
Massachusetts Institute of Technology

LINCOLN
LABORATORY         
Journal
Volume 23 n Number 1 n 2019

SERIOUS
GAMES

L
IN

C
O

L
N

 L
A

B
O

R
A

T
O

R
Y

 JO
U

R
N

A
L

 

www.ll.mit.edu

V
olum

e 23 
n N

um
ber 1 

n 2019



 Dorothy S. Ryan Senior Editor

 Kylie J. Foy Editor

 Erin I. Lee Editor

 Kari L. Siegle Graphic Artist

 Alicia A. LaDuke Administrator

COMMUNICATIONS AND COMMUNITY OUTREACH OFFICE

 David R. Granchelli, Manager  

The Lincoln Laboratory Journal (ISSN 0896-4130) is published twice a year by 
Massachusetts Institute of Technology, Lincoln Laboratory, 244 Wood Street, 
Lexington, MA 02421-6426. Subscriptions are free of charge, but provided only to 
qualified recipients (government employees and contractors, libraries, university 
faculty, and R&D laboratories). Requests for individual copies, subscriptions, or 
permission to reprint articles should be submitted to the Subscription Coordinator, 
Room S3-106, at the address above. The editorial offices can also be reached at 
781-981-4204.

Journal Online: Selected articles from back issues are available at  
www.ll.mit.edu/about/lincoln-laboratory-publications/lincoln-laboratory-journal. 
Contents of the current issue will be posted on this site approximately 45 days 
following print publication.

This material is based upon work supported by the U.S. Department of the Air 
Force under Air Force Contract no. FA8702-15-D-0001. Any opinions, findings 
and conclusions, or recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the U.S. Air Force. 

©2019 Massachusetts Institute of Technology. All rights reserved.

Ma s sach uset t s  Inst I t u t e of tech nol ogy

LINCOLN LABORATORY Journal 

On the Cover
Uncovering and thwarting a clandestine 
network that may be plotting terrorist 
acts is the mission attempted by 
players of the dark net discovery game. 
One element of this game is locating 
and tracking vehicles that may be 
involved in the terrorist plot. To achieve 
that goal, players interpret game-
provided information to perform vehicle 
triage, homing in on vehicles traveling 
to locations presumed to be connected 
to suspicious activity. The cover 
image shows all vehicle track data in 
the game, with the red lines denoting 
tracks associated with suspected 
terrorist network vehicles and the 
yellow lines denoting an innocuous 
background of tracks for vehicles 
driven by the general population.
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The display for Strike Group Defender gameplay presents blue ships and red threats (center), an overhead view (lower left), a 
message panel (lower right), a countermeasure inventory (right), and menus and scoreboard (top). For more information, see 
the article “Strike Group Defender” on page 25.
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4 Game-Based Human-System Analysis 
for National Security R&D
Lincoln Laboratory has designed and employed 
serious games that can train system operators 
on tactics to respond to active situations, can 
guide system developers’ decisions on system 
requirements, and help developers evaluate 
new tools.
Matthew P. Daggett, Timothy J. Dasey, 
Adam S. Norige, and Robert M. Seater

 Lab Notes

8 A Serious Game for Intelligence, 
Surveillance, and Reconnaissance
A simulation experiment provides hands-on 
experience analyzing sensor data to discover 
mobile targets.

 Features 

11 The Role of Serious Games in Ballistic 
Missile Defense

In the mid-1960s, Lincoln Laboratory initiated a 
series of exercises in which researchers exploring 
new radar technology assumed the roles of 
ballistic missile defense system operators charged 
with mitigating a missile attack.
Brian M. Lewis and John A. Tabaczynski

25 Strike Group Defender
Defending U.S. Navy ships from the growing 
danger presented by modern anti-ship cruise 
missiles is a formidable challenge. Lincoln 
Laboratory, partnering with government and 
industry, developed the game Strike Group 
Defender to train sailors to address the 
evolving threat.
G. Mark Jones, Matthew C. Gombolay, 
Reed E. Jensen, and Steven L. Nelson

Step 1
Analyst scans ground moving 
target indicator (GMTI) radar.  
The dots identify something 
moving away from or toward 
the sensor.

Step 2
Analyst zooms in on cluster of 
dots and checks signal-to-noise 
ratio. A sliding timescale 
indicates the direction of 
vehicular movement.

Step 3
If vehicles are identified in 
GMTI data, analyst requests 
synthetic aperture radar 
(SAR) imagery for more 
focused view of vehicles.

Step 4
Analyst reviews full-motion video 
to positively identify the target.
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45	 Cyber	Red/Blue	and	Gamified	Military	
Cyberspace Operations
A serious game explores ways to aid cyber 
security specialists in developing and practicing 
cyber defense strategies. 
Nancy L. Crabtree and Joshua A. Orr

57	 NASPlay:	A	Serious	Game	for	Air	Traffic	
Control
A simulation experience gives air traffic operators 
the opportunity to tackle in a day or two the 
decisions that they would normally encounter 
throughout a year or longer.
Hayley J. Reynolds, Brian C. Soulliard, and 
Richard A. DeLaura

71 Rapid-Play Serious Games for 
Technology Triage

Rapid-play serious games allow researchers 
to gain intuition about the use of a proposed 
capability, to examine that capability’s influence 
on tactics and procedures, and to collect 
quantitative data about which new technologies 
should be pursued with future development.
Robert M. Seater

81 Serious Games for Collaborative Dark 
Network Discovery
Illicit social networks are difficult to discover 
because their clandestine nature limits their 
observability to data collection. Advances in 
remote sensing and analytical software can 
improve network data curation and analysis if 
effective human-system integration is achieved. 
To inform this integration, researchers created 
serious games to guide the development of user-
centered tools and quantitative human-system 
instrumentation.
Matthew P. Daggett, Daniel J. Hannon, 
Michael B. Hurley, and John O. Nwagbaraocha

 Looking Back

108 Early Gaming at Lincoln Laboratory: 
The Missile Defense Engagement 
Exercises of 1966 to 1968
Researchers worked through the operational logic 
of a complex defense system in the early years of 
U.S. missile defense research.
William Delaney
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Game-Based Human-
System Analysis for 
National Security R&D
Matthew P. Daggett, Timothy J. Dasey, Adam S. Norige, and Robert M. Seater

Since the 1950s, MIT Lincoln Laboratory 
has conducted rigorous systems analysis, 
full-system prototyping, and development 
of long-term advanced technologies for 

national security applications. As the discrete systems 
of earlier decades have been replaced with complex 
interconnected systems of systems, traditional modeling 
and simulation and systems analysis often insufficiently 
account for human dynamics. These limitations become 
further exacerbated as a long-standing paradigm of 
systems as subordinate to operators is being replaced 
with collaborative workflows enabled by automation 
and artificial intelligence. To address these challenges, 
researchers at the Laboratory have developed method-
ologies and technologies for designing, building, and 
employing serious games that measure human decision 
making and that serve as systems analysis tools to assess 
and facilitate complex human-system dynamics that 
approximate those of realistic sociotechnical systems. 
These serious games are a unique tool in the research 
and development (R&D) process that overcomes the 
limitations of other methods.

Games are a structured form of play, usually under-
taken for enjoyment, achievement, or reward. They have 
been recorded as part of cultures dating back to the 
26th century BCE and are thought to be universal to the 
human experience. Games have also long been used for 
U.S. national security purposes, with some of the earliest 
wargame efforts in the 1800s at the Naval War College. 
Many early wargames were large tabletop or seminar-
style formats used for developing war plans and exercising 
decision making. With the advent of modern computing, 

Serious games are influencing efforts to 
improve education, health care, defense, 
and awareness of societal issues by 
applying gamification to help users 
develop understanding and skills in these 
fields and to elicit knowledge from expert 
users. Researchers at Lincoln Laboratory 
are transforming traditional research and 
development processes by using games to 
design, engineer, and assess more efficient 
and effective sociotechnical systems for 
national security needs.

»
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these games have grown into large, sophisticated, distrib-
uted semiautomated force simulations, largely focused on 
informing military training and doctrine. 

In the 1970s, a definition of the term serious games 
emerged to broadly define games as a means to achieve 
an explicit purpose other than amusement. Under this 
rubric, gamification has been employed in education, 
scientific exploration, health care, emergency manage-
ment, and more. While the use of games in a national 
security context is often synonymous with wargaming, 
Lincoln Laboratory’s research into games aligns with the 
broader view of the application of serious games.

Gaming at Lincoln Laboratory
Since 2001, the Laboratory has been developing purpose-
built serious games and applying them to its core R&D 
processes across a variety of mission areas, including air 
and missile defense; intelligence, surveillance, and recon-
naissance; chemical and biological defense; air traffic 
management; cyber security operations; and emergency 
response. While built with different objectives, these 
games fall mainly into three common game applications:
1. Experiential learning. Games are a natural fit for 

training and can model situations that are rare 
in practice, dangerous to rehearse, or potentially 
possible in the future. Inside a virtual environment, 
a participant can experiment with high-stakes situa-
tions in a low-stakes environment, building intuition 
and mental models for how the environment reacts. 
Virtual training environments are prominent in 
training pilots or power plant operators, for whom live 
training on real equipment is expensive and at risk 
for catastrophic mistakes. Game-based training may 
be high-fidelity recreations of the physical world, but 
they can also be unscripted, abstract, and open-ended 
experiences, while still focusing on key aspects of 
complex tasks.

The Laboratory has applied training games to several 
domains, including emergency response to improvised 
nuclear device detonations and management of delays 
in air traffic systems during severe weather. A common 
characteristic of all these games was a focus on only an 
important slice of the problem rather than on a model 
of the entire problem space. As a result, the games 
required just minutes to play a scenario, allowing 
players to engage in many iterations of a scenario in 

a single sitting. The Laboratory’s methodology that 
combines repetition of short focused experiences with 
engagement in longer more detailed experiences has 
proven an effective approach to cover the full spectrum 
of complex tasks. 

2. Concept exploration and requirement analysis.
Predicting what technologies will be useful and 
impactful prior to building a prototype is error prone 
and can result in expensive redesigns when operators 
reject the technology at late stages of a development 
process. Consultation with experts and end-users 
is a common approach for gathering functional 
requirements for future technology. However, this 
conventional method can be insufficient because 
experts are often intuitive thinkers who are used to 
dealing with concrete situations, not abstract thinkers 
who have a theoretical approach for generalizing 
knowledge to future scenarios. Moreover, every end 
user is a novice when thinking about new technologies 
that may change operational paradigms.

The Laboratory has been using serious games to aid 
in technology assessment for early-stage R&D prioriti-
zation, improved analysis-of-alternatives studies, and 
development of functional requirements. For example, 
in remote sensing R&D, the process often starts with 
an understanding of the phenomenology of the sensing 
environment and observables of interest, leading to the 
development of sensor hardware that is then integrated 
and fielded on the premise that the sensor capabilities 
are inherently useful. However, many sensor systems 
have not been jointly developed alongside the decision 
processes their data are meant to inform. Lincoln 
Laboratory developed a game to invert this devel-
opment and acquisition process by starting with an 
understanding of what information is needed to make 
decisions and working backward to build an end-to-end 
workflow that results in actionable information. The 
gaming process and sensor simulation capabilities were 
then used to dial in what the technical and performance 
requirements should be for both the sensors and their 
data analysis systems. 

Additionally, Laboratory researchers also designed 
games that combine economic game theory with rapid-
play digital simulations to collect quantitative data and 
then crowdsource the ingenuity of human experts. In the 
game, players select different combinations of conceived 
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capabilities within forced resource constraints, allowing 
them to formulate and explore different strategies that 
may deviate from current doctrine and tactics. After 
players try out the set of capabilities they selected, 
they get immediate feedback about the utility of these 
capabilities, build intuition, and iterate to converge on 
effective combinations of capabilities. 

3. Development and evaluation of tools. As candidate 
technologies move from the requirements process to 
prototyping, serious games can play a critical role in 
creating an environment to facilitate purposeful inter-
action with technology that is not always achieved by 
feature or user testing. By wrapping the prototype in 
purpose-built datasets, scenarios, and mechanics, 
the gameplay pushes users to explore the proto-
type capability in a rigorous high-fidelity fashion 
by solving real problems that require informed 
decisions. Quantitative human-system instrumenta-
tion is employed to produce rich interaction data for 
assessments that drive design improvements, and this 
process is repeated throughout the development cycle. 
The Laboratory has used multiple serious games in 
applying this iterative technique to assess and refine 
algorithms and workflows aimed at improving multi-
feed video analysis for counterterrorism and airport 
security missions.

Areas of Laboratory Innovation
The Laboratory has developed expertise and innovations 
in key areas of serious game development:
• Scenario and simulation dataset development. 

Designing a game scenario and the data artifacts that 
accompany it can be time-consuming and human- 
intensive. To increase the efficiency of this work, the 
Laboratory has employed techniques from natural 
language processing, computer vision, and agent-based 
modeling to generate synthetic datasets derived from 
a storyboard and to ground truth real-world datasets, 
such as news reporting or surveillance video, that are 
repurposed for gameplay. 

• Game mechanics design. Critical to the success of any 
serious game is its ability to effectively engage users. 
Laboratory researchers have developed methodolo-
gies to design mechanics, scenarios, and underlying 
simulation behaviors that conform to the user’s domain 
knowledge. Thus, the game earns credibility with and 

acceptance by users. Resource constraints, scoring 
rules, and bounds on decisions all require careful 
consideration to prevent untrustworthy user behavior 
(“gaming the game”).

• Rapid game prototyping. The Laboratory’s agile devel-
opment process enables developers to rapidly examine 
whether the design choices (e.g., scenarios, allowable 
player actions, player incentives, underlying models) 
result in a believable and engaging gameplay experi-
ence. The bottleneck in the process is the design stage 
because designers must be part-time domain experts, 
experimental designers, psychologists, and data scien-
tists. To address the bottleneck, Laboratory game 
designers have actively explored creating reusable 
templates for common game archetypes and lever-
aging widely available existing game engines.

• Human-subject experiment design. Lincoln Laboratory 
has spent significant effort researching which factors 
lead to a robust human-subject experimental design, 
such as mitigating biases in training approaches, 
moderators, and hypotheses; limiting the number of 
experimental variables and options available to players; 
and balancing the length of play against a data collec-
tion opportunity.

• Human performance assessment and decision analysis. 
The Laboratory’s data-driven research methodology 
and technical framework address game assessment 
challenges by quantitatively measuring human-human 
and human-system behavior, rigorously evaluating 
analytical and cognitive performance, and providing 
data-driven ways to improve the effectiveness of 
individuals and teams. This work employs system 
instrumentation to understand game software and 
data usage, eye-tracking systems to estimate screen 
interaction and cognitive load, and wearable sensors to 
measure team speech dynamics.

Future of Serious Games Research
Engaging and informative games are expected to become 
part of every preparedness, training, technology develop-
ment, concept of operation, and operational evaluation 
process. But that level of penetration requires that the 
entire design process be fast and inexpensive, and that 
enough game design automation exists so anyone can be 
a designer. That end-goal is achievable but will require 
significant advances in machine learning and artificial 
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intelligence (AI). For example, AI could be used for intel-
ligent individualization of the game progression, with 
AI examining a player’s history for situations that gave 
the player difficulty and then adjusting scenarios accord-
ingly. Similarly, rather than building a game to operate 
on a single scenario, developers could use AI to create a 
game that systematically generates a spectrum of playable 
scenarios without manual intervention or designer bias. 
Lastly, while AI can have trouble finding coherent strat-
egies in very large decision spaces, if humans identify 
strategies worth optimizing, a joint human-AI team could 
outperform those same humans alone. Serious games are 
well matched to work through critical issues that face 
future human-AI systems, such as designing meaningful 
transparency into what the AI is performing on the user’s 
behalf, and how to earn and calibrate trust in the AI 
system. The potential reach of serious games has only 
begun to be explored, and the Laboratory will continue to 
find unique ways to apply games to the most challenging 
human-system analysis problems facing the development 
of future national security sociotechnical systems. 
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SIMULATIONS

A Serious Game 

for Intelligence, 

Surveillance, and 

Reconnaissance
A simulation experiment 
provides hands-on experience 
analyzing sensor data to 
discover mobile targets

For the past two years, people at 
Lincoln Laboratory’s Introduction 
to Intelligence, Surveillance, and 
Reconnaissance (ISR) Systems 
and Technology course attended 
the expected lectures on different 
sensors and techniques used to 
provide military operations with 
ISR data. However, each year’s 
group of about 50 military and 
civilian government personnel 
enthusiastically discovered that the 
course organizers had included a 
hands-on simulation exercise that 
demonstrated those sensors and 
techniques: a serious game that 
challenged players to use different 
types of sensors to locate a convoy 
transporting a mobile missile threat. 

