarity’s sake.

FIGURE 4. The DPM results show bounding boxes around cars occluded by other objects, e.g., person, pole, fence, or bushes.
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FIGURE 5. 
These images are 
representative 
samples of 2D (a) 
and 3D (b) aerial 
imagery of MIT 
East Campus.

(a) (b)

FIGURE 6. 
A single build-
ing footprint (a) 
is extracted from 
an aerial image; 
after the image is 
processed using 
lidar data, the 3D 
building model 
(b) is generated.

(a) (b)

FIGURE 7. Building models are superposed against the lidar point cloud fused with the orthorectified aerial image.
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Parking Lot and Road Models 
In addition to exploiting 3D models of buildings and the 
ground for filtering DPM false alarms on the basis of line-
of-sight constraints, we also applied a priori knowledge of 
land use in an urban area. For example, if the mission is to 
detect parked cars, then any candidate detections within 
areas in which cars do not park can be assumed to be false 
alarms. Therefore, we developed additional 3D models 
describing areas in which cars are likely to park—primar-
ily roads and parking lots.

To create a 3D model of a parking lot, a set of points 
was manually chosen within the image in Figure 8 to 
form the outer boundary of the parking lot from the 
aerial viewpoint; then, the image georegistration was 
used to obtain the Universal Transverse Mercator (UTM) 
coordinates of the parking lot boundary points. Using 
alpha shapes [17] and MATLAB®’s inpolygon function, 
we connected these points with a collection of ground tri-
angles and vertically extruded the triangles to fully repre-
sent the parking lot as a 3D volume with a predetermined 
height. We chose a height of 2 meters because the center 
of a car is generally not higher off the ground than this; 
therefore, cars in the parking lot should fall within the 

interior of our 3D parking lot model. The same proce-
dure was used to generate the road models. Figure 9 shows 
a close-up of a parking lot model generated in MeshLab 
software. Figure 10 shows the entire collection of road and 
parking lot models within MIT East Campus. Figure 11 
shows the road and parking lot models combined with the 
building models described previously.

DPM Baseline Performance 
DPM Processing of MIT2317 Subset 
We ran the DPM algorithm on the MIT2317 subset to 
establish a performance baseline to which we could com-
pare the false-alarm filtering results. The DPM software 
can be configured to only report detections above a speci-
fied confidence threshold. To build our baseline ROC per-
formance curve, we wanted results for eight thresholds. 
However, rerunning the software eight times was com-
putationally expensive. Instead, we ran it with a single 
very low detection threshold and then thresholded on the 
confidence scores reported for each detection. The eight 
confidence score thresholds used were [–2, –1.6, –1.2, 
–0.8, –0.4, 0, 0.4, and 0.8]. This threshold set will be 
referred to as tDPM.

FIGURE 8. The georegistered image is used to manually choose points that outline the parking lots and roads.
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FIGURE 11. Parking lot (magenta) and road (blue and teal) models (a) are integrated with the 3D 
building models (gray) to create a 3D visualization (b) of an MIT East Campus location. 

(a) (b)

FIGURE 9. The completed 
3D MeshLab model depicts a 
parking lot.

FIGURE 10. The complete 3D model shows all the roads and parking lots on MIT East Campus.
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In this project, we used the human and car models 
trained by DPM Release Version 4 [2] as illustrated in 
Figure 12.

Batch Processing and Resulting Datasets 
Lincoln Laboratory’s supercomputing parallel comput-
ing cluster, LLGrid, was used to run the DPM software 
on the MIT2317 subset. DPM software outputs detected 
bounding boxes in pixel locations, with corresponding 
total confidence scores and parts’ locations. In this proj-
ect, we modified the DPM output to be an n × 5 matrix 
indicating the exact location of a detected bounding box 
and its total confidence score. The row n is the number of 
detections per image, and each column includes the fol-
lowing content:

[c1 r1 c2 r2 confidence]
[c1 r1]: column and row of upper left vertex 
[c2 r2]: column and row of lower right vertex.