In this game scenario, called a 
red/blue experiment, a simulated 
(red) threat plays out in a virtual 
environment while the participants 
(the blue team) use simulated 
sensors and tools to make inferences 
about the threat and to decide upon 
courses of action. Known as serious 
because such games are educational 
tools, the ISR red/blue game was 
designed to emphasize material 
covered in the course lectures. 

“The game allows the attendees 
an opportunity to apply the course 
concepts in a realistic situation 
and to see firsthand that data 
exploitation is hard!” said Carol 
Chiang, a technical staff member of 
the Laboratory’s Intelligence and 
Decision Technologies Group and a 
lead developer of the game. 

“The game is the outgrowth 
of many years of technical work 
in data management and simula-
tion software systems, including 
many prior red/blue experiments, 
developed by the group since 
2007,” said Benjamin Landon, the 
assistant leader of the Intelligence 
and Decision Technologies Group. 
“The game’s scenario is driven by 
the importance of locating mobile 
targets and the need for rapid 
decision making in response to 
identified threats.”

During the afternoons of each 
full day of the two-and-a-half-day 
course, half the attendees engaged 
in gameplay while the other half 
attended seminars and demonstra-
tions. The red/blue game began 
with a short briefing about the 
scenario and the tools available 
to players. The attendees, who 
were grouped into five teams, 
had 30 minutes to get acquainted 
with the tools and 10 minutes to 
discuss their strategy before they 
began the first of two 45-minute 
games. The game scenario, find the 
mobile target and stop the firing 
of a missile, was the same for both 
games, but the second game was 
complicated by having players 
contend with decoys and many 
“confuser” vehicles that were not 
part of the threat convoy. 

“In 2018, we added multiple 
threat convoys. This addition was 
to make the game harder and more 
realistic than the first game that 
had only one target for the players 
to find,” said Kenneth Mawhinney, 
another of the game developers. 
“The players couldn’t just focus on 
monitoring one convoy but had 
to maintain awareness of a bigger 
picture.” 

The game offered players the 
use of three technologies commonly 
employed in ISR missions: ground 
moving target indicator (GMTI) 
radar, synthetic aperture radar 
(SAR) imagery, and full-motion 
video (FMV). Chiang said the 
recommended utilization of the 
three modes of data acquisition was 
a sequence progressing from the 
use of GMTI flown over a region to 
determine movement indicative of a 
convoy, to the use of SAR images for 

Lab Notes
NEWS FROM AROUND LINCOLN LABORATORY
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game. Each team was allowed four 
computer setups. Chiang credits 
colleague Matthew Daggett with 
the advice to leave each team with 
fewer computers than players. 
“The game is organized around 
two main analytical tasks—the 
discovery of information and the 
integration of that information in 
order to make decisions. By their 
nature, the game computers are 
attractive to use, and everyone 
wants to see the data. We have 
found in testing similar serious 
games that if you give every 
player a computer, everyone plays 
the discovery role and no one is 
integrating information,” Daggett 
explained. “But if you remove a 
computer from one person, the 
team’s only means of ‘discovering’ 
information is to solicit teammates 
for information and integrate from 
that. By having N–1 computers for 
a team of N, you have the opportu-
nity for a functioning team and not 
just N ‘analysts’ scanning the data.” 

Players were given pregame 
time to plan a teamwork strategy. 
They might choose a leader who 
coordinated the tasking for each 
sensor mode and then connected 
the gathered information into 
an overall picture of the vehicles’ 
movements. A team could assign 
one member to each sensing job—
searching GMTI data, analyzing 
SAR imagery, and scanning with 
the FMV—while the other two 
members monitored the outputs 
and kept track of the overall 
mission. Or, teams could work in 
pairs or trios to try out each sensor 
mode while keeping up a dialog 
about their analyses of the data 
they were collecting. 

imagery that helped players refine 
their view of the objects they 
had found. The FMV simulation 
provided the best means of positively 
identifying the threat convoy, but 
FMV has a narrow field of view 
compared to the GMTI and SAR 
sensors. The mission teams have 
to use the GMTI and SAR sensors 
to effectively cue the FMV sensor 
rather than relying on FMV alone. 

On the actual game days, each 
five-player team was assigned to a 
different space in which to play the 

a more focused view of the suspected 
convoy once it has stopped, and 
then to an FMV scan to definitively 
identify one of the vehicles as the 
one carrying the missile. 

Players could choose to task 
each of the three sensors multiple 
times. The GMTI radar returns 
reflected from objects on the ground 
were plotted on a map of the region; 
the track from subsequent GMTI 
sweeps indicated the direction in 
which the objects were moving. 
Each request for the SAR produced 

Step 1
Analyst scans ground moving 
target indicator (GMTI) radar.  
The dots identify something 
moving away from or toward 
the sensor.

Step 2
Analyst zooms in on cluster of 
dots and checks signal-to-noise 
ratio. A sliding timescale 
indicates the direction of 
vehicular movement.

Step 3
If vehicles are identified in 
GMTI data, analyst requests 
synthetic aperture radar 
(SAR) imagery for more 
focused view of vehicles.

Step 4
Analyst reviews full-motion video 
to positively identify the target.

The work flow depicted here for finding the threat convoy is illustrative of the sequence 
of tasks that analysts would employ in an actual search for vehicles moving over a 
broad landscape.
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During the gameplay, a 
Lincoln Laboratory staff member 
was assigned to each team as 
an advisor. While these helpers 
followed the game action, they did 
not assess the effectiveness of a 
team’s organization. However, one 
player commented that coordina-
tion of team roles was key to a 
team’s success. 

Development of the ISR game 
was an intense, two-month effort 
that required software develop-
ment and integration, simulation 
design, and the setup of networks 
and computers specifically for 
use by the participants in the ISR 
course. The Lincoln Laboratory 
team creating the red/blue experi-
ment was able to draw on software 
systems, simulations, networks, 
and displays built for many past 
projects in the Intelligence and 
Decision Technologies Group’s 
portfolio. The team employed 
simulation tools that managed 
ground and air vehicle routes, 
interactive simulations, and 
software that emulated radar 
and optical sensors based on the 
underlying virtual world. From 
an array of components, which 
included systems for real-time 
data sharing, sensor simulations, 
and browser-based map displays 
and data viewers, the developers 
assembled a game scenario, 
tapping into expertise gained from 
staging red/blue experiments over 
the past 10 years. 

The most challenging part of 
developing an engaging red/blue 
experiment was constructing a 
scenario that emphasized the 
technologies and techniques 

taught in the lectures while still 
providing a plausible ISR mission 
thread. Once the sensor modes 
for the simulation were selected, a 
scenario for the threat convoy and 
decoy vehicles was programmed 
into the simulation software. Next, 
the Lincoln Laboratory team had 
to select the level of difficulty for 
the game, including selecting the 
amount of simulated cloud cover, 
haze, and fog that could obscure 
the optical sensors, and the number 
of decoy vehicles in the scene. If 
the game was too easy, it would 
fail to illustrate the advantages 
and disadvantages of each sensor 
mode. Conversely, if the game was 
too hard, players would quickly lose 
interest and give up. 

The development team had 
enlisted volunteers to conduct 
trial runs of the game prior to 
the course. The iterative trials 
provided the team with feedback 
that allowed them to create 
games that could be managed 
within the short playing time, but 
still provide a difficult enough 
scenario to be challenging. “The 
level of difficulty was a challenge 
throughout the dry runs,” Chiang 
said. “Some of the scenarios were 
too easy. Others were too hard, 
frustrating players who spent 
hours playing without finding 
anything. So rather than having 
players looking at FMV scans of 
haze and clouds for 90 percent of 

their time, we chose to make the 
game somewhat easy so players 
could apply the concepts they had 
just learned and get a result.”

Red/Blue experiments are not 
just demonstrations for students 
at a course or exercises for military 
trainees. Researchers can use 
these experiments to study how 
humans approach the situations 
and problems simulated in the 
scenarios and how they use the 
new tools, sensors, and automa-
tion. Simulation experiments are 
much less expensive and take less 
time than fielding a new piece of 
technology to the military and then 
asking for feedback. Furthermore, 
because a red/blue experiment can 
be repeated in a laboratory setting, 
researchers can evaluate whether a 
new tool or analytic has the poten-
tial to make a difference to the 
operational community. 

Lincoln Laboratory staff will 
apply lessons learned from the 
ISR game players’ experiences and 
feedback to develop more complex 
scenarios and adapt the tools for 
use in not only future ISR games 
but also simulation experiments 
that may shed light on technolo-
gies the Laboratory is investigating. 
They will also be using the red/
blue framework to demonstrate 
how machine learning techniques 
can be a benefit for command and 
control of autonomous systems and 
for data analysis.

The game is organized around two main 
analytical tasks—the discovery of information 
and the integration of that information in 
order to make decisions.
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The Role of Serious 
Games in Ballistic Missile 
Defense
Brian M. Lewis and John A. Tabaczynski

The missile defense mission area at 
Lincoln Laboratory has exploited serious 
game playing since the early 1960s. The 
games took many forms and were used by 

Laboratory researchers to investigate ballistic missile 
defense (BMD) problems and develop and test solutions. 
New Laboratory staff, industry personnel, government 
employees, and warfighters who were invited to partic-
ipate in the games also got hands-on experience with 
BMD concepts. Games played an important role during 
two time periods, separated by about 35 years, and 
consequently resulted in a wide range of game design 
and implementation that covered a broad spectrum 
of objectives. In the intervening period of BMD 
game-playing inactivity, significant advances in both 
BMD technology and the computer sciences enabled 
modern games to achieve a level of sophistication 
never imagined in the 1960s. Over that same period, 
the Ballistic Missile Defense System (BMDS) evolved 
from a simple configuration of radars and interceptors 
to become a “system of systems.” 

The Early Years
In the mid-1960s, the U.S. Department of Defense was 
in the initial stages of developing its first BMD system. 
Research and field measurement activities were charac-
terizing the physics and observables that would eventually 
be used by the BMD sensors to identify threatening 
targets. Large-scale computing systems and the real-time 
software needed to control a complex BMD system were 
still in the development stage. The BMD community faced 
a major question: How does one extract the appropriate 

Serious games have played an important 
role in the development of ballistic missile 
defense technology since the mid-1960s. At 
that time, Lincoln Laboratory initiated a series 
of games in which researchers assumed the 
roles of ballistic missile defense (BMD) system 
operators charged with mitigating a missile 
attack. Postgame analyses of gameplay led 
to increased understanding of the technology 
required to effectively identify and engage 
missile threats. Throughout the 1970s and 
1990s, the BMD community concentrated on 
developing needed technology, and game 
playing fell into disuse. With the technology 
advancements of the 2000s, gameplay 
re-emerged as an effective way of determining 
how to exploit the new capabilities against 
an increasingly sophisticated adversary, and 
the Laboratory designed games that took 
advantage of new decision support tools.

»
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information embedded in the sensor data and utilize it in 
a logical framework capable of successfully engaging an 
incoming ballistic missile [1]?

During this time, Lincoln Laboratory was the major 
developer in BMD technology, while Bell Telephone 
Laboratories was responsible for designing, building, 
and deploying the actual BMD system. In 1963, Lincoln 
Laboratory initiated an effort that became known as 
the Engagement Exercises. The effort brought together 
Lincoln Laboratory scientists and engineers who were 
experts in the physics of missile and radar systems, and 
engineers from the Defense Research Corporation of 
Santa Barbara, California, who were specialists in the 
emerging field of missile and defense system computer 
simulation. These exercises took place prior to the advent 
of personal computers, and programming was tedious 
and limited to modest-sized mainframes. The games were 
played manually by competing teams, housed in separate 
rooms, relying on pencil and paper and having little or 
no computer automation available to them. Each game 
included a defense team, an offense team, and an umpire 
team. Offense-defense interaction was facilitated by the 
umpire team, whose members moved between the two 
competing teams to communicate individual team actions 
and determine the outcomes of decisions made by each 
team. (See William Delaney’s Looking Back article on 
page 108 for a personal view of these exercises.)

Each game was preceded by several months of game 
preparation. The umpire team defined technology and 
resource constraints. With these constraints in mind, the 
offense generated weapon inventories and attack strat-
egies, and the defense generated extensive sensor and 
system architectures, defining their associated measure-
ment capabilities and engagement logic. Strategies were 
documented on paper with logic diagrams and precalcu-
lated decision thresholds.

Once the conflict (game) began, it took several days 
for the teams to complete the game. After the conflict 
ended, an extensive period of analysis determined what 
worked and what needed to be improved. This process 
generated insight into many facets of the defense system 
and highlighted technology areas that needed further 
development. The game was played once or twice a year 
and grew in sophistication with each cycle. The effort 
continued for approximately four years.

The Middle Period
For roughly the next 30 years, adversarial games did 
not play a significant role in the BMD mission area. The 
major activities within Lincoln Laboratory’s program 
shifted to concentrate on the development of algorithms 
and the real-time field demonstration of techniques for 
the critical BMD functions of tracking, discrimination, 
and decision support. The demonstrations utilized two 
sophisticated computer systems—one system integrated 
with the radars at the Kwajalein Missile Range (KMR) 
in the Marshall Islands and the other located at Lincoln 
Laboratory. This work went through several iterations, 
starting with the Lexington Imaging System (LIS) and 
Kwajalein Imaging System (KIS) effort in the early 1980s 
and evolved into the Lexington Discrimination System 
(LDS) and Kwajalein Discrimination System (KDS) by 
the late 1980s. The LIS and KIS were focused on using 
state-of-the-art processing hardware to demonstrate the 
viability of real-time radar image formation. After the 
capability to produce images in real time was demon-
strated, the systems continued to evolve to become the 
LDS and KDS, which were used to demonstrate a full 
complement of the critical BMD functions. 

Over several years, Lincoln Laboratory conducted 
demonstrations using the KIS and then the KDS against 
a variety of realistic ballistic targets at Kwajalein. Prior 
to implementing the techniques at the KMR sensors, the 
Lexington system was used to conduct extensive studies, 
exploiting radar data recorded during live missions at 
Kwajalein and simulation inputs to make sure the 
techniques were ready for the live-time field demonstra-
tions. The demonstrations and facilities were important 
for two reasons. First, they enabled the staff to create a 
toolbox of real-time software for implementing advanced 
signal processing and critical BMD algorithms. Second, 
the demonstrations required the development of the 
highest-fidelity target models that had been generated 
up to that time.

As part of the preparation for the field demon-
strations, an extensive set of high-fidelity target 
simulations was developed, along with graphical user 
interfaces (GUIs), to serve as diagnostic tools for the 
experimental packages deployed to the field. With the 
advent of high-throughput computation and advances 
in high-speed signal processing, these demonstrations 
were the first in which advanced BMD concepts could 
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be executed in an autonomous fashion. The GUIs and 
high-fidelity target and environment models were 
essential to the success of these field demonstrations. 
Although the demonstrations were a significant step 
toward bringing advanced BMD capability to the field, 
they were limited to single-sensor architectures and 
remained scripted. A detailed account of these field 
measurement activities may be found in Chapter 9, 
Ballistic Missile Defense, of the Lincoln Laboratory 
history book [2]. The concepts of adaptive sensor archi-
tectures, multisensor system design, and centralized/

hierarchical system control and decision making were 
yet to be formalized. 

Advances made during this period provided a strong 
framework for the series of games that would come to 
fruition in the early 2000s. The core components of this 
framework are the Lincoln Laboratory 6-degrees-of-
freedom (LL6D) trajectory generator, the Augmented 
Point Scattering Model (APSM), the BMD Toolbox, 
and the Lincoln Laboratory Visualization Interface and 
Scalable API (LLVISTA). These enablers were primarily 
focused on radar sensors. 

Lincoln Laboratory Simulation Tools
Ballistic Missile Defense Toolbox 
These frequently used functions for BMD simula-
tions include modules modeling the physics for 
ballistic trajectories, torque-free body dynamics, and 
maneuvering dynamics, as well as utilities for coordi-
nate transforms, mathematical functions, signal 
processing, and tracking. The toolbox functions were 
optimized for speed and internally validated.

Lincoln Laboratory LL6D 
This 6-degree-of-freedom missile simulation utilizes 
many of the BMD toolbox functions to create the 
trajectory files for an entire BMD threat complex. The 
LL6D emulates unitary boost, staging, object deploy-
ments, and individual object dynamics.

Augmented Point-Scattering Model (APSM) 
The APSM uses a Lincoln Laboratory radar cross- 
section signatures-modeling format and a suite of 
signature interpretation software. Generating intensive 
scenes on the fly required new techniques because 
the industry standard signature format, Xpatch, 
required too much memory and did not, at the time, 
preserve the phenomenology of interest from pulse to 
pulse. APSM is based on a point-scattering model [2].

Optical Signatures Code (OSC) 
The OSC is a national standard code that generates 
detailed infrared signatures and that models the output 
of space-based sensors and interceptor seekers.

Lincoln Laboratory Simulator (LLSIM) 
The LLSIM is a simulation framework for generating 
BMD scenes for all phases of flight and all phenom-
enology types. LL6D, APSM, and OSC provide the 
trajectories, RF response for single objects, and 
infrared response for single objects. LLSIM uses 
these as inputs to create simulated radar and infrared 
sensor and data processing output, including 
multiple-object radar pulses and infrared sensor 
responses. In addition, discrimination algorithms and 
decision aids were implemented as part of the data 
processing. The LLSIM uses an xml file to define 
the threat and blue force (missile defense) laydown, 
including the sensors, interceptors, and command 
and control, and publishes the sensor output to a 
database for use in visualization software. 

Lincoln Laboratory Visualization Interface and 
Scalable API (LLVISTA) 
This visualization software package allows flexible 
configuration of graphical user interfaces. The tool 
was developed to decouple the user interface from 
the BMD scene-generation tools, accomplished via 
a publish/subscribe implementation. It is able to plot 
scrolling range-time-intensity, range-Doppler images, 
and feature/feature plots.
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The Modern BMD Games
In the 1960s, the BMD system employed two radars—a 
search and acquisition radar and a fire-control radar. 
These radars did not have much flexibility and handled 
targets by using a predetermined script with a limited 
degree of dynamic decision support. Consequently, game 
playing concentrated on understanding and developing 
the logic and decision strategy for the battle management 
functionality.

By the early 2000s, the BMD system concept had 
evolved, employing multiple radars operating at different 
frequencies and observing different phases of a threat 
trajectory. In addition, optical sensors were included as 
part of the sensing suite. A broad array of algorithms 
for the critical BMD functions was developed over the 
intervening years and was extremely sophisticated. 
Computational power and speeds had reached levels that 
would allow sensors to operate in a more dynamic and 
adaptive way. During this time, researchers investigated 
how to best exploit these new capabilities. 

In 2001, adversarial game playing once again 
became active within the Lincoln Laboratory BMD 
community under Project Hercules, a national effort 
sponsored by the Missile Defense Agency (MDA) to 
advance the state of the art for the critical functions of 
the BMDS. Figure 1 depicts a notional representation of 
a generic BMDS. In a simplified view of the modern-day 
concept, the BMDS consists of a number of individual 
sensors that gather data about an incoming threat 
and attempt to identify the lethal target(s). The target 
state estimates and decision information are passed 
to a central battle manager where they are integrated 
with data from all available sensors to provide more 

complete situational awareness, upgraded fire-control 
track information, and improved target identification. 
This information is used to reallocate sensor resources 
and generate interceptor fire-control solutions for the 
identified threat targets. 

The initial purpose of the modern BMD games 
was to support the development of sensor algorithms 
and system architectures that would result in enhanced 
capabilities for the BMDS. The idea was to understand 
how the human mind exploited sensor observations 
to identify the threatening targets while rejecting 
the accompanying nonlethal targets, and to capture 
that process so it could be incorporated into decision 
architectures. The modus operandi was for Lincoln 
Laboratory subject-matter experts (SMEs), selected 
from a variety of technical areas, to collaboratively solve 
specifically designed challenging threat scenarios. The 
SMEs included the following:
• Data analysts experienced in sensor observables 

exploitation who could determine relevant and 
important target characteristics

• Signal processing experts who understood how to 
extract critical information from sensor observations

• System engineers who understood the resource impli-
cations of engagement constraints

To provide motivation, the SMEs were organized 
into teams that would compete against one another, and 
trophies were awarded to the winners.

Game Formulation
The new generation of games became known as the 
red/blue (R/B) exercises. The primary objective of 
these games was to identify improvements in the sensor 

Sensor #1

Sensor #2

Sensor #n

Battle manager 
and system 
resource allocator

Reallocates sensor resources 

Generates 
intercept 
solutions

Relays data 
on incoming 
threat

Interceptor 
resource farm #1

Interceptor 
resource farm #2

FIGURE 1. In this notional representation of a ballistic missile defense system, individual sensors gather 
data on an incoming threat and attempt to identify the lethal target(s). The sensor response for each target is 
passed to the battle manager, which combines data from each sensor to generate more complete situational 
awareness. This information is used to reallocate sensor resources, generate intercept solutions, and assign 
interceptors to specific targets.
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decision architecture. Figure 2 provides an overview 
of the organization of the initial games and shows the 
responsibilities of the teams and the primary interac-
tions between the teams. Several blue teams competed 
against each other to mitigate a common threat gener-
ated by the red team. The white team, similar to the old 
umpire team, postulated a BMD problem, and the red 
team had several months to define the threat and generate 
the sensor observables. The red team was composed of 
Lincoln Laboratory staff who worked with the MDA’s 
threat engineering team, the intelligence community, 
and the Laboratory’s Engineering Division. The red team 
reviewed the known offensive capabilities of peer and 
rogue nations, and worked diligently to ensure that any 
threat components incorporated into the game reflected 
the engineering capabilities of an actual adversary. 

The generation of very high-fidelity simulation sensor 
observables was the most important and tedious part of 
the game. This task was critical because the games were 
intended to challenge the SMEs’ ability to discriminate 
the targets on the basis of sensor observations. For the 
development process to have credibility, the information 
contained in the sensor signatures had to be as realistic 
as possible. The years of modeling experience obtained 
during the 1980s and 1990s in support of the Lexington 
Discrimination System development were critical to 
making the BMD games realistic and able to contribute 
to the development of BMD technology.

Prior to the game, the white team defined a scoring 
structure so that prizes could be awarded to the winning 
team. The game was played over two days and included 
a preparation phase and a postgame analysis phase. 
During the preparation phase, each blue team learned the 
capabilities of its sensor and the nature of the threat and 
defense problem. On the first morning, they were guided 

through a simple version of the game that contained no 
countermeasures. The blue team spent the afternoon 
developing its strategy for sensor measurement and data 
exploitation, and documenting the strategy with flow 
charts and decision graphs. 

On game day, the red team was allowed to utilize 
countermeasures. Each blue team occupied a separate 
room in which a white team observer recorded the team’s 
play. Once the engagement was underway, the blue team 
was permitted to make procedural modifications, and the 
white team documented the changes accordingly. During 
the postgame phase, the white team identified the strengths 
and weaknesses of the blue team’s methodology in order 
to develop a better understanding of how to improve the 
sensor decision architecture. In addition, participants 
made valuable recommendations for algorithm upgrades 
and graphical user interface (GUI) improvements. 

The Evolution of the BMD Game
The timeline continuing along the bottoms of the 
following pages provides a history of game develop-
ment and highlights key features in the game’s evolution. 
Several significant transitions in the level of game sophis-
tication are described in the following text.

FIGURE 2. The team 
structure of a ballistic 
missile defense game 
includes red (offense), 
white (umpire), and 
blue (defense) teams. 

Sends target signatures

Sends waveform and 
data rate requests

Defines threat and defense capabilities
Adjudicates red/blue team disputes
Keeps score 

Red Team
Designs scenario
Characterizes target
Generates signature

Blue Team
Allocates sensor resources
Analyzes threat observations
Identifies target types

White Team

DATE: 10/31
DESIGNATION: Red/Blue (R/B) 1
SENSOR SUITE: Midcourse (MC) radar
PURPOSE: Established best use of radar data 
to identify targets and seek discrimination 
ideas and features for red threat of interest

2001 »
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Early Radar Games (Red/Blue [R/B] 1, 2, 3, and 7)
The objective for the initial set of modern games was 
to understand the strategies that each team employed, 
with the intent of integrating the successful sections of 
the logic and processes into a decision architecture for 
a computer-controlled radar. The focus was to specify 
the data needed and decision logic required to correctly 
classify an observed target.

Figure 3 depicts a notional sensor configuration. The 
game software processed signal information from the target 
scenario and placed objects into track—an estimated trajec-
tory based on the object’s associated detections in range, 
azimuth, and elevation relative to the radar’s boresight. 
The blue team managed the radar resources to collect the 
data necessary to support their decision architecture. The 
R/B 7 provided the software structure to integrate several 
of the advanced algorithms into a comprehensive software 
package. This package enabled the blue team to schedule 
algorithms so that the outputs could be used by the archi-
tecture. Equally important, R/B 7 allowed the white team 

to examine a variety of ways to exploit new concepts and 
evolve a best-practice approach.

Interceptor Games (R/B 4 and 6)
In late 2002, the game (R/B 4) still emphasized a single 
sensor but addressed a different sensing phenomenology 
by considering a multiband infrared (IR) sensor aboard 
a missile defense interceptor that targeted a multi-object 
threat complex. However, the interceptor was a moving 
platform with a limited field of view and the ability to divert 
to a given object in the threat complex. As the interceptor 
approached the complex, objects dropped out of the inter-
ceptor’s field of view and escaped the interceptor’s reach. 
To ensure adequate viewing time, the blue team managed 
the sensor field of view, the interceptor’s approach vector 
to the complex, and containment for objects of interest. 
The R/B 4 was the first of two games focused solely on 
the IR seeker. In late 2004, R/B 6 included a visible-band 
optical sensor that allowed the blue teams to explore the 
utility of this additional capability.

Radar system

Generates targets, 
waveform 
characteristics, 
natural effects

Pulse transmission

Signal 
processing

Acquisition, track, 
and identification

Sensor resource 
allocation

Transmission Reallocates 
radar tasking 

Identifies target 
state vectors 
and target Battle

manager
Environment 

simulator

DATE: 02/14
DESIGNATION: R/B 2
SENSOR SUITE: MC radar
PURPOSE: Established best 
use of radar data to identify 
targets with long viewing time

FIGURE 3. This notional representation of a ballistic missile defense sensor depicts the interplay between the environment 
simulator, the radar system, and the battle manager. The battle manager provides tasking to the radar, which allocates the resources 
(schedules the pulse-repetition frequency and desired waveform for each object) and then transmits the pulses. The simulator 
returns the multi-object threat complex response for each transmitted pulse to the signal processor, which compresses the pulse 
and adds the proper system noise. If objects are above the noise threshold, the detections are associated with existing object 
tracks. Long-term tracks receive target identification. This information is sent to the battle manager and may be used for the next 
resource period.

»2002
DATE: 07/17
DESIGNATION: R/B 3
SENSOR SUITE: Forward-based (FB) 
radar
PURPOSE: Established best use of 
radar resources for a forward-deployed 
radar with limited viewing time

DATE: 10/27
DESIGNATION: R/B 4
SENSOR SUITE: MC infrared (IR)
PURPOSE: Used IR data for an 
intercontinental ballistic missile–
class interceptor
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System-Level Games (R/B 5, 8, 9, and 10)
The first multiple-sensor game was R/B 5, which was 
conducted in spring 2003. This game featured two 
radars, each with different sensor attributes (e.g., sensi-
tivity, frequency) and located to allow the radars to observe 
the threat with different viewing geometries. The a priori 
sensor positioning provided the defense with a much richer 
set of observables and allowed for more sophistication in 
the decision support design than previous games. In this 
scenario, the blue teams did not contend with inter-sensor 
bias, i.e., slight imperfections in sensor pointing that could 
interfere with sensor-to-sensor object correlation. 

The real-world challenges of sensor bias and 
correlating (mapping) objects from one sensor to another 
were introduced in 2005 with R/B 8. The blue teams faced 
a complex scenario for discrimination and a new challenge 
of imperfect sensor-to-sensor handover from forward-
based radar to midcourse radar and from the midcourse 
radar to the interceptor. Along with choosing waveforms to 
help discriminate between objects, the blue teams adjusted 
the tracking resources (between none, low-resource, and 
high-resource track waveforms) on each object in the 
threat complex to help resolve correlation ambiguities. 

In early 2007, the next major evolution of the game 
(R/B 10) included a multi-threat raid scenario. The red 
team devised five threats of varying complexity. The 
game was played in scaled real time, and additional 
decision aids were provided, including a prototype 
decision architecture and a more elaborate fire-control 
display than was used in previous games. The software 
provided estimates for object lethality and decision 
confidence while the fire-control display included inter-
ceptor availability and a dynamic interceptor-scheduling 
GUI. The white team observed how the blue team 
utilized the architecture output, concentrating on the 

human-machine interaction and the use of decision 
confidence measures. 

In parallel to the large two-day version of the R/B 
games, the developers produced smaller-scale, one-hour 
games (mini-R/B or MRB) to play at various missile 
defense conferences, workshops, and courses. These 
venues included the Ballistic Missile Defense Joint 
Advisory Committee Meeting, later called the Air and 
Missile Defense Technology Workshop (AMDT), the 
Lincoln Laboratory BMD Technology course, the Missile 
Defense Sensors, Environments, and Architectures 
Conference (MD-SEA), and the National Fire Control 
Symposium. The first three of these mini-games, MRB 
1–3, were scaled-down versions of full games. 

MRB 4 introduced a new era in R/B small-scale 
games. It included an emulation of MDA’s newest 
proposed system architecture. The portable game was 
used to educate participants about the BMD system’s 
operation and to study human interaction with the 
proposed architecture. 

In May 2009, MRB 5 was introduced and included an 
update that allowed blue teams to assign specific roles and 
functions to individual team members to more realistically 
reflect missile defense system operation. The Lexington 
Decision Support Center provided separate control rooms 
for the functional subteams of each blue team to perform 
their roles during gameplay. The software was updated 
to pipe the same threat information to each room, which 
displayed an emulated sensor or system function output. 
For each blue team, two to three members served as the 
operators for a forward-based radar, two to three members 
served as the operators for a midcourse sensor, and two to 
three served as the command, control, battle management, 
and communications (C2BMC)/ground-based midcourse 
defense fire-control operators. In addition, each sensor 

DATE: 05/08
DESIGNATION: R/B 5
SENSOR SUITE: FB and MC 
radars 
PURPOSE: Performed system-
level discrimination for multiple 
radars with perfect target 
handover between radars

»2003
DATE: 03/17
DESIGNATION: R/B 6
SENSOR SUITE: MC IR 
and visible radars
PURPOSE: Investigated 
utility of visible data for 
discrimination

DATE: 10/22
DESIGNATION: R/B 7
SENSOR SUITE: MC radar
PURPOSE: Integrated advanced 
algorithms into R/B framework 
and observed analyst utilization of 
algorithms and approaches to schedule 
waveforms for input into algorithms

2004
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team communicated with the fire-control operators via 
text and graphical communications and used voice links 
between the rooms for discussion.

By May 2010, this distributed approach to the opera-
tions was enhanced to include two airborne infrared 
(ABIR) unmanned aerial vehicles that fed data into the 

C2BMC node. This game focused on sensor resource 
management, in particular using the two ABIR vehicles 
for tracking in a raid environment. The goal was to 
provide sufficient track quality to engage the maximal 
number of threats in a raid. For AMDT 2011, the ABIR 
element was augmented with a discrimination capability.

DATE: 05/17
DESIGNATION: MRB 1
SENSOR SUITE: MC radar
PURPOSE: Scaled down the version (both in time 
and complexity) of R/B 7; first game at Ballistic 
Missile Defense Joint Advisory Committee (BMD 
JAC). Used during BMD technology courses hosted 
at Lincoln Laboratory

»2005
DATE: 12/7
DESIGNATION: R/B 8
SENSOR SUITE: FB and MC radars and exoatmospheric kill 
vehicle (EKV)
PURPOSE: Introduced complexity into the game with blue teams 
performing radio-frequency (RF)-to-RF handover and RF-to-IR 
handover. Added low pulse-repetition frequency (PRF) and high 
PRF track waveforms to allow for more handover control. Added 
user interface for correlation and sensor bias removal

The BMD Games Infrastructure
The initial version of the modern BMD games was 
quite modest, residing on a small network of laptop 
machines. It exploited many of the target signa-
ture simulation and discrimination tools that had 
been developed in support of Lincoln Laboratory’s 
long-standing BMD discrimination technology 
program. Many of these software packages were 
first used in the Lexington Discrimination System 
and evolved in quality with each field experiment.

As the games evolved, they incorporated more 
sophisticated threats, sensor processing algorithms, 
and decision support tools, and eventually required 
a larger network of computing hardware to accom-
modate gameplay needs. In a parallel effort, Lincoln 
Laboratory was developing a BMD Decision Support 
Laboratory that exploited the capabilities of the 
Laboratory’s high-performance computing facility 
[2]. This facility, known as the Lexington Decision 
Support Center (LDSC), was the culmination of 
a multidecade evolution of Lincoln Laboratory 
simulation tools that were developed in support of 
discrimination technology. The LDSC consisted of 

several separate, but highly integrated, laboratories. 
One laboratory was dedicated to the develop-
ment of very high-fidelity sensor and environment 
simulations. A second laboratory was dedicated to 
multisensor information fusion and battle manage-
ment, while a third housed the development and 
testing of decision support tools for BMD.