Figures 13 and 14 show example DPM results for the eight 

different confidence-score detection thresholds on human 
and car detection, respectively.

Analysis and Results
DPM results were evaluated according to the PASCAL 
Challenge Evaluation [18]. Each detection is considered 
a true detection or a false positive on the basis of the area 
of overlap with ground-truth bounding boxes. A true 
detection  A0 must exceed 50% by the formula

where BP is the predicted bounding box and BGT is the 
ground-truth bounding box.

In the case of multiple detections of the same object, 
only the one with the highest detection score is the true 
positive. The remaining detections of the same object are 
false positives. For each of the eight different thresholds 
in the human and car detections, we computed the four 
classes specified in Table 1.

FIGURE 12. The models used in the MIT2317 detections include the human model (a) and car model (b). The human model 
has a single component of an entire human body. The car model includes three different components.

(a) (b)

A0 =
area (BP ∩ BGT)

area (BP ∪ BGT)
,

Table 1. Classification Tasks
CLASSIFIED POSITIVES CLASSIFIED NEGATIVES

True examples True positives (TP, hit) False negatives (FN, miss)
False examples False positives (FP, false alarm [FA]) True negatives (TN, correct rejection)
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FIGURE 13. The DPM results for people detection on the MIT2317 dataset are shown for eight different 
thresholds for the photograph in the lower right-hand corner.
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FIGURE 14. The DPM results for car detection on the MIT2317 dataset are shown for eight different 
thresholds for the photograph in the lower right-hand corner.
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We evaluated baseline DPM performance with three 
different approaches. First, we computed the four classes 
using bounding box area. Second, we computed them 
using the number of detections. In both cases, at the ith 
threshold (i = 2, …, 8), the true negative (TN) is defined as 
the difference between the false positive (FP) at the current 
threshold and FP at the threshold smaller than the current 
threshold, |FPi – FPi-1|. Then, we computed ROC curves by 
computing the true positive rate TP/(TP + FN) and false 
positive rate FA/(FA + TN). Third, in an approach known 
as precision and recall (hereafter, precision-recall), three 
values are computed: Recall is defined as TP/(TP + FN), 
precision as TP/(FP + TP), and average precision (AP) as 
the area under the precision-recall curve.

In classification problems, the four classes are well 
defined. Although a ROC curve is a customary choice for 
classification performance evaluation, in object-detection 
problems, precision-recall curves are commonly used 
because true negative is not well defined. In a ROC curve, 
the upper left corner, where true positives are high and 
false positives are low, guarantees good performance. 
On the other hand, in a precision-recall curve, the upper 
right corner with large AP indicates good detection per-
formance.

Figures 15 and 16 illustrate DPM performance in the 
MIT2317 subset for human and car detections respec-
tively. The results show that the area-based ROC curve 
tends to have higher true positive rates than does the 
ROC curve illustrating the number of detections. Human 

detection performs better than car detection performs in 
the given dataset.

False-Alarm Filtering 
Geometric false-alarm filtering using 3D models requires 
both the position and pose of the camera taking the pho-
tograph and the geolocation of the candidate DPM detec-
tions of people and cars in order to place them in the prior 
3D models. These two sets of information then allow us to 
perform line-of-sight calculations against buildings and 
checks of locations within known parking areas.