In May 2009, a distributed defense system 
game was developed for the Lincoln Laboratory 
Joint Advisory Committee meeting and was 
installed in the new LDSC facility. The advantage 
of this instantiation was that it allowed a team to 
be broken into subteams and placed in separate 
rooms with specific displays for the team’s sensor 
control, data fusion and battle management, and 
weapon-control functions. The displays were linked 
by voice communication in a manner similar to 
the way a distributed weapon system would be 
implemented. This arrangement allowed for the 
development of additional interactive displays 
that addressed how the separate subteams could 
communicate efficiently.
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System Resource Allocation Games (AMDT 2012)
By 2012, the game had changed radically. Its focus had 
shifted from the details of sensor data exploitation to 
the investigation of high-level system issues, such as 
preplanned disposition of assets and the real-time alloca-
tion of defense resources during battle. The resource 
allocation game introduced a number of new features and 
was the first game that combined air and missile defense. 
It was also the first game in which a red team played 
interactively against a blue team and in which random 
events were used to model the fog of war, i.e., uncertainty 
in situational awareness experienced by participants in 
military operations. Since sensor data exploitation was 
no longer an objective to be explored in these games, no 
attempt was made to model the signatures of the various 
targets or to model various decision algorithms. 

FIGURE 4. The blue 
team analyzes target 
observations, assesses 
engagement status, 
and prepares radar 
resource requests for 
the next time interval.

Game Play 
The actual game-playing experience has changed 

significantly during the game’s history. Early versions 
employed projected displays and allowed the clock to be 
stopped for team discussions. By 2007, R/B 10 featured 
a reduced tempo clock and an uninterrupted timeline. 
At the game’s most mature stage, individual interactive 
desktop displays portrayed information unique for each 
operator position. 

Figure 4 shows a blue team on game day. The game 
control operator sits at the console at the left. The right 
screen displays selection options for the radar resources. 
On the left and center screens are wideband radar displays 
that depict radar returns from several targets. The blue 
team analyzes this information to determine the team’s 
future moves. 

DATE: 05/03
DESIGNATION: R/B 9
SENSOR SUITE: FB and 
MC radars
PURPOSE: Added 
impact-point prediction

»2006
DATE: 05/22
DESIGNATION: MRB 2
SENSOR SUITE: FB and 
MC radars
PURPOSE: Scaled down 
the version of R/B 8; 
presented at BMD JAC 
2006

DATE: 10/25
DESIGNATION: MRB 3
SENSOR SUITE: FB and SM-3 radars
PURPOSE: Introduced a regional scenario with compressed 
sensor and playing timelines. Played at Missile Defense 
Sensors, Environments, and Architectures Conference, at 
the MDA for the program office, at the BMD JAC, and in 
Huntsville, Alabama. More than 100 participants
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Figure 5 depicts the GUI used to manage the 
resources of a generic long-range, wideband radar. Each 
choice results in a different fraction of radar resource 
devoted to the selected function. Typically, higher radar 
resource allocation provides improved levels of informa-
tion quality. The trade-off between resource allocation 
and information quality is established by the choice of 
sensor technology assumed during the game design 
phase. The blue team then schedules when to collect the 
data on the objects in track and decides how to optimize 
information gain under current resource constraints. The 
green and red toggle boxes indicate how the blue team 
opted to schedule and collect data on the targets in track. 
The left-hand column identifies the track file, and the row 
shows the resources the team assigned to that particular 
target. In this case, Track 2 represents a target that is in 
track, and the team opted to gather the highest-quality 
wideband discrimination data that the radar is capable of 
collecting. At the bottom of the control panel, the Radar 
Duty bar indicates the fraction of total radar resource 

being consumed by all tasks currently executing, and 
shows the radar to be operating at slightly more than half 
its full capacity.

Figure 6 displays a range-time-intensity (RTI) plot 
for a target being tracked by the radar. At the top of the 

FIGURE 5. The radar control panel 
displays current status and waveform 
option buttons, including narrowband 
(NB) low-resolution waveform, 
wideband (WB) waveform, low pulse-
repetition frequency (PRF) transmission 
(L), and high PRF transmission (H). 
Each option results in different levels 
of information quality. Green indicates 
that the sensor is going to employ that 
waveform on the given track, and red 
indicates that the sensor is not using 
the waveform on the given track.

FIGURE 6. This display shows a wideband radar range-
time-intensity plot for Track 2.

DATE: 04/18
DESIGNATION: R/B 10
SENSOR SUITE: FB and MC radars, fire control
PURPOSE: Premiered scaled-down real-time games 
and more elaborate fire control with inventory and 
multiple weapon sites. Unveiled first raid scenario, 
featuring automation of decision logic and correlation 
to investigate interaction of humans with decision aids

»2007
DATE: 05/15
DESIGNATION: MRB 4
SENSOR SUITE: FB and MC radars, 
fire control
PURPOSE: Scaled down the R/B 10 
version to teach newly adopted missile 
defense object-targeting concepts

2008
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DATE: 05/19
DESIGNATION: Joint Advisory Committee 
(JAC) meeting, 2009
SENSOR SUITE: FB and MC radars, fire 
control
PURPOSE: First distributed game; blue teams 
divided and operated different sensors and 
fire control

DATE: 05/18
DESIGNATION: JAC 2010
SENSOR SUITE: Airborne infrared (ABIR) radar
PURPOSE: Introduced distributed, sensor 
resource management for two ABIR platforms 
and Ground-Based Midcourse Defense fire 
control with no discrimination

screen, the team can select from several tabs to examine 
particular plots of the data collected by the sensor. The 
first four tabs provide information for the entire sensor 
collection. The Metric tab provides altitude versus time; 
the narrowband low-resolution waveform, NB RTI, 
tab has the radar cross-section (RCS) response for the 
collection of objects in the scene in range over time; and 
the Feature/Feature tab provides a comparison of the 
extracted features (such as depicted in Figure 7 ) for each 
object in the scene. These plots are updated in real time 
with data from the radar’s scheduled waveforms.

The remaining tabs exhibit object-specific output. In 
the example given, there are five tracks, and the tab for 
Track 2 is selected. There are six additional tabs along 
the bottom of the GUI to display data collected with the 
suite of waveforms. In this example, the wideband RTI 
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FIGURE 7. A feature/feature plot shows a comparison of extracted features for each object in a scene. In this example, the 
left panel displays labeled a priori training information, and the right panel displays game-day information from objects in 
track with unknown types (marker colors are used to indicate that the features are from the same tracked object; colors are 
randomly assigned).

»2009 2010

is selected, and the collected radar response is shown. 
There is a tab for each of the other waveforms and an 
additional tab for algorithm results. The Features tab 
includes a dropdown menu of the different discrimina-
tion features derived from the collected sensor objects. 
The available features were based on legacy BMD features 
and new prototype features derived from Project Hercules 
or previous R/B games.

Figure 7 depicts a feature/feature plot. The left panel 
shows the a priori data from a training day scenario while 
the right panel shows the output from the game-day 
scenario. The blue teams can select features in real time 
for the x- and y-axes to explore feature combinations that 
provide the greatest decision-making utility. 

As expected, the a priori data on the left does not 
match the game-day observations on the right. The blue 
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teams must decide how to manage the measurement 
resources applied to the different objects in order to 
resolve any uncertainty or ambiguity, and they must inter-
pret the changes in the appearance of the objects that they 
expected from prior experience. The blue teams faced 
several questions: Did the red team disguise the reentry 
vehicle? Was there a deployment malfunction? Are there 
countermeasures? Are there multiple reentry vehicles? 
The blue teams could rely on their discrimination archi-
tecture logic to request additional sensor resources to 
resolve the uncertainties.

Figure 8 represents a portion of a discrimination 
architecture developed in response to the training-day 
experience. The blue shapes were updated with 
game-day innovations.

The white team observers kept detailed notes about 
how each blue team executed its strategy and adapted 
its decision architecture. To decide which blue team had 
won, the white team used an overall metric based on lethal 
objects correctly engaged. If a tie occurred, the white team 
used tiebreaker metrics, such as the number of objects 
correctly discriminated, the number of interceptors 
employed, and resources and time efficiently used. The 
final out-briefing included a short strategy discussion from 
each blue team, and the winners were awarded trophies. 

Outreach 
Over time, the scope of the games broadened to include 
all aspects of the BMD system of systems. This expan-
sion allowed for the investigation of a wide range of 

Is feature
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Is feature
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Is feature
1 > 0.55?

Is the 
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Nonlethal 
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Nonlethal 
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Collect more 
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No

No
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FIGURE 8. This chart represents a portion of a notional blue team discrimination architecture. The blue team used the data provided 
on training day to identify feature thresholds and determine lethality. During the actual game day, there were off-nominal conditions 
(i.e., operational or environmental factors were not as planned), and a new feature was used to break a tie from multiple identified 
lethal objects.

DATE: 05/17
DESIGNATION: Air and Missile Defense 
Technology (AMDT) Workshop 2011
SENSOR SUITE: ABIR radar
PURPOSE: Distributed and controlled two 
ABIR platforms, performed discrimination and 
passed information to ground fusion center 

»2011
DATE: 05/15
DESIGNATION: AMDT 2012
SENSOR SUITE: System level
PURPOSE: Eliminated deliberative, planned red 
scenario. First game with red team being played 
by game participants and first integrated air and 
missile defense game. Red team attacks and blue 
team defends high-value assets (e.g., carrier) 

2012
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DATE: 05/16
DESIGNATION: AMDT 2013
SENSOR SUITE: Electronic warfare (EW)
PURPOSE: Created similar attributes to 
AMDT 2012 version, with blue team using 
soft-kill techniques against a red team 
cruise missile attack 

DATE: 06/04
DESIGNATION: AMDT 2014
SENSOR SUITE: EW
PURPOSE: Established game 
company version of the 2012 game

potential capability improvements. Figure 9 depicts 
the important aspects of the interaction between devel-
opers and users, and the influence of this intereaction on 
system technology. The body of blue team participants 
eventually expanded to include expert BMD analysts 
and program managers from Lincoln Laboratory, the 
prime contractors, and the MDA. The warfighter was 
also brought in during the later phases of game devel-
opment to help the developers understand not only the 
challenges faced by the military system operators but 
also potential future system improvements. The partic-
ipants provided welcome feedback regarding the GUIs 
that the Laboratory was developing to display the threat 
information and decision aids. 

In later years, the R/B game was used as an educa-
tional tool. The introductory material was transformed 
into a tutorial on BMD discrimination, and the scenarios 
were used to enhance understanding of the adversary’s 

Detail needs

Create 
possibilities

Play the 
game

Develop game 
modifications The game

BMD sensor, 
system software

Decision 
support tools

Warfighters
BMD subject-
matter experts, 
project managers

FIGURE 9. The gaming process facilitates interaction between 
the development community and the warfighter. This graph 
represents important aspects of interaction between the 
developer and the user, such as warfighter feedback influencing 
decision support tools.

»2013 2014

capability and the potential of new technology to 
mitigate the evolving threat. Such games were used in 
the Lincoln Laboratory BMD Technology Course and 
played at MD-SEA conferences, the American Institute 
of Aeronautics and Astronautics BMD conferences, and 
Lincoln Laboratory’s annual Air, Missile, and Maritime 
Defense Technology Workshop. Participants included 
employees from MDA, researchers from federally 
funded research and development centers, warfighters, 
and prime contractors. At some events, participation 
exceeded 100 individuals. Graphical user interfaces and 
decision aids were updated for each subsequent game, 
and the game focus evolved to address MDA’s most 
pressing issues.

Further Development
As the game was exposed to a broader community, the 
U.S. Navy took particular interest in its further develop-
ment. In 2013, the Office of Naval Research established 
a project to evolve the game into a training tool for 
Navy operators. The Laboratory and a commercial 
gaming company, Pipeworks, converted the technology 
to the standards required for fleet training operations. A 
detailed discussion of the effort is provided in an article 
titled “Strike Group Defender” on page 25. Other mission 
areas at Lincoln Laboratory recognized the advantages 
of using gameplay to develop and test sensing and 
decision support technology. An early adopter was the 
Laboratory’s intelligence, surveillance, and reconnais-
sance program, which developed games specific to that 
mission area. 

The serious games concept and underlying software 
structures continue to be used in several technical areas. 
The detailed simulation tools that support algorithm 
development and the BMD games are still relevant and 
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DATE: 04/07
DESIGNATION: AMDT 2015
SENSOR SUITE: System level
PURPOSE: Added positioned multiple 
radars to optimize performance in a 
raid scenario

DATE: 05/17
DESIGNATION: Air, Missile, and Maritime 
Defense Technology Workshop 2016
SENSOR SUITE: System level
PURPOSE: Introduced undersea 
component into 2012 infrastructure

are continually updated for applications in the various 
system studies conducted in Lincoln Laboratory’s BMD 
mission area. As the BMDS matures and increases in 
complexity, it can be anticipated that a new round of 
BMD games will emerge. 
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Strike Group Defender
G. Mark Jones, Matthew C. Gombolay, Reed E. Jensen, and Steven L. Nelson

From extending the reach of the military, 
to countering piracy, to defending against 
ballistic missiles, to responding to natural 
disasters, the surface fleet of the U.S. Navy 

performs a range of critical missions to protect national 
interests at home and abroad. To provide the diverse 
capabilities required by these missions, the Navy has 
fielded a fleet of more than 100 major surface combat-
ants, ranging from versatile littoral combat ships and 
guided-missile cruisers to the immense nuclear-powered 
aircraft carriers [1]. The total crew size represented by 
these ships is well in excess of 90,000 sailors, under-
scoring their importance as a major Navy asset [2].

Though the fleet is an undeniably formidable global 
force, potential adversaries are developing advanced 
weapons, intent on putting U.S. ships and their crews at 
ever-increasing risk [3]. The emerging capabilities and 
proliferation of modern anti-ship cruise missiles (ASCMs) 
present a considerable threat to the surface ships of the 
Navy and their missions [4].

In recognition of this evolving threat, the Navy has 
a wide array of counter-ASCM systems, both deployed 
and in development, with the goal of equipping each 
ship (Figure 1) with a robust layered defense [5]. Each 
countermeasure system provides unique and complemen-
tary capabilities that must be employed quickly, correctly, 
and judiciously to mitigate the ASCM threat.

While the diversity in defensive systems is designed 
to enhance robustness for addressing the wide variety of 
ASCM types, the additional complexity of the combined 
defensive system presents a significant challenge for the 
sailors tasked with responding to ASCMs. For example, 

Defending U.S. Navy ships from the growing 
danger presented by modern anti-ship cruise 
missiles is a formidable challenge. Lincoln 
Laboratory, partnering with government and 
industry, developed the game-based trainer 
Strike Group Defender to equip the modern 
sailor with the knowledge and skills necessary 
to address the evolving threat. The combination 
of the immersive interface with novel machine 
learning and artificial intelligence techniques 
is advancing the state of the art in interactive 
training.

»
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assigning five countermeasures against five threats allows 
more than 100 distinct combinations of countermeasures, 
though only a few of these potential choices may actually 
result in a positive outcome for the defense. More realistic 
situations than this simple example have greater numbers 
and types of both attacking missiles and countermeasure 
systems, with additional complications from timing and 
geometric deployment considerations, and are there-
fore exponentially more complex. The challenge for the 
modern sailor is to select the correct course of defensive 
action, often on very short timelines and with incomplete 
information, from the large number of choices afforded by 
the array of countermeasure systems.

A critical factor in preparing the modern sailor to 
address complex ASCM scenarios is clear, accurate, and 
detailed training [6]. In recognition of this, Chief of Naval 
Operations Admiral John Richardson has made one of his 
four principal thrusts for the Navy to “achieve high-velocity 
learning at every level.” In particular, he suggests that the 
Navy “expand the use of learning-centered technologies, 
simulators, online gaming, analytics and other tools as 
a means to bring in creativity, operational agility, and 
insight” [7]. 

The serious game Strike Group Defender (SGD for 
short) was designed with this training need in mind, 
harnessing the immersive nature of modern video game 
technology, coupled with cutting-edge adaptive machine 
learning techniques, to provide the Navy with a flexible 
training and evaluation tool suitable for addressing 
demanding, realistic modern scenarios. In the end, the 
goal of SGD is to enable sailors to better defend themselves 
and their ships against the real dangers they face in their 
naval assignments.