Mapping 2D DPM Detections into 3D World Space
Photographs taken by conventional cameras represent 
2D angle-angle projections of 3D world space into 
image planes. Once an image’s camera position (geo-
registered) and pose are determined, the extrinsic and 
intrinsic parameters for its camera are known. Using 
a pinhole camera model (Figure 17), we can map a 3D 
point Qworld in world coordinates to a 2D point on the 
image plane, q, using the coordinate transformation

q = P3×4 Qworld,

where the projection matrix 

P3×4 ≡ K3×3[R|t]

has nine degrees of freedom. Upper-triangular K3×3 con-

FIGURE 15. Results are shown for three approaches to human detection in the MIT2317 photographs: ROC curve for the 
approach using the area (a), ROC curve using the number of detections (b), and precision-recall curve (c).
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ing miniatures in place of life-sized sets. But if the size 
of some object is a priori assumed, its range may simply 
be determined via backprojection, as shown in Figure 18. 
The average height for American adults is 1.7 meters. We 
therefore assumed that all standing people detected in our 
reconstructed MIT ground photos have this height. The 
top and bottom pixels of each 2D detection could then 
be projected into 3D space (local east, north, up [ENU] 
coordinates) by solving the simultaneous equations:

tains the camera’s “intrinsic” parameters (one focal and 
two image plane center parameters); rotation R3×3 and 
translation t3×1 contain the camera’s “extrinsic” param-
eters (three rotation and three translation parameters). 
This model ignores small distortions caused by the 
camera lens.

The inverse mapping (projecting a 2D point on the 
image plane to a 3D point in world coordinates) requires 
an additional constraint. Each point in the image corre-
sponds to a geometrical ray, and a 2D box in the image 
maps onto a 3D sub-frustum. In the absence of any length 
scales, distances to objects visible in an image, as well as 
their absolute sizes, are unknown. Indeed, Hollywood 
often takes advantage of this mathematical fact by film-

FIGURE 16. Results are shown for three approaches to car detection in MIT2317 photographs: ROC curve for the approach 
using the area (a), ROC curve using the number of detections (b), and precision-recall curve (c).
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Camera image

DPM bounding box

Camera center
Image plane

h = 1.7 m

d = ƒ(h)

FIGURE 18. The range of an average-height person is determined via backprojection.

FIGURE 19. The figure illustrates the effect of the camera’s y-axis not being parallel to the world u-axis.
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where h = 1.7 meters. In the above equations, top and bot 
are the 2D pixel coordinates of the top and bottom of the 
detected person, respectively; P3×4 is the projection matrix 
from 3D world coordinates to 2D camera coordinates; 
Tworld=[TE

world TN
world TU

world  1]T and Bworld= [BE
world BN

world 

BU
world  1]T are the projected coordinates of the top and bot-

tom of the detected person in 3D (ENU) space. Note that, 
because of the constraints in the U and N dimensions, 
if the camera’s y-axis is not parallel to the world u-axis, 
the resulting values of TE

world and BE
world will not be equal 

(Figure 19); however, the average of TE
world and BE

world can 
be taken to be the “center” of the person.

Figure 20 illustrates an example of the geolocation 
technique as applied to an image from the MIT2317 data-
set. The red box in the original image (Figure 20a) encloses 
one of several pedestrians walking outdoors nearby MIT 
East Campus. Figures 20b, 20c, and 20d illustrate the 
pedestrian’s geolocation within the MIT map. While 

errors in image-plane placement of 2D bounding boxes, 
as well as 3D reconstruction, inevitably lead to uncertain-
ties in human geolocation, it is reassuring to note that the 
pedestrian’s world-U coordinate lies reasonably close to 
the ground plane.

False-Alarm Filters
Most genuine people observed in the MIT ground photo-
graphs backproject onto geopositions where their feet are 
close to solid ground. In contrast, false alarms from auto-
matic human detection algorithms often yield 2D bound-
ing boxes that map onto 3D geolocations floating in midair 
or submerged many meters underground. Alternatively, a 
backprojected human’s location might pass through an 
opaque building wall. Geometry combined with common 
sense can consequently rule out such false alarms coming 
from automated object detectors. To decrease the number 
of false detections returned by the DPM detector, we built 

FIGURE 20. The images illustrate the process of person geolocation applied to a photograph 
from the MIT2317 dataset.

(c) (d)

(a) (b)
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Buildings
Roads and parking

(b)(a)

three false-alarm filters to leverage knowledge about the 
scene geometry from the previously built 3D world model:
• The HIGH filter rejects all detections that are projected 

into 3D space at a height greater than 5 meters above 
ground. As the MIT campus is approximately flat, the 
HIGH filter for our datasets was a simple threshold on 
the projected person’s elevation. However, this filter 
could also incorporate the world model by calculat-
ing the distance between the projected person’s loca-
tion and the surface below to take into consideration 
more complex terrain or to detect people standing on 
a building roof. 

• The line-of-sight (LOS) filter is used to determine 
whether a detection is feasible given the building ge-
ometry in the scene. Once a candidate detection is 
projected into the 3D world, a ray is drawn from the 
camera location to the projected location. If the ray in-
tersects a building face (or other solid obstacle such as 
the ground plane), the candidate detection is rejected, 
filtering out people that are seen “through” walls.

• The road and parking lot (ROAD) filter was used with 
the car-detection dataset only. Each candidate car de-
tection is projected into the 3D world, and its location 
is checked against the model of road and parking lot 
locations (Figure 21). Detections not located on a road 
or parking lot are rejected as false positives.

Figures 22 and 23 show examples of the detec-
tion results after we applied the false-alarm filters. In 

Figure 22, of the two people in the scene, one is par-
tially obscured and is not detected by DPM (boxed in 
blue). DPM returns about 20 detections (shown as 
green, yellow, and cyan boxes). Figure 23 shows where 
those detections are projected in the 3D world using a 
1.7-meter height assumption. More than half of these 
detections were rejected by either the HIGH or LOS 
filters (colored in cyan); the remaining detections 
include one true positive (shown in green) and six false 
positives (yellow). By using the prior world model to 
filter out infeasible detections, the false-alarm rate was 
decreased by 68%.

Stochastic Extensions 
Our methods for projecting DPM detections into the 3D 
world and filtering out unlikely detections may produce 
errors (both false positives and false negatives) attribut-
able to several factors:
• Inaccurate camera pose: A poor camera-pose estimate 

will cause detections to be projected to the wrong loca-
tion. Any one of the false-alarm filters may then fail 
to reject a false positive, or worse, incorrectly reject a 
true detection. The LOS and HIGH filters are designed 
to be especially sensitive to accurate pitch-angle esti-
mates because an error of even a few degrees in pitch 
may cause a true detection to be projected too high or 
below ground.

• Inaccurate world model: All three false-alarm filters 

FIGURE 21. In (a), roads and parking lots, highlighted in red, are shown in relation to building models in blue. An aerial photo-
graph of this same area is shown in (b).
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True detection
False detection
Missed by DPM
Incorrectly filtered out
Correctly filtered out

FIGURE 22. Detection results after applying the false-alarm filters are shown in the image space. About 20 detections were 
made. The one true detection is in the green box. The DPM algorithm missed the person on the left because he is partially 
obscured. The cyan boxes show the cases in which the false-alarm filters correctly eliminated those detections. 

True detection
False detection
Missed by DPM
Correctly filtered out

depend on the world model being complete and accu-
rate. If a parking lot is missing from the world model, 
for example, all cars detected in that parking lot will 
be rejected by the ROAD filter. Similarly, if a building 
is modeled in the wrong location or does not have the 
correct geometry, the LOS filter will erroneously accept 
or reject detections.

• Misaligned DPM detection box: Even when DPM 
successfully detects a person in the scene, the DPM 
bounding box may be slightly misaligned from the 
true bounding box (Figure 24a). A DPM detection is 
considered a true positive if at least 50% of its bound-
ing box area overlaps a ground-truth bounding box. 
However, even a slight misalignment (especially with 
respect to the person’s height) may cause a significant 
shift in the projected location in the 3D world.