Why a Video Game?
Because the purpose for the vast majority of video games 
ever produced has undeniably been entertainment, there 
has been a natural uncertainty and guardedness about 
games’ effectiveness and legitimacy for educational uses 
[8–10]. Even so, familiar schoolhouse games, such as The 
Oregon Trail, have occupied a niche market in the gaming 
world since the 1980s [11]. As technology has improved 
and the proliferation of video games into everyday life has 
increased, the interest in using video games for educa-
tion also has grown [12]. The development of SGD as a 
video game was driven by several key factors: the clear 

FIGURE 1. The various systems depicted in the illustration can be deployed to counter anti-ship cruise missiles. 
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connection games provide to young people, the game 
industry’s development of supporting technology, and 
the natural representation of defense against ASCMs as 
a two-sided game.

Connection
Part of the growing interest in leveraging video games 
for instruction flows naturally from the realization that 
today’s students have never known a world without the 
influence of video games [13]. To put this in perspec-
tive for the Navy, where the average enlisted crew 
member is 22 years old, the original Mario Bros.™ game 
was a quarter-century old when today’s sailors were 
in middle school and the venerable progenitor game 
Pong™ was already approaching 40 years of age [14–16]. 
Furthermore, the pervasiveness of video games for young 
people today in the United States can be quantified in part 
by noting that 97 percent of them report playing some 
form of video game, whether on gaming consoles, on 
personal computers, or, increasingly, on mobile devices 
[17]. The familiarity of the video game medium therefore 
offers the potential to tap immediately and intuitively into 
the everyday experience of the target audience of young 
sailors. The intuitive interfaces and instinctive gameplay 
developed for SGD allow players to focus on learning ship 
defense rather than on the mechanics of the game itself.

Technology
In tandem with the expansion of the influence of 
video games, the exponential growth in the computing 
capability that fuels the industry offers opportunities for 
developing instructional methods different from those 
found in more traditional teaching [18]. With educational 
video games, teachers can take advantage of immer-
sive and engaging on-demand lessons, networked team 
training, and immediate examination with feedback [19]. 
In addition, the massive data collection and new analysis 
techniques supported by a modern video game permit 
SGD developers to explore new avenues for improved and 
adaptive teaching, training, and testing [20].

Natural Game
While the stakes are extremely high and very real, the 
defense of a ship against an attack of ASCMs aligns 
itself very well with the pure definition of a game: two 
independent sides (the defense and offense) with definite 

objectives (minimal/maximal damage), operating under 
certain rules (the capabilities of defensive/offensive 
systems) [21]. Learning to play the game translates 
to the core goal of SGD: teaching sailors how better to 
defend their ships in the real world. Additionally, the 
tense real-time scenarios faced in defense against ASCMs  
naturally add an element of excitement and entertain-
ment to the game, increasing player engagement and 
educational opportunities.

The Reality for the Simulation
The game of chess can be intricately complex even though 
the movements of individual pieces are straightfor-
ward to define. In much the same way, the complexity 
in mounting a defense against ASCMs is derived from 
the much simpler definition of the offensive and defen-
sive systems that may be employed. Understanding the 
capabilities provided by these “pieces” is therefore neces-
sary for understanding the nature and magnitude of the 
complexity found in the overall “game” of ship defense.

The Offense
With significant roots in the technology developed near 
the end of  World War II, the first ASCM was introduced 
on the world stage in the late 1950s [22]. Since that time, 
the diversity of ASCM types and their associated array 
of capabilities have grown steadily, with a world arsenal 
of more than 75,000 and the number of distinct types in 
excess of 100 varieties [23]. 

Though the diversity of ASCM systems is daunt-
ingly large, the number of characteristics needed to 
define a given system at a high level is comparatively 
compact. Namely, once the flight profile (how it moves) 
and terminal seeker (how it sees and thinks) are defined, 
the system can be modeled sufficiently for the training 
goals in SGD.

Cruise missiles are kinematically diverse, with speeds 
ranging from subsonic to highly supersonic and altitudes 
from very high down to low-profile sea-skimming 
approaches [24]. Additionally, some systems incorpo-
rate high-g maneuvers in an attempt to evade missile 
interceptors fired by the defense [25]. The need for quick 
decision making by the defense can be brought into focus 
by considering fast, low-flying threats, for which the time 
from first appearance above the horizon of the ship until 
impact can be less than one minute.
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Because a ship is a moving target, all cruise missiles 
have some sort of terminal seeker designed to guide the 
missile to impact its target. Many ASCMs have radars 
mounted in their noses for this purpose, but passive 
sensors (homing in on emissions from the ship) or 
infrared sensors are also possibilities [26]. While the 
seeker enables the missile to select among targets and 
attempt to filter out decoys, it also provides an avenue 
for the defense to counterattack via electronic warfare 
techniques [27].

The Defense
Since the advent of the ASCM threat, the Navy has contin-
ually developed and deployed a wide range of ASCM 
countermeasure systems. Though the diversity of systems 
is large, all of them can be sorted into one of two classes: 
hard-kill (physically destroying or disabling the threat) or 
soft-kill (confusing or blinding the ASCM seeker) [28]. 

The primary hard-kill systems aboard ships are defen-
sive missiles called interceptors, designed to physically 
destroy the attacking ASCM before it can hit the ship [29]. 
Much like the ASCM threat, these defensive systems are 
defined by how far and fast they fly, as well as by the type 
and capability of their own terminal seekers. Additionally, 
close-in weapon systems utilizing a high-rate-of-fire gun 
are also a form of hard kill [30]. Each hard-kill system’s 
strengths and weaknesses determine the likelihood of its 
effectiveness against a given threat.

In contrast to the dramatic operation of hard-kill 
systems, the soft-kill systems on the ship employ more 
subtle means to defeat incoming threats. Onboard and 
off-board jammers interfere with the operation of the 
ASCM seeker to blind or confuse its targeting, attempting 
to render the threat unable to guide to the target ship 
[31]. Additionally, soft-kill decoy countermeasures can 
be deployed to act as a more enticing target, causing the 
threat not to target the actual ship [31]. The performance 
of soft-kill countermeasures depends heavily on when 
and where they are deployed and on the capability of the 
seeker installed on the attacking missile.

The counter-ASCM systems, both hard and soft 
kill, are supported at some level by the radars on board 
the ship and off board (e.g., on aircraft), as well as by 
electronic support measure systems listening for threat 
seeker emissions [32].

The Game
At the most basic level, the goal for the offense is to inflict 
as much damage as possible (potentially on high-value 
ships) with its resources, while the defense seeks to 
mitigate the damage and conserve its own countermea-
sures, saving them for potential subsequent attacks. 

In the conflict, the offense has some significant 
advantages, including deciding when the attack will 
occur, which types of ASCMs will be used, how many will 
be deployed, how they will be spaced geometrically and 
in time, and which ships will be targeted. The offense is 
challenged by two conditions: the target is moving, and 
the ships in the strike group can operate as a team.

The defense’s advantage is that it decides which ships 
are in the strike group, how they are positioned, and how 
they are equipped. Challenges for the defense include 
the uncertain identification of the attacking threats and 
imperfect knowledge of how many threats will attack at 
the current time and how many may attack later.

An effective defense requires judicious employment 
of countermeasure systems, with correct deployment 
timing and doctrine, in the face of limited information on 
a very limited timeline. The complexity of this challenge 
has spurred the continued development of the SGD game 
to help sailors become familiar with the critical decisions 
they may face and their options.

To maximize the clarity and effectiveness of instruc-
tion, a serious game must represent the salient features 
of the simulated scenario while minimizing extraneous 
information [33]. SGD was designed to provide minimally 
detailed representations of real offensive and defensive 
systems while essentially retaining the full complexity of 
the systems’ combined interactions that would be faced 
by a sailor mounting a defense against the broad array of 
potential ASCM threats. 

Because the task of defending a ship against ASCMs 
can be seen to fit perfectly in the paradigm of a game, 
SGD was seen as a logical, relevant training tool for the 
modern sailor.

Genesis of Strike Group Defender
The Navy is pursuing the enhancement of capabilities 
across a wide variety of new and ongoing hard- and 
soft-kill efforts. From large programs of record for new 
radars and electronic warfare systems, to Future Naval 
Capability efforts, to speed-to-fleet reactions to urgent 
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needs, the breadth of new development is considerable 
[34–36]. In addition, concurrent with the creation of new 
systems, new tactics and deployment algorithms are being 
pursued. The result is that the capabilities and complexi-
ties encountered by today’s sailors are steadily increasing, 
and so is the need for education that addresses these 
technological advances. Lincoln Laboratory’s involvement 
in many of the Navy’s development efforts has afforded the 
Laboratory insight into both the capability and training 
needs of naval personnel. 

The first steps toward the development of an educa-
tional video game to address the evolving needs of the 
Navy were taken during the 2013 edition of the Lincoln 
Laboratory annual Red/Blue game held by the Air, Missile, 
and Maritime Defense Technology Division (Figure 2). In 
contrast to the later expanded SGD, the first iteration was 
focused on conveying several key concepts that illustrate 
the complexities of defense against ASCMs. This version 
was constructed as an intense real-time, simultaneous, 
two-player game, with one player acting as the offense and 
the other as the defense. The game was publicly introduced 
during an eight-team tournament conducted in conjunc-
tion with the 2013 Air and Missile Defense Technology 
(AMDT) Workshop at Lincoln Laboratory. 

Though the game was comparatively limited in scope 
at this stage, constructed by engineers (not game devel-
opers) and played by engineers (not Navy ensigns), several 
notable findings emerged from the tournament. First, it 
was clear that teams that practiced more ahead of time 
(i.e., trained together) performed markedly better than the 

less practiced teams. Additionally, teams that identified a 
limited selection of preferred strategies on both offense and 
defense were better able to respond quickly to a wide range 
of their opponent’s strategies. And finally, teams that had 
clear roles identified for each member were able to perform 
more measured responses, even against unexpected 
opponent behavior, on a short timeline. Though the obser-
vations from the Red/Blue tournament were qualitative, 
they provided insight into the potential for using a video 
game construct for experimentation and training.

Based on the initial demonstration of SGD during 
the Red/Blue game at the AMDT Workshop, the Office 
of Naval Research, PMR-51 Branch, expressed a desire 
to greatly expand the game into an immersive training 
and demonstration tool for the Navy. Partnering with 
professional video game developer Pipeworks and game 
consulting firm Metateq, Lincoln Laboratory rapidly 
transformed the Red/Blue game into the first version of 
SGD, which personnel at the Naval Postgraduate School 
in Monterey, California, beta tested.

Strike Group Defender Functionality
Over a few months, Pipeworks incorporated an array of 
professional-grade enhancements to expand the concept 
of the original Red/Blue engineering demonstrator 
into the first polished iteration of the SGD video game, 
which offered significantly increased training poten-
tial. Immediately striking were the improved visuals 
and stirring soundtrack designed to create an immer-
sive atmosphere and draw the player into the game. The 
action takes place in a third-person, three-dimensional 
arena, with the defended ships (blue) in the center and 
the cruise missile threats (red) flying in from the horizon. 
Supplementary displays and interfaces are arrayed around 
the large central display, providing users with easy access 
to all information needed to play the game (Figure 3). 

The player is given complete control over the defense, 
deciding strategy, deploying countermeasures, and even 
changing ship speeds and headings. This idealization, 
along with the representation of the interfaces, is intended 
to teach core concepts rather than simulating a partic-
ular display, piece of hardware, or role for an individual 
sailor. The supposition underlying the game’s design is 
that sailors more well-versed in the global operations of 
ship defense will better be able to fulfill their particular 
roles as part of the crew.

FIGURE 2. The Red/Blue game featured separate displays for 
the offense (left) and the defense (right).

Legacy missile
Advanced missile

Ship
Mobile decoy
Advanced decoy
Stationary decoy

Red force display Blue force display
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Similar to the idealization of the displays, the missiles 
and countermeasures in SGD are abstract representations 
intended to convey core concepts rather than repre-
sent real systems (Figure 4). On the red side, the types 
of ASCMs vary primarily with how the missile finds or 
selects its target. The Moth Missile, for example, uses an 
infrared seeker to measure heat from ships. On the blue 
side, the systems are broadly representative of classes 

of countermeasures. For example, the Hard-Kill system 
represents the full variety of hard-kill options on a ship. 

However, with the understanding that more realism 
could be desirable for some instructional considerations, 
the game was designed in such a way that converting to 
more realistic (and therefore also classified) representa-
tions amounts to a straightforward change to the input 
file defining the system.

FIGURE 3. The display for Strike Group Defender gameplay presents blue ships and red threats (center), an overhead 
view (lower left), a message panel (lower right), a countermeasure inventory (right), and menus and scoreboard (top).

FIGURE 4. Strike Group 
Defender features a variety 
of abstracted threat 
missile types (left) and 
defensive countermeasures 
(right), each with its 
own characteristics and 
capabilities. For example, 
the Moth Missile can be 
distracted from the defended 
ships with a flare (center).

Moth missile

Flare

Ship
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SGD is packaged with a range of built-in scenarios, 
from one-threat versus one-ship tutorials up to a full strike 
group versus an attack of 20 missiles or more. The game 
is not limited to these scenarios, however, as SGD also 
includes a built-in scenario editor that permits instruc-
tors and students alike to create their own situations 
(Figure 5). Ships, countermeasure loadouts (number of 
countermeasures carried on board), threat type, bearing, 
and timing are all adjustable, allowing players to explore 
actions from the point of view of both sides of the conflict. 
Additionally, threat timing and bearing can be varied, 
even randomly, adding challenge and discouraging rote 
memorization of responses.

Scenarios are played in real time, typically last a 
few minutes, and are playable under a variety of game 
modes that provide different instructional opportunities 
for the user: 
• Tutorial. Straightforward scenarios with a single type 

of incoming threat coupled with a virtual instructor 
teach players where and when to deploy the correct 
countermeasures. 

• Single-player defense. Controlling a single ship or 
group of ships, users defend against a computer-con-
trolled ASCM attack in a variety of scenarios across 
a range of difficulty levels based on the number of 
incoming threats and the availability of countermea-
sure resources. 

• Multiplayer defense. Through in-game text messaging 
or over a voice network, multiple players collaborate 
in real time to defend surface ships against a comput-
er-controlled ASCM attack. 

• Multiplayer offense versus defense. One player controls 
the adversary ASCMs (i.e., offense) while all other 
players collaborate as the defense. This setup enables 
players to gain insight into potential adversary strate-
gies and the tactics to counter them.

In addition to the central gameplay functionality, SGD 
also incorporates many social features designed to increase 
player interaction, encourage competition, and ultimately 
improve learning (Figure 6). Each scenario has its own 
leaderboard on which top scores are continuously updated 
for all players to see. The innate desire to be atop the 
leaderboard is a powerful motivating force for individual 
improvement [37]. Similarly, the ability to create and share 
new scenarios with which to challenge other players is also 
intended to foster creativity and the desire to improve. 

Finally, the message board facilitates communication 
among the players, allowing them to ask questions of their 
peers and instructors and to share insights gained. 

Though SGD’s capabilities are extensive, the game 
was designed from the beginning to require minimal 
system requirements to work properly. Running in any 
web browser with very low bandwidth requirements, 
the game retains full functionality whether played on a 
desktop computer in the classroom, on a laptop at home, 
or over secure networks on ships deployed at sea.

FIGURE 6. The intuitive interface offers players easy access to 
scenarios, leaderboards, and social media.

FIGURE 5. The editor panel allows the player to construct a 
scenario, selecting which type of threats to confront, how many, 
and where and when they are deployed against the elected 
defended ships.
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 SGD was introduced to the wider community at the 
2014 Air and Missile Defense Technology Workshop at 
Lincoln Laboratory. Over the three days of the workshop, 
67 participants logged 332 games. The positive feedback 
from the community qualitatively validated many of the 
underlying motivations that had influenced the devel-
opment of SGD and reinforced the Navy’s desire for the 
research team to pursue further enhancements.

Strike Group Defender Roles
The diverse capabilities designed into SGD enable access 
to multiple training avenues with the ultimate goal of 
equipping sailors with the skills needed to defend their 
ships within complex threat scenarios. These educational 
opportunities can be broken down into three distinct 
categories: teaching, exploration, and evaluation.

Teaching
The capabilities of SGD enable rapid instruction in ASCM 
defense, from threat characteristics, to countermeasure 
capabilities, to implementation of correct tactics. Using 
the built-in capabilities, instructors can construct lesson 
plans to relate core concepts in the classroom setting, or 
students can experiment on their own.

One of the notable benefits of SGD is building sailors’ 
trust in new capabilities. In response to the continually 
evolving ASCM threat, the Navy is rapidly introducing 
new countermeasure systems to the fleet. In particular, the 
new soft-kill systems, composed of a variety of onboard 
and off-board jammers, may seem arcane and untrust-
worthy if one does not understand how they actually do 
the job of defeating ASCMs. Because the new systems 
are unfamiliar to sailors, they may have a tendency to 
downplay these systems in favor of older, more familiar 
ones. By observing in SGD how new systems operate, 
sailors can learn how the systems work and therefore may 
choose to employ them appropriately in the field. 