• Partial detections: DPM may detect partial people (for 
example, the torso only). Figure 24b shows an example 
of a true positive detection in which the bounding box 
stops at the person’s knees. Since the bounding box 
does not surround the full height of the person, the 
1.7-meter height assumption will cause the detection 
to be projected farther away, making it more likely to 
be projected “through” a wall or the ground plane.

• Invalid height assumption: Even in the absence of any 
sources of error, 2D detections are projected into the 
3D world under the assumption that people are 1.7 
meters tall. This supposition is obviously not true for 
all people and may ca

• use even perfect DPM detections to be projected to the 
wrong location.

In an effort to reduce the effects of some of the above 
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FIGURE 24. In (a), a traffic cone is incorrectly detected as part of a person, causing the DPM bounding box to be taller than 
the ground truth. This detection is still considered a true positive, but the 3D projection may be significantly shifted. In (b), 
DPM makes a partial detection that qualifies as a true positive.

Ground truth
DPM detection

(a) (b)

FIGURE 23. Figure 22’s detection results after the false-alarm filters are applied are shown in 3D space, with four different 
views depicted.

True detection
False detection
Missed by DPM
Incorrectly filtered out
Correctly filtered out
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problems, a stochastic false-alarm filter was developed. 
Rather than projecting detections deterministically, the 
3D projection is expressed as a nonlinear function g:

[xE, det, xN, det, xU, det ] = g (Top, Bot, h, xE, cam, xN, cam,
xU, cam, θcam, φcam, ψU, cam,  f, c1, c2),

where Top and Bot are the pixel values of the top and bot-
tom of the DPM detection box; h is the person’s height; 
xE, cam, xN,cam, xU,cam, θcam, φcam, and ψU, cam are the camera 
pose values corresponding to 6–degree of freedom posi-
tion and rotation; and  f, c1, c2 are the camera’s intrinsic 
parameters. These 12 variables can be sampled from a 
prior distribution that takes into consideration uncertain-
ties in factors such as camera pose and person height. The 
resulting calculations of xE, det, xN, det, and xU, det are Monte 
Carlo samples of the person’s projected location distribu-
tion in the 3D world. If, for a given DPM detection, the 
number of samples that pass all false-alarm filters exceeds 
some predefined threshold, the detection is accepted. By 
setting a low threshold, true detections are less likely to 
be incorrectly filtered out because of small pose errors 
or an incorrect height assumption, but the false-alarm 
rate will also be higher. This stochastic method will not 
correct for gross errors in the world model (for example, 
a new building is not present), but it is more robust to 
small projection inaccuracies.

Figure 25 illustrates how this sample-based approach 
can be used to relax the height assumption h for detected 
people. By sampling h from a truncated normal distribu-

tion N, the DPM detection is projected out to multiple 
distances from the camera. Even if some of the sampled 
projections are rejected by a filter (in this case, the LOS 
filter would reject samples projected through a building 
wall), the detection may still be accepted if some of the 
samples pass.

People Detection Analysis and Results 
Figures 26 and 27 show ROC and precision-recall curves 
for people detection using the LOS and HIGH filters. For 
all cases presented here, the HIGH filter successfully fil-
ters out false positives without sacrificing the performance 
of true-positive detection. The LOS filter, which rejects 
detections that are projected through solid surfaces such 
as buildings or the ground plane, appears more sensitive 
to model parameters such as the assumed human height. 
Note that in the ROC curves, the horizontal axis is the 
average number of false alarms per image, which is a false-
alarm rate rather than a probability of false alarm.