Exploration
In contrast to the cost of making a mistake in countering 
a real ASCM, the penalty for performing poorly in SGD is 
only a lower game score and the immediate opportunity 
to try to improve. This lack of consequences encour-
ages players to experiment and to try any “what if?” 
scenarios desired. In this way, a deeper understanding 
of core concepts can be attained, and new methodologies 

may even be discovered [38]. Because the feedback 
is immediate, the trainee can try a wide variety of 
approaches in a short amount of time.

The game also permits outside input, which could, 
for example, come from another computer executing a 
new algorithm designed to help sailors do the job of ship 
defense. Thus, SGD can serve as a proving ground for new 
technologies with which sailors can interact to improve 
ship defense.

Evaluation
The construct of a video game, in which everything can 
be quantified, can provide educators with many oppor-
tunities for evaluating students’ success at the tasks of 
the game. The SGD environment records a large amount 
of information, ranging from the number of missiles 
correctly mitigated, to the number of resources expended, 
to reaction time, to deviation from desired tactics. The 
availability of these data affords instructors wide latitude 
in evaluating the performance of SGD users.

Emergence of Machine Learning
As the ASCM threat has grown in numbers and complexity, 
so too must the capabilities of naval training grow. The 
fusion of a video game interface, massive data collec-
tion, and modern machine learning techniques presents 
a potentially powerful and nontraditional mode for 
enriching training for the sailors of today and the future.

The behind-the-scenes data collection built into SGD 
is no less important than the eye-catching graphics and 
intuitive interfaces of the game. Every action of every user 
in every game is seamlessly recorded into a massive data 
archive that allows every game to be replayed and studied 
by any player. This replay functionality has the benefit of 
allowing trainees to learn from their own successes and 
mistakes, and from those of other players. Beyond that, 
these collected data enable the game to “learn about” 
its players and adapt itself to their needs. Through this 
application of cutting-edge machine learning techniques 
to the SGD data, the instructional capability of the game 
is maximized, and each user is ensured an experience 
tailored to his or her particular learning style.

Tournament Data Collection
To demonstrate the utility of applying machine learning 
techniques in SGD, a large dataset for experimentation 
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was needed. To fill this need, a Laboratory-wide SGD 
tournament, designated March Madness, was conducted. 
Beyond the intrinsic draw of competition, the Lincoln 
Laboratory Director’s Office further encouraged partic-
ipation by offering a cash prize to the champion.

Because SGD requires only modest computing power 
and functions on most any platform, the tournament could 
be played on demand over the local network on regular 
desktop computers. In the initial competition round, players 
attempted a variety of challenging scenarios. The top 16 

What is Machine Learning?
Machine learning is a subfield of artificial 
intelligence in which researchers develop computa-
tional methods (i.e., algorithms) that give computers 
the ability to autonomously learn a model to explain 
data. Generally, machine learning is categorized into 
two branches: supervised and unsupervised. 

In supervised learning, the goal is to predict an 
outcome from a previous example. For example, 
suppose a meteorologist who wants to predict 
whether it will rain tomorrow has data from over 
the previous 50 years that tells, for each day, the 
temperature, humidity, barometric pressure, and wind 
speed. These data are known as the features and are 
represented as a numeric vector, denoted →x, which 
describes each day. For each day, the meteorologist 
knows whether it rained the next day. This datum is 
known as the label, denoted y, for the corresponding 
features. The goal is then to learn a mapping f: →x →y 
to predict whether on any given day, described by 
→x, whether it will rain, y. This example is a classifica-
tion task: the prediction variable can take on one of 
a finite number of values. In this case, the outcome 
is binary—either 0 or 1 describing whether or not 
it will rain. Conversely, a regression task involves 
predicting a continuous value, such as tomorrow’s 
high temperature. Other examples of supervised 
learning include predicting whether a camera’s image 
contains a person of interest (i.e., facial recognition), 
translating Arabic to English, or determining the 
correct medical diagnosis for a sick patient. Common 
techniques for supervised learning include logistic 
regression, decision trees, support vector machines, 
neural networks, and k-nearest-neighbors.

The complement of supervised learning is 
unsupervised learning. The goal of unsupervised 
learning is to infer a function to describe one or 
more hidden attributes within data. Consider an 
example from U.S. politics, specifically, the legisla-
tive branch. Let us say we knew that congressional 
representatives voted yea or nay on certain bills, 
and we had features describing those bills. Rather 
than predicting whether a representative would 
vote yea or nay on a future bill as in supervised 
learning, now we want to group representatives 
according to similarity. The hidden attribute 
is party affiliation. If we give the unsupervised 
learning algorithm the features of bills along with 
how each representative voted, the algorithm 
will output an assignment of each representative 
to a group. If this algorithm was able to mimic 
reality, it would learn there are three groups: 
Republicans, Democrats, and Independents, and 
it would assign each representative to one of those 
groups. The key is that the unsupervised learning 
algorithm does not know beforehand the notion of 
a Republican, Democrat, or Independent—just that 
there are groupings of some kind. In addition to 
our political example, other unsupervised learning 
tasks might involve learning taxonomy for life on 
Earth (i.e., how to group life by species, genus, 
family, etc.) or learning a grouping for people 
according to the types of movies they watch. 
Common techniques for unsupervised learning 
include k-means, Gaussian mixture models, 
self-organizing maps (a type of neural network), 
and principal component analysis.
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players then competed in a single-elimination tournament; 
ultimately, the champion of a final-four series was crowned 
at an event complete with an audience and announcers.

Participation in the tournament exceeded expecta-
tions, with 140 players completing nearly 3,000 games, 
totaling approximately 100 hours of game time. The 
draw was diverse, with many players having no direct 
experience with the Navy in general or ship defense in 
particular. One player, a graphic artist who made the 
Sweet 16 as a top player, notably commented, “I have 
been illustrating these concepts for years, but now I 
understand what they mean.” Beyond the data collected, 
this sort of anecdotal evidence about the benefit of SGD 
helps validate the game’s educational value.

From Analysis to Enhanced Education
As players learn from SGD, the game is also learning from 
them. While the immense amount of data collected by the 
game holds the promise of increasing the effectiveness of 
instruction, it also presents an immense challenge to the 
analyst to distill the data down into a meaningful and useful 
result. Machine learning techniques are ideally suited to 
this situation, revealing hidden correlations and providing 
instructive adaptability useful to both trainees and teachers. 

An exploration of the utility of these techniques 
began with a multidimensional analysis of the data 
collected from the internal Lincoln Laboratory tourna-
ment [39]. Presented here is a subset of the results of 
that analysis, categorized into three topics: identifying 
player types, identifying tactics, and adaptive lesson 
planning. Each of these topics has immediate relevance 
to meeting the Navy’s educational needs for addressing 
complex ASCM scenarios. 

Identifying Player Types
Players approach video games with a range of styles and 
motivations, and, similarly, there is diversity in learning 
approaches [40, 41]. Categorizing players based on the 
features measured by SGD is a critical first step to enable 
instruction that adapts to the natural tendencies of each 
trainee. Moreover, the characteristics of high-performing 
game players can be reinforced, while the approaches of 
lower-performing players can be identified and remedied 
with tailored instruction.

Critical to player typing is the collection of large 
amounts of data, made possible through SGD’s harnessing 

the continuous monitoring and recording of player 
actions enabled by modern video game technology. Which 
countermeasures players use and when, how quickly they 
react to changing situations, and which tutorials they 
attempted and completed and in which order, all can be 
used as features to help define each player. 

The large number of data points and the high degree 
of dimensionality provided by the individual features 
measured by SGD can be reduced to a manageable set 
of categories through the application of unsupervised 
learning (i.e., clustering) techniques. The characteris-
tics that define the players, beyond just a score or a letter 
grade, are then brought into focus. Players are not only 
categorized, but the deeper explanations for their perfor-
mance can begin to be explored.

As a qualitative example of clustering, consider the 
classification of automobiles. The diversity in make, 
model, and model year is quite large, analogous to the 
number of players of SGD. Similarly, the number of 
features used to define a car could also be large, such as 
cost, performance, fuel efficiency, reliability, safety, and 
cargo space. Clustering could be used to determine a 
more concise set of automobile categories (e.g., family, 
utility, sport, or luxury) and the associated features 
that define each category. The complexity of the data is 
thereby reduced to a more manageable and useful level 
of categorization.

A more quantitative two-dimensional example of 
data clustering is depicted in Figure 7. Each point in 
the dataset is represented by two features: its x and y 
coordinates. The simulated input dataset is color-coded 
in Figure 7a to show that it was generated from five 
overlapping sources. In Figure 7b, the color-coding has 
been removed, illustrating that the underlying structure 
is not apparent. The challenge for effective clustering is 
then, given Figure 7b as an input, to extract some approx-
imation of Figure 7a as an output.

One way to infer the true clusters underlying a 
dataset is to apply the k-means algorithm [42]. The 
process supposes a number of clusters (represented by 
the k in its name) and then attempts to partition the 
data, minimizing the cumulative distance metric seen in 
Equation (1).

(1) Cumulative distance = xi − µ j
xi∈s j
∑

j=1

k

∑
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Clustering minimizes the cumulative distance over k 
clusters, defined as the total distance of each data point xi 

in cluster Sj from the associated centroid µj.
The primary output of the algorithm is the centroid 

of each identified data cluster, defined as the average of 
the features of all the points in the cluster. Each data point 
is closer to the centroid for its associated cluster than to 
any other centroid. The cumulative distance, defined as 
the total distance summed over all data points to their 
respective centers, is minimized.

The more clusters (higher k) assumed by the 
algorithm, the smaller the cumulative distance will be 
since all points will necessarily be closer to their assigned 
cluster centroids. Reducing the cumulative distance is 
a good thing up to a point, but if too many clusters are 
added, the whole purpose of dividing the data into more 
manageable partitions is lost.

Therefore, the desire to increase the number of 
clusters (k) is balanced against the separability power 
of the fit. One particular metric, known as the silhouette 
(Equation [2]), allows us to quantify this feature [43]. 

Maximizing this metric ensures that the distance from 
each point to the second-closest centroid is maximized.

(2)Silhouette = bi − ai
max ai ,bi( )i=1

Npoints

∑

The silhouette metric compares the cumulative 
distance of each data point to all other points in its associ-
ated cluster ai to the cumulative distance to all other 
points in the second-closest cluster bi.

Effective data clustering then seeks simultaneously to 
minimize the cumulative distance metric (Equation [1]) 
while maximizing the silhouette metric (Equation [2]). In 
Figures 7c and 7d, the value k = 5 can be seen to indeed 
best satisfy these criteria. The clustering result is shown 
in Figure 7f, with less well-matched fits of k = 3 (Figure 
7e) and k = 7 (Figure 7g) shown for reference. The clusters 
are identified by the black outlines, with their respective 
centroids depicted with a red X.

For the SGD tournament dataset, the following set 
of features was identified as most relevant for use in 
player typing: 
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FIGURE 7. The plots show the results of k-means data clustering, where k represents the number of clusters. The dataset was 
generated from five overlapping sources, color-coded in (a) and with the color-coding removed in (b). In (c) and (d), the (correct) 
value k = 5 is seen to balance the goal of simultaneously achieving low cumulative distance and high silhouette (i.e., similarity of 
cluster members to each other). The clustering result for k = 5 is shown in (f), and less well-matched fits of k = 3 (e) and k = 7 (g) 
are shown for reference. Clusters are outlined in black, and red X’s indicate the clusters’ centroids.
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1. Quit rate. Fraction of games that the player quit before 
the end of the scenario

2. Unique tutorials. Number of unique tutorials 
attempted by the player

3. Tutorial rate. Number of tutorials attempted by the 
player

4. Test rate. Number of times the player attempted a test 
level

5. Tutorials per test. Ratio of tutorial levels to test levels 
attempted by the player

6. Repeat rate. Number of times the player replayed a 
level already completed

7. Pause time. Average amount of time the player paused 
the game (when allowed)

8. Tutorial repeats. Mean number of times players 
attempted tutorial levels

Features identified with rate were normalized to the 
total number of games the player had played. Both the 
number of features (eight) and the amount of data (100 
hours of gameplay) are quite large, making the exact 
solution of Equation (1) impractical computationally. 
An expectation maximization algorithm was therefore 

employed to allow a rapid approximation of k-means 
clustering to be applied to the data [44].

The result of clustering with these features on the 
SGD tournament data was the identification of four player 
types, shown in Figure 8. The first player type is notable 
for a significantly higher score in the SGD tournament, 
compared to the other three types. Paradoxically, the 
first player type is also distinguished by feature 1, a high 
rate of quitting scenarios. On the surface, this behavior 
would seem to be a bad quality for a player to exhibit. 
However, when paired with the high scenario-repeat rate 
also shown by this group, a play style begins to emerge: 
when players in this group discern that a scenario is going 
poorly, they quit and begin anew, immediately attempting 
to correct their mistake. 

The other three groups performed similarly in the 
SGD tournament, though their play styles were different. 
The second and fourth player types both played a high 
rate of tutorials, differentiated mainly by the second 
group opting to quit scenarios while the fourth group 
used the pause feature more often. The third group 
eschewed almost all training and jumped right into the 
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FIGURE 8. Four player types, defined by eight unique features, were found by clustering the data from the Strike Group 
Defender tournament. The first type (a) also corresponded to the highest-scoring players. The remaining types (b, c, and d) 
scored similarly but had very different approaches to the game, as seen in their feature profiles.
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tournament, choosing to optimize their performance only 
on the examination levels.

Player typing gives a window into how players 
approach the game and which strategies produce the more 
desirable outcomes. For example, if group 1 is identified 
as the preferred way for players to perform, lesson plans 
could be developed to foster the characteristics of this 
group in all players. Hand-in-hand with this approach, 
players quickly can be assigned a type as they play the 
game, allowing early intervention to either encourage 
their current approach or to correct unwanted character-
istics. Through rapid player typing, the opportunities to 
improve the performance, and thus the training, of SGD 
users are increased. For instructors in diverse educational 
settings, similar player typing could inform the develop-
ment of lesson plans that use video games.

Identifying Tactics
Just as clustering can be used to distill player behav-
iors down to a few manageable categories, it also can be 
applied to discover the general classes of tactics employed 
by players for a given scenario. The results can be used in a 
traditional educational sense, with instructors confirming 
that the trainees are indeed employing the tactics that 
they have been taught. Additionally, the process also 
allows information to flow the other way: the game can 
learn interesting nonstandard tactics from the players. 
The large number of players, combined with the freedom 
afforded in the gameplay of SGD, allows the potential 
for the creation of enhancements to standard tactical 
approaches. Thus, identifying player tactics enables 
improvement of both the trainees and the educational 
information itself.

In the application of clustering algorithms to the 
identification of player tactics, the features to be consid-
ered present additional complexities: time (when an 
action is taken) and space (the bearing of the counter-
measure deployment) are integral to defining the basis 
feature set. 

To cluster tactics, the k-medoids approach is used 
[45]. In contrast to k-means, where a continuum of 
potential centroid positions is possible for each cluster, 
k-medoids requires that cluster centroids be positioned 
precisely on an actual tactic that was employed in a 
particular game played. This distinction is made because 
it does not make sense to average individual games played 

to produce a “mean tactic.” Put another way, deploying a 
countermeasure successfully to the left in one game and 
successfully to the right in another game does not imply 
that deploying it straight ahead is a viable tactic.

Like k-means, the k-medoids algorithm also seeks to 
minimize a cumulative distance function, as in Equation 
(1). However, here we are using disparate features that 
are difficult to compare directly. For example, deploying a 
rocket-type or persistent countermeasure may be seen as 
similar tactics, while deploying a flare would necessarily 
be regarded as different. To account for the variety in 
actions that may be taken by a player, a weighting scheme 
was constructed to define the comparisons among all the 
features making up each game [46]. With this machinery 
in place, the k-medoids algorithm can be applied to 
produce clustering results for player tactics.

To provide adequate data for clustering, participants 
in the SGD tournament were encouraged to play the Daily 
Performance Evaluation scenario, in which threat types 
were randomized for each game. The tactics extracted 
from the Daily Performance Evaluation data were found 
to cluster into four groups (not necessarily corresponding 
to the four player-type clusters). The prototypical tactic 
for each group is shown in Figure 9. 

The rings around the overhead depiction of a ship 
represent time in the scenario, with the start time at the 
innermost ring and the end of the scenario occurring 
at the outermost ring. The colored lines indicate which 
countermeasure type was deployed, and on which bearing. 
While the tournament scores are similar, the tactics are 
ordered with increasingly successful performance from 
left to right.