Figure 26 compares the baseline DPM results with 
those obtained from applying the LOS filter, HIGH filter, 
and both LOS and HIGH filters, using a deterministic 1.7-
meter height estimate for projecting detections into 3D 
space [19]. For lower DPM confidence thresholds (tDPM ≤ 

0), the LOS filter decreases the number of false alarms but 
also rejects some true positives. The HIGH filter further 
rejects false alarms without rejecting any true positives. 
Figure 26(b) shows a zoomed-in view of the ROC curve 
(representing the operating point near the “knee” of the 
curve). Here, the application of the LOS and HIGH filters 

Camera image

DPM bounding box

h ∼ N(μ, σ2)

d

Accepted 
samples Building 

wall

Rejected 
samples

FIGURE 25. A sample-based approach allows for the relaxation of the height assumption; μ is the average height of a person 
and σ is the standard deviation.



 VOLUME 22, NUMBER 2, 2017  LINCOLN LABORATORY JOURNAL 111

HERBERT E.M. VIGGH, DANELLE C. SHAH, PETER L. CHO, NICHOLAS L. ARMSTRONG-CREWS, MYRA NAM, AND GEOFFREY BROWN

Average number of false positives per image

1

0.8

0.6

0.4

0.2

0
0

DPM

LOS+HIGH
HIGH
LOS

5 10 15 20 25 30

%
 T

ru
e 

po
si

tiv
es

0.7
0.68
0.66
0.64
0.62

0.6
1.5 2 2.5 3 3.5 4 4.5 5

Pr
ec

is
io

n

Recall

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0 5 10 15 20 25 30

Average number of false positives per image

%
 T

ru
e 

po
si

tiv
es

tDPM = –0.5
DPM

LOS+HIGH
HIGH
LOS

0.7
0.68
0.66
0.64
0.62

0.6
1.5 2 2.5 3 3.5 4 4.5 5

Pr
ec

is
io

n

Recall

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

FIGURE 26. ROC (a) and precision-recall (c) curves are shown for human detection using a deterministic 1.7-meter height 
estimate. A zoomed-in ROC curve is shown in (b).

reduces the false alarms by 35% and the true positives 
by just under 1%. Because true detections are being 
wrongly rejected, we conjecture that the degraded 
performance is due to one or more of the factors 
described in the Stochastic Extensions section.

One factor that could contribute to the rejection of 
true positives is that many ground-truthed people in the 
MIT2317 image set are not completely visible from head 
to toe. When DPM detects these “partial people” (as it is 
designed to do), the 1.7-meter height assumption used 
to project the DPM bounding boxes into the 3D world is 
inaccurate. A bounding box around a partial person (for 
example, just a torso) is too short and will cause the detec-
tion either to be projected farther away from the camera 
or to be projected through a building wall or high above 
the ground plane. 

To increase the robustness of the filters, we 
implemented a stochastic projection model as described 
in the Stochastic Extensions section. For each candidate 
detection, 20 height values were randomly sampled 
from a truncated normal distribution of American adult 
heights ~N(1.7, 0.162 ) [19], projected into 3D space, and 
either accepted or rejected by the LOS and HIGH filters. 
The resulting sample set is a discrete approximation of 
an “acceptance distribution,” pa, defining the probability 
that the detection is feasible. By setting a threshold on 
pa, we can control the degree to which “corner-case” 
detections (e.g., a person standing very near a wall) are 
accepted or rejected.

Figure 27 shows results for one run of the stochastic 
algorithm. Candidate detections are accepted if any 
sample passes the filter, approximating a 5% threshold 

FIGURE 27. ROC (a) and precision-recall (c) curves are shown for human detection with candidate detections accepted if 
any samples pass the filter. A zoomed-in ROC curve is shown in (b).
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FIGURE 28. ROC (a) and precision-recall (c) curves are shown for car detection using a deterministic 1.5-meter height  
estimate. A zoomed-in ROC curve is shown in (b).
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FIGURE 29. ROC (a) and precision-recall (c) curves are shown for car detection using a stochastic model with 5% accep-
tance rate. A zoomed-in ROC curve is shown in (b).

on pa. This strategy is likely to retain detections (both 
true detections and false alarms). For this set of results at 
tDPM = –0.5, applying the combination of LOS and HIGH 
filters decreases the false-alarm rate by approximately 
29% over the baseline DPM detections without throwing 
out any true positives.