The rightmost tactic came to be known as the Iron 
Triangle, independently identified by those that played 
the game. Here, the long-lived countermeasures, such as 
persistent or floating decoys, are deployed in a triangle 
around the defended ship to address a range of threats, 
with the player left to focus on deploying expendable 
countermeasures as needed to address threats not other-
wise defeated. The middle two techniques are variants on 
this theme, with a few more countermeasures used in the 
second one and with the geometry a little off in the third. 
In contrast to the other more measured approaches, tactic 
number 1 is more sporadic. Recognized as an inefficient 
“kitchen-sink” approach, large numbers of all countermea-
sure types are applied continuously against the threats. 
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In the context of the scenario analyzed here, the 
identification of tactics allows for adaptive instruction to 
encourage players who are already using tactic 4, to prompt 
players to tweak their tactics if they are using approach 2 
or 3, or to teach players to totally overhaul their approach 
if they are using tactic 1. For other, even more complex 
scenarios, it is possible that tactics not previously identi-
fied as favorable could emerge, helping the game learn the 
preferred tactic from the players themselves.

Adaptive Lesson Plan
The continuous collection of data by SGD enables instruc-
tional adaptation in response to the changing needs of 
each player. Essentially, the game can learn how its 
players learn and use that information to improve its 
own teaching. Much as real teachers tailor their instruc-
tion to meet student needs, so too can the game adapt its 
interactions with the players to improve its instructional 
effectiveness. 

As an illustration of the utility of the adaptive teaching 
concept, the SGD tournament data were analyzed to 
construct an adaptive lesson planner, one that could guide 
players through tutorials and tests on a path to maximize 
learning. Through contrasting the learning approaches 
of the lower- and higher-performing players, preferred 
approaches were identified. Ultimately, this approach is 
intended to enable the creation of an on-demand, person-
alized virtual instructor, one that can observe if a student 
is headed down the right path and give reinforcement 
or give correction if the student has gone astray. The 

potential for instruction tailored to individual students is 
of considerable interest to the education community [47]. 

While human learning is a very complex process, 
significant progress toward a viable virtual instructor 
can be made with a tractable simplified model of a 
person’s learning [48]. To that end, a hidden Markov 
model (HMM) was applied to the data collected in the 
SGD tournament [49]. In this type of model, observable 
states, with transitions between them, are mediated by 
unobserved states, hence the “hidden” in the name. The 
model seeks to quantify transition probabilities among the 
states, allowing for evolution of the system to be predicted. 

In the context of the model applied to SGD, the 
observable states are identified as the various tutorial 
and game levels available to the players. One can train 
an HMM on particular player types and, because the 
HMM is generative, create an ordered list of likely game 
levels. By training the model on high-performing players, 
game developers can create a positive lesson plan (i.e., a 
sequence of lessons). Similarly, by training on lower-per-
forming players, a poor lesson plan can be produced. 
Players who are seen to naturally be on a positive plan 
can be encouraged while those on a less optimal plan can 
be redirected. 

The HMM topology applied to the SGD data is 
depicted in Figure 10. The observable states, the tutorials, 
and game scenarios are depicted in the boxes at the 
bottom. The hidden states, which imply the players’ 
unobservable inner machinations, are represented by 
the three circles at the top, designated X1, X2, and X3. 

FIGURE 9. The representative player tactics derived from 
k-medoids clustering are illustrated by the four circles. 
Each concentric ring indicates a time in the scenario, and 
the color-coded lines indicate the type of countermeasure 
deployed. From left to right, the tactics are ordered 
according to increasing effectiveness. 

Tactic 1 Tactic 2 Tactic 3 Tactic 4

Countermeasures

Floating Persistent Rocket Flare Chaff
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In between the circles are transition probabilities, repre-
sented by the Txy lines. The transition probability to an 
observed state, typically known as an emission, is repre-
sented by an Exy line. The values for all transitions and 
emissions are obtained by training the model on the data 
collected by SGD.

To create the adaptive lesson plan model from 
the SGD tournament data, the model was trained on 
data from two groups of players: the upper and lower 
50 percent of performers, identified by tournament 
scores. The result is two complete hidden Markov models, 
one demonstrating how the higher-performing students 
navigate through the game levels and a corresponding 
model for the lower-performing students. In both cases, 
the models can then be used to recommend the next level 
for a student to attempt, given the level just completed. 
Two example lesson plans so generated from the models 
are shown in Table 1.

The poor lesson plan on the left side of the table shows 
players bouncing around between lower-level tutorials, 
likely making little progress. Players following the better 
lesson plan, on the right side of the table, appear quickly 
to jump into difficult challenges. It is possible that these 
generated lesson plans are merely indicators of player 
capability and may not directly stimulate player improve-
ment. However, armed with this knowledge, the game 
itself can attempt to steer players onto an assumed positive 
path through suggestions about which levels to attempt 
next and evaluate player improvement along the way.

Though our initial lesson plans are derived from 
a simple model trained on limited data, they give an 
indication of the educational advantage that could be 
achieved with an adaptive instructor built into a game. 
Future enhancement may include injecting a modicum of 

recursion into the Markov model to better include effects 
of a player’s history as he or she traverses the game. The 
true impact of this approach will be quantifiable through 
the collection of more data and measurement of the perfor-
mance change in players provided with the adaptive tool.

Automating Players through Apprenticeship 
Scheduling
While the previous learning applications apply static 
analysis to improve a user’s experience, imagine if one 
could dynamically adapt content in real time to a specific 
player’s needs. Recently, Gombolay et al. have pioneered 
a method called apprenticeship scheduling that learns 
how to mimic scheduling tasks from expert scheduling 
demonstrations [50]. In SGD, Gombolay et al. showed 
that the tactical weapon assignments made by a player 
correspond to a multi-agent, multi-task, time-extended 
scheduling problem with complex dependencies, one 

FIGURE 10. This hidden 
Markov model was employed 
to quantify the way players 
traverse Strike Group 
Defender, moving among 
the different scenarios and 
games represented by the 
lower boxes.Moth 

missile 
tutorial

Operation 
Neptune

Watch 
replay

Custom 
game

Hungry 
missile 
tutorial

...
Table 1. Lesson Plans Depicting the Actions 
of Two Groups of SGD Players

LESSON PLAN 
GENERATED WITH 
DATA FROM BOTTOM 
50% OF PLAYERS

LESSON PLAN 
GENERATED WITH 
DATA FROM TOP 
50% OF PLAYERS

Basics Tutorial Basics Tutorial

Missile Type 1 Tutorial Challenge Mission

Basics Tutorial Test

Missile Type 1 Tutorial Challenge Mission 

Missile Type 1 Tutorial Challenge Mission
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of the most difficult scheduling categories. Using SGD 
tournament data, they were able to learn and mimic 
individual player behaviors autonomously within SGD 
via apprenticeship scheduling.

Having a learned scheduler opens the door for several 
real-time user interactions. For example, during an 
intense battle or a period of information overload, a player 
could be given prompts to deploy weapons in an expected 
way, as he or she would typically use them. Using a 
prompt framework, SGD can measure player responses to 
these suggestions and enable future studies of algorithm 
trust, acceptance, and reliance. An apprentice sched-
uler also enables the training of real-time autonomous 
agents that could either exploit the player’s weaknesses or 
cooperate by offering prompts or filling in actions that the 
player might often neglect. Players could iterate with the 
automated adversary or a teammate to learn and improve 
upon weaknesses or to form a trusted, dynamic team. 
Having dynamic learning and feedback in SGD enables 
important studies on autonomy, human-machine inter-
actions, teaming, and trust.

Next Steps
Machine learning techniques have a voracious appetite 
for data, and the studies undertaken with SGD are no 
different. As more people play the game, the dataset for 
analysis will grow, and the models based on it will become 
correspondingly better. Additionally, more data will lead 
to a more quantifiable assessment of the true benefits of 
the education tools provided by the game. 

To date, the data used to explore machine learning 
concepts have been based primarily on the SGD tourna-
ment dataset. While much progress has been made, these 
data were collected on Lincoln Laboratory employees 
rather than on the true final audience, the sailors in the 
fleet. Expansion into this area is being facilitated by the 
Naval Postgraduate School, which has made SGD avail-
able for play by anyone in the military. The data collected 
from this forum can be analyzed in the same way as those 
from the Laboratory’s tournament, and it will be illumi-
nating to compare and contrast the extracted results.

In recent months, several improvements have been 
made to the SGD back-end to support interactions with 
external simulations and artificial intelligence (AI). 
An application programming interface (API) has been 
designed to accommodate external models, simulations, 

and decisions. Enhancements with the API include the 
ability to send customized prompts to a player and the 
ability to control the SGD simulation time step. Efforts 
are under way to reduce the simulation runtime to enable 
AI routines that rely on running many SGD instances in 
order to make a decision. All of these improvements can 
be combined with machine learning concepts to create a 
dynamic, adaptive learning environment not available in 
the Navy today. 

While the back-end development of machine learning 
techniques and AI has been ongoing, the front-end video 
game has also undergone considerable development 
(Figure 11). The tactical focus of the first version of SGD 
has been expanded dramatically to include scenarios that 
require pre-attack strategizing. Full missions take place on 
a world map. Intelligence, surveillance, and reconnaissance 
(ISR) resources are built into this updated version, and new 
scenarios challenge players to avoid the threat of ASCMs 
in the first place. However, if missiles are launched in the 
game, the players are drawn into the original tactical-view 
version of SGD, attempting to defend their ships.

Also under development is a classified version of 
the game that allows for more realistic scenarios to be 
represented. With new scenarios and mission contexts, 
new weapon and sensor capabilities can be prototyped 
and assessed at a high level. In future versions of SGD, 
a player could configure a ship loadout or “purchase” a 
new weapon or AI capability and determine how well it 
supports the mission. Recorded player choices could also 
be used offline to seed an algorithm that solves for optimal 
loadouts and configurations. With the incorporation of 
these enhancements, SGD is envisioned as transforming 
from a pure focus on ASCM defense to a broader learning 
and technology development ecosystem that will enable 
the exploration of a wide variety of issues for the Navy.

Future Directions
The current research into the benefits of machine learning 
paired with the SGD platform provide a window into the 
training envisioned for the future. Identification of player 
types, for example, will help the Navy identify skilled 
players and also indicate ways to improve the performance 
of lesser-skilled players. Similarly, the identification of 
tactics will help identify which responses are effective, with 
real potential to also harness the creativity of sailors and 
to learn from them. The adaptive lesson plan personalizes 
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the learning experience for each player, offering a path 
to more efficient and focused instruction. The incor-
poration of autonomy and apprenticeship scheduling 
enables real-time, adaptive learning that can be tailored 
to players’ needs. These concepts, coupled with a host of 
other machine learning–enabled approaches, represent a 
new level of training customization and engagement. 

Over a short time period, the original internal Lincoln 
Laboratory Red/Blue game has been developed into Strike 
Group Defender, a professional video game that is coupled 
to back-end data storage, extended by an external API, and 
enhanced by AI and machine learning techniques. This 
combination is opening up new avenues of instruction and 
the ability to quantify effectiveness through the analysis of 
very large sets of collected data. The ultimate goal is to be 
able to say confidently that we have equipped the sailors 
in harm’s way with the knowledge and skills necessary to 
address the threats found in challenging modern scenarios.

Awards and Recognitions
The SGD’s professional video game development, founded 
in sound technical concepts and coupled with machine 

learning technology, has led to recognition for the game 
by several government and commercial entities. In 2014, 
the game was recognized as the Best Government Game 
at the Serious Games Challenge and Showcase at the 
national Interservice/Industry Training, Simulation and 
Education Conference. The following year, the National 
Training and Simulation Association honored SGD 
with the team award for best training game. Finally, 
the MOVES (Modeling, Virtual Environments and 
Simulation) Institute at the Naval Postgraduate School 
in Monterey, California, has said in an assessment of 
SGD: “We recommend the Navy take advantage of this 
advancement in technology and training consistent with 
the recommendations being developed and put forward 
by the Navy Warfare Development Command (Chief of 
Naval Operations designated lead for Electromagnetic 
Maneuver Warfare)” [51]. 
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The security of the cyber domain has 
grown rapidly into a major concern for 
the U.S. government and American society 
in general. The Department of Defense, 

National Security Agency, and Department of Homeland 
Security are working actively to ensure that the proper 
protections, situational awareness, decision support, and 
information-sharing mechanisms are in place to protect 
the U.S. critical infrastructure, including data, against 
major cyber attacks. 

To support these government agencies in improving 
the nation’s ability to withstand cyber attacks, MIT 
Lincoln Laboratory’s Cyber Security and Information 
Sciences Division developed the Cyber Red/Blue serious 
gaming platform and defense-oriented game to explore 
the potential benefits serious gaming may provide for 
cyber security and to learn more about the human role in 
cyber defense. Cyber Red/Blue leverages the Laboratory’s 
red team (offense) versus blue team (defense) exercise 
approach to explore the effectiveness of techniques and 
systems designed to respond to threats.

Key Aspects of the Cyber Domain
The cyber domain is an evolving human-made area of 
science, engineering, and practice that encompasses 
the hardware, software, networks, and data that drive 
the processing of information and the functioning of 
software-assisted physical devices. Because the cyber 
domain is human-made, many of its security challenges 
are different from those of the physical sciences. The 
rules of cyber operation can change rapidly, unlike the 
laws of the physical domain. Complexity in the cyber 

Lincoln Laboratory researchers designed 
a serious game to investigate how such 
games could aid cyber security specialists 
in developing and practicing cyber defense 
strategies. Proof-of-concept experiments 
conducted with the prototype Cyber Red/Blue 
game yielded insights into game design and 
player behavior. An improved understanding 
of game dynamics can inform games’ future 
development as tools for cyber security 
research, training, and real-world mission 
applications.

»
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environment grows continuously, spurred by the adoption 
of new technologies and the ever-changing characteristics 
of the data these new technologies produce. 

Human interaction with computers—the “human 
in the loop”—plays a critical role in the realization of 
cyber security goals, but this role is not well understood. 
Researchers working in cyber security need to gain a 
better understanding of not only where cyber security 
risks lie but also how humans can engage to minimize 
those risks. 

Five key considerations for exploring human behavior 
in the dynamics of cyber security and operational resil-
ience are the enterprise mission, the cyber threats to that 
mission, the mission-enabling infrastructure against 
which attacks occur, the human defenders’ operational 
processes, and the roles that humans play in cyberspace 
operations. Central to these considerations is an under-
standing of the attack surface, which is understood as all 
the points at which a cyber attacker can gain access to a 
computer system or network.

Addressing Key Challenges
Two major areas in which serious games and gamifica-
tion (the application of game-like elements to non-game 
activities) could enhance cyberspace operations are in 
the reduction of information ambiguity, often referred 
to as the fog of war, and the decrease in the time T to 
observe, orient, decide, and act (TOODA) with respect to 
one’s adversary.

Fog of war is a term used by the military to describe 
an operational situation in which unclear information 
leads to ineffective and/or inefficient decision making. 
Carl von Clausewitz in his 1832 book On War coined the 
term fog used in this manner and illustrated its attributes 
as follows [1]:

...[A] general in time of war is constantly bombarded 

by reports both true and false; by errors arising from 

fear or negligence or hastiness; by disobedience born of 

right or wrong interpretations, of ill will, of a proper or 

mistaken sense of duty, of laziness, or of exhaustion; and 

by accidents that nobody could have foreseen. In short, 

he is exposed to countless impressions, most of them 

disturbing, few of them encouraging.... 

John Boyd, a colonel in the U.S. Air Force, described 
the concept of the OODA loop in a number of briefings 
on military strategizing. In the most often quoted of 

these, delivered in 1986 [2], he said that “…in order to 
win, we should operate a faster tempo or rhythm than our 
adversaries—or, better yet, get inside [the] adversary’s 
Observation-Orientation-Decision-Action time cycle 
or loop.” Today, the OODA concept is widely used as a 
means to distill tasks into these four basic components in 
the study of decision making and the design of decision 
support systems, making it a concept central to the Cyber 
Red/Blue serious game. 

Conflict in cyberspace, while new and technically 
challenging, still conforms to traditional models of 
conflict. As do defenders of other domains, defenders of 
cyberspace strive to minimize the fog of war and TOODA, 
either deliberately or intuitively. However, the volume, 
velocity, and variety of operations in the cyber domain, 
coupled with enormous attack surfaces and the low cost to 
adversaries of mounting a cyber attack, make the goal of 
minimizing both information ambiguity and TOODA very 
difficult with the tools available. The findings, training 
applications, and user interface improvements made 
through serious games and gamification research have the 
potential to greatly decrease fog of war and TOODA while 
increasing operational efficacy in cyberspace. 