Car Detections Analysis and Results 
Figures 28 and 29 show results for detections of cars 
using the LOS and HIGH filters, plus the additional 
ROAD filter, which only accepts cars whose projected 
locations are along a modeled road or in a parking lot. 
Unlike the DPM human detector, the car detector is only 
trained on full cars; therefore, for the results presented 
here, only fully visible cars were included in the ground-
truth set.

Figure 28 illustrates the performance of the three 
false-alarm filters for the deterministic case (all cars 
are projected with an assumed height of 1.5 meters). At 
tDPM = −0.75 (the knee on the ROC curve), the LOS filter 
rejects about 1% of true positives detected by DPM, and 
the ROAD filter rejects almost 9%. One could argue that 
the most likely cause of the rejection of true positives is 
an incorrect height assumption. In fact, a compact car 
or convertible may be closer to 1.2 meters tall, whereas a 
minivan or sport utility vehicle (SUV) may be around 1.8 
meters tall. Next, a height distribution of ~N(1.5, 0.32) was 
used to project the car detections into the 3D world. Using 
a low threshold (pa ≥ 5%), the stochastic LOS filter no 
longer rejects any true positives (results shown in Figure 
29). At tDPM = –0.75, all three filters combined reject 
only about 1% of true positives while decreasing the false 

(a)

(b)

(c)

(a)

(b)

(c)



 VOLUME 22, NUMBER 2, 2017  LINCOLN LABORATORY JOURNAL 113

HERBERT E.M. VIGGH, DANELLE C. SHAH, PETER L. CHO, NICHOLAS L. ARMSTRONG-CREWS, MYRA NAM, AND GEOFFREY BROWN

positive rate 15% over DPM. At even lower DPM confidence 
thresholds, the performance increase is even more drastic: 
at tDPM = −1.25, false detections are decreased by nearly 
70% and true positives are rejected only 1% by applying all 
three false-alarm filters.

Conclusions and Future Directions 
The use of a prior 3D world model for geometric false-
alarm filtering can eliminate ~30% to 70% of false alarms 
produced by the DPM object-detection algorithm, with 
minimal to no loss of true detections. This approach is 
especially useful for detection problems in which a high cost 
is associated with missing a true detection and resources 
must be expended to deal with the associated high level of 
false alarms. For mobile robot applications in a netcentric 
environment, 3D world models built and maintained 
by offboard sensor systems could improve local object-
detection performance.

Many other potential improvements to local detection 
algorithms could leverage information stored in a 3D world 
model. Depending on the type of object to be detected, 
additional semantic models could be defined, analogous to 
the roads and parking lots for detecting cars. For example, 
detecting and reading signs could be improved by a model 
that designates the likely places to find signs, such as the 
edges of roads and on the sides of buildings.

Adding information on surface reflectances to the 3D 
model surfaces, such as color and texture, could simplify 
the the segmentation of images for change detection. This 
revised 3D model could be used to predict the view a local 
camera should see based on the latest 3D model and could 
help identify the things in the world that have not changed, 
allowing additional processing to focus on potential 
changes and moving objects.

The semi-manual process for building and maintaining 
the 3D models of buildings, roads, and parking lots would 
need to be automated for an operational system. The authors 
envision an automated system in which newly collected 
sensor data from airborne, spaceborne, and ground 
sensors (including those on autonomous vehicles) would 
be compared to the latest 3D world model, and changes 
would then made to the model as appropriate. Identifying 
the data that contain new information and flagging them 
for additional analysis could help solve today’s data-glut 
problem in which most sensor data that are collected are 
not processed or analyzed. Finally, netcentric technologies 

for federating multiple 3D models storing different aspects 
of the world (e.g., semantic, reflectance) would need to be 
developed so that a given type of detection algorithm can 
efficiently access only the model data that it needs. ■
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