Benefits of Serious Games 
Cyber Red/Blue explores the idea that serious games 
can benefit practitioners, operational planners, and 
researchers of cyber security in the following ways:
• As game players, cyber security practitioners can 

master tools and processes through experimentation 
in a safe learning environment. 

• Planners can think through scenarios to realize the 
dependencies, potential interactions, and available 
courses of action the game players face. 

• Planners can observe gameplay and evaluate measured 
results of actions to gain insights that enable them to 
rapidly test and refine plans in a simulated environment 
before enacting those plans on the cyber “battlefield.” 

• For researchers, serious games can provide a method-
ology, a controlled environment, and iteration 
capabilities that allow them to isolate and measure 
aspects of cyberspace operations.

Employing game design elements into cyberspace 
operations’ “battle management” systems may also 
improve human capacity to manage complex cyberspace 
operations. In the future, lessons learned from data 
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collected in exercises using serious games could rapidly 
inform new mechanics for gamified operational counter-
part systems, much like beta testing new game elements 
in precise market segments informs general-availability 
releases of personal computer games. 

Cyber Red/Blue: The Platform
Cyber Red/Blue consists of a playable simulation platform 
and an initial prototype game. The platform offers an 
instrumented interface, a configurable simulated enter-
prise computing infrastructure, and a tool to create 
different game scenarios to allow human defenders to 
practice against automated cyber attackers in a measur-
able environment. Example configuration elements 
include network topology, the capabilities and numbers 
of workstations and servers in the enterprise, and courses 
of action that are available to players. Different game 
scenarios can include, for example, different kinds of 
cyber attacks, the incorporation of actual enterprise data, 
and tips and cues available to players.

The platform provides modular and extensible 
software models that execute predefined actions in 
response to player interactions with the simulated enter-
prise computing infrastructure environment and to 
player commands. The models interface with a publish/
subscribe–based discrete-event simulation engine to 
enable a dynamic response to player actions by the 
simulated attacker and simulated enterprise infrastruc-
ture, and to generate recordings of the game events. 
Cyber Red/Blue includes emerging decision support tools 
that can be integrated within a unified cyber incident 
commander workflow. 

Cyber Red/Blue: The Game
The prototype of the Cyber Red/Blue game was designed 
inside the platform as a defensively focused game in 
which the blue roles of planner and player defend against 
a simulated red attacker. The game addresses some of the 
cyber security decision support challenges of the enter-
prise defender in an operational environment. 

During the initial experimental trial, players were 
presented with a fog-of-war problem: protect an enter-
prise environment while sifting through increasingly 
voluminous datasets. Players were required to interpret 
and respond to a large number of available logs and 
alerts generated by the enterprise’s different computer 

systems in order to find the “needles in the haystack” that 
represented credible threats. Players applied an under-
standing of the situations presented to them to evaluate 
potential courses of action and to select the most appro-
priate action to initiate additional protections for the 
enterprise environment. 

As players and planners made decisions in the game, 
the simulation responded, resulting in changes to the 
remainder of the gameplay. The combinations of player 
responses had impacts on the ability of the simulated 
operational infrastructure to support the enterprise 
mission. Impacts can include changes to the confidenti-
ality, integrity, and availability of data and services, and 
the automated attacker’s likelihood of taking control of the 
operational environment. For example, the players’ ability 
to detect cyber attacks through their situational aware-
ness capabilities directly correlated to their subsequent 
ability to respond to these attacks and take appropriate 
courses of action to prevent future attacks. These first-
level impacts culminated in changes to the state of the 
enterprise mission. 

The different aspects of gameplay were mapped 
to the different elements of the OODA loop process to 
give us a deeper understanding of the human needs in 
each of those areas. For example, situational awareness 
actions were mapped to the observe and orient elements 
of the OODA loop. Courses of action were mapped to 
the OODA loop decide and act elements. More details on 
these aspects are described in the later section on human- 
machine interface and displayed in Figure 2.

Developing Cyber Red/Blue
The development approach for Cyber Red/Blue was 
divided into three main phases: (1) survey existing 
simulation capabilities, (2) apply the survey findings 
to the design and construction of the platform, and (3) 
use the platform to create and run a game that has an 
instructive scenario.

Analysis of Pre-existing Capabilities
In our initial step, we surveyed six existing human inter-
action–based simulation approaches and graded each 
on four categories: focus, scope, responsiveness, and 
scaling cost. Note that in the survey technical defense 
refers to measuring the effectiveness of the computer 
defenses themselves (such as access controls, software 
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and hardware configurations, or software algorithms). 
In contrast, human decision making refers to measuring 
the effectiveness of the strategic and tactical approaches 
chosen by human decision makers (such as mission 
commanders responsible for making risk decisions and 
tasking resources at key points during the red/blue 
scenario). The summary findings are displayed in Figure 1.

Cyber competitions such as Capture the Flag 
train analysts, developers, and system administrators 
in a highly dynamic, emulated real-world environ-
ment through a deep emphasis on the elements of 
technical defense required at the computer system 
level. Monetary costs can be relatively low per simula-
tion exercise instance. Computer test ranges, such as 
the Department of Defense National Cyber Range [3], 
consist of computer virtualization platforms that can be 
used to evaluate technical defenses of computer system 
interactions in a dynamic but controlled environment. 
Test ranges provide greater scaling capabilities than 
Capture the Flag but at the increased cost of a dedicated 
emulation environment. 

At the time the survey was taken, a number of 
computer-based training resources were found that 
were oriented toward fulfilling certification and 
compliance requirements, and the list has expanded 
to include a number of online courses, such as SANS 
training [4] and the Department of Defense Cyber 
Awareness Challenge Training at Fort Gordon, Georgia 

[5]. Tabletop exercises emphasize the human decision-
making processes of teams, but these exercises do not 
provide a quantitative measurement of those processes. 
Live operations-based exercises that make use of master 
scenario event lists can provide a high level of technical 
and decision-making realism, allowing for the wide 
scope of the extended enterprise mission and some 
dynamic outcomes, but these benefits come at signifi-
cant system cost and complexity. 

Developing a Needs-Based Capability
Cyber Red/Blue was designed to provide qualitative 
and quantitative measurement capabilities for human 
decision making in the context of a defensive cyberspace 
operation, but on a smaller scale and significantly leaner 
budget than the scale and budget of live operations–based 
exercises. The agility and low cost of the Cyber Red/Blue 
platform gives researchers and planners additional oppor-
tunities to experiment at more frequent intervals.

Cyber Red/Blue consists of four basic elements that 
are categorized as either human or automated computing 
components (Table 1):
1. Human-in-the-loop element. The human game players 

act as defenders working in a team to break the attack-
er’s kill chain (i.e., a sequence of actions leading up to 
and including an attack). Through the game console’s 
graphical user interface, players use simulated tools to 
make decisions and take actions. 

FIGURE 1. This comparison of the six simulation approaches listed on the left shows the advantage each has in the four categories 
listed across the top. Each category is divided into its contrasting characteristics, and the width of a colored bar indicates the 
relative level of advantage.
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2. Automated attacker element. The simulated attacker 
executes a prescribed kill chain to reach predefined 
objectives and is able to respond dynamically to player 
actions.

3. Automated cyber activity element. Configurable 
automated network traffic simulates the traffic of the 
enterprise environment that the human game players 
are working to protect. Through updated situational 
awareness indicators on the human-machine interface, 
this element also provides game players with feedback 
to inform future decisions. Additional background 
traffic simulates the multiple activities that can be 
observed in the enterprise cyber environment.

4. White cell element. Analysts responsible for setting 
and assessing exercise outcomes work with game 
planners to develop the exercise objectives. They then 
observe and analyze player activity to ensure the objec-
tives are being met. 

Human-Machine Interface
The human-in-the-loop element interacts with and 
plays the game via a role-based human-machine inter-
face console. Figure 2 depicts the initial console layout. 
We did not undertake to develop a novel user interface, 
but rather we wanted to simply build an interface that 
would allow interaction with the simulated environment 
such that metrics could be collected. The key concept for 
the reader to take away from this figure is the mapping 
between OODA activities and potential player actions, 
and identification of additional tools that support evalu-
ation during and after the game. 

For the prototype game displayed in the figure, one 
example of game play function is (2) Network Display, 
a representation of an operational tool used for enter-
prise infrastructure situational awareness. The Network 
Display panel gives game players a diagram of the 
enterprise infrastructure configured for the game and 

This table summarizes key game role elements of the Cyber Red/Blue simulation. The human-in-the-loop element represents the 
actual game players defending the enterprise mission and its computer infrastructure. The automated attacker element is the 
software developed to run on the Cyber Red/Blue simulation platform that automatically executes attacks against the mission and 
infrastructure. The white cell element represents human analysts responsible for setting and assessing exercise outcomes. The 
fourth role element is automated cyber activity, which is software developed to run on the simulation platform to automatically 
execute the enterprise mission and its associated enterprise infrastructure background traffic.

Table 1. Cyber Red/Blue Simulation and Game Elements

HUMAN COMPUTING COMPONENTS AUTOMATED COMPUTING COMPONENTS

Human-in-the-loop 
element

White cell element Automated attacker 
element 

Automated cyber 
activity element

Attempts to break the 
stages of the kill chain

Develops objectives for 
game

Executes the stages of the 
kill chain

1. Undergo staging and 
reconnaissance

2. Gain access
3. Develop targets
4. Deploy attack
5. Verify, assess, persist 

in attack

Simulates enterprise 
environment

Decides, acts, observes, 
orients, as part of human-
machine interface

Observes players and 
offers mentoring

Responds to player 
actions dynamically

Provides technical 
feedback

Utilizes technology tools 
to determine situational 
awareness, decision 
support, courses of action

Analyzes player activity Creates smaller threats for 
game
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updates dynamically to depict the fluctuating state of 
the enterprise computer infrastructure on the network. 
Lines depict network connections, and circles repre-
sent computers on the network. Red outlines indicate 
computers that have been attacked by the automated 
attacker, and blue outlines indicate computers that have 
had defensive courses of action taken on them by the 
game players. 

Other operational capabilities displayed in the 
different panels include the following examples:
• Player tipping and cuing hints (e.g., Intelligence) for 

situational awareness provided by (1) Message Panel
• A list of identified threat types used to orient players to 

the mission threat environment in the context of key 
mission functions and guide them toward potential 
defense decisions, as provided by (6) Threat Context 
Panel 

• A list of potential player courses of actions (CoAs), 
each with an explanation of their preconfigured risks 
to the mission and potential defensive contributions, 
as provided by (10) View CoA Costs and Benefits

Gameplay for Decision Support Challenges
One current decision challenge in the cyber domain is 
caused by the rapid escalation of threats. Daily, defen-
sive operators and decision makers must parse copious 
amounts of uncorrelated data to find nontrivial pieces that 
can lead to the identification of ongoing threat activity. At 
the same time, information necessary to balance mission 
and security may be unavailable because of an incom-
plete understanding of the different cyber components 
on which the enterprise mission depends. This inefficient 
production and consumption of situational awareness 
information enables adversaries to rapidly evolve and 
intensify their activities without being detected when they 
are active, causing defenders to identify threats mostly post 
mortem. Once an incident is identified, decision makers 
must synthesize available information quickly to contain 
and remediate the threat and at the same time minimize 
mission impact. In other words, the adversary can observe, 
orient, decide, and act faster than today’s defenders can. 
Attackers need only focus on their area of interest while 
defenders must be vigilant across the entire cyber mission 
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FIGURE 2. This figure depicts the prototype Cyber Red/Blue human-machine 
interface, which allows a game player to use multiple gameplay panels to execute 
steps from the OODA loop during the game—observe, orient, decide, and act. 
These OODA steps can be mapped to the different player functions, described at 
right of the graphic, to enable researchers to analyze player actions during and after 
gameplay. The mapping approach allows new gameplay panels to be swapped 
into different games without requiring the underlying analysis and measurement 
approach to change.
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area to be defended and must understand how a cyber 
threat translates into a mission impact.

We prototyped and deployed our first game in the 
Cyber Red/Blue platform to test the ability of the simula-
tion to measure human-in-the-loop capabilities while 
executing a game scenario. Specifically, we focused on 
the ability to measure game metrics related to operator 
environment and tools in order to understand how the 
environment and tools affect decision makers’ fog of war 
and their ability to observe, orient, decide, and act. The 
goal of this game was to enable researchers to probe three 
basic questions: 
1. How do various human-perceived observable artifacts 

(i.e., email logs, malware alerts, phishing tips, network 
topology, and system state) impact fog of war and 
TOODA? 

2. How do various technologies, in the form of simulated 
tools for situational awareness, decision support, and 
available courses of action, impact fog of war and 
TOODA? 

3. How do various stimuli, in the form of interactions, 
impact fog of war and TOODA?

We tuned the Cyber Red/Blue platform to measure 
human-in-the-loop responses to observable artifacts by 
automatically tracking players’ use of simulated defender 
tools (measured through player input to the user inter-
face) and timing between automated stimuli and player 
response (measured by capturing timestamps for each 
event). To complement the quantitative measurements 
made within the system, the human analysts, i.e., 
the white cell element, were capable (through direct 
observation during the game and automatic replay of 
screen actions after the game) of identifying additional 
qualitative nuances in human perception capabilities, 
internal knowledge, player biases, and other psycho-
logical factors.

Initial Gameplay
For our initial game, we configured a simulated network 
topology consisting of server and workstation nodes 
on an enterprise local area network (LAN) connected 
to the Internet via a firewalled router. User nodes and 
servers executed the enterprise mission by passing email 
messages between themselves. The player console for the 
blue defender was simulated to reside on the enterprise 
LAN to monitor and protect the organization. The red 

attacker’s simulated location was outside the enterprise 
within the Internet. 

During the game, the automated attacker element 
simulated the red actor sending phishing emails with 
malicious content to blue enterprise clients. As the game 
progressed, some computers within the blue defender’s 
area of responsibility were infected by the phishing 
emails, as represented by the red circled nodes in Figure 
2. Once infected, a computer began sending out its own 
phishing emails and eventually started to exfiltrate 
mission data to the attacker.

The red attacker’s goal in the game was to exfiltrate 
data from as many nodes as possible and to compromise 
the networked infrastructure by infiltrating enterprise 
servers from established footholds on blue enterprise 
nodes. Simulated attacker success meant the attacker 
would be capable of controlling the confidentiality, integ-
rity, and availability of mission services. The human 
player’s job as defender was to identify these attacks and 
mitigate their effects.

Throughout the game, players were presented with 
many observable artifacts, including a number of threats. 
Upon observing these artifacts, players could choose to 
“promote” threats (raise them to a higher monitoring 
priority level) when players determined the threats were 
of highest risk to the enterprise and mission. Phishing-
email alerts were presented as a central threat, and 
players were notified of infection when nodes in the 
network viewer were highlighted red.

Players worked to orient themselves and determine 
the scope of the threat by performing a log query to 
identify other infected nodes. When players discovered 
10 more infections, they decided to promote the threat. 
Once the threat was promoted, the player was able to 
view suggested courses of action and decide which of the 
actions was the most appropriate next step. To help guide 
gameplay, each course of action had a description of the 
costs and benefits to taking it.

One course of action option was to escalate the 
enterprise threat level, much as U.S. Armed Forces’ Force 
Protection Conditions are elevated in response to poten-
tial threats to the nation. Other options were to block 
email containing specific characteristics so that the enter-
prise could be protected from future attacks of the same 
type or to remove a node from the network so that it could 
not communicate with other computers. Players could 
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also simulate forensic investigations on computers to 
determine the underlying states of the computers and to 
gain an understanding of a particular threat. Additional 
options included wiping a node to remove malware and 
bringing nodes back online.

Course-of-action selection and implementation 
invokes some level of impact to the enterprise mission. 
For example, changing the enterprise threat level also 
changes the available courses of action. Blocking email 
that exhibits specific characteristics decreases the amount 
of email traffic exfiltrated and effectively decreases threat 
level, turning the mission’s status panel to green to 
indicate mission integrity. Taking an infected email server 
offline stops all mission traffic and decreases mission 
health, indicated in red (serious mission breakdown) on 
the mission health panel.

In one game instance, players reviewed the infected 
node but did not block any additional email traffic. 
Because players did not choose that course of action, 
additional nodes became infected and the attacker exfil-
trated mission data. The mission health panel changed 
to yellow to reflect a moderately compromised mission. 
After that, players had to scramble to keep up with the 
new level of threats. Eventually, mission health went 
to red because an email administrator became infected 
from the same phishing campaign and infected the 
email server.

Gameplay Findings
We played several games with separate teams of 
cyber researchers, security personnel, and decision 
commanders. We sought to create a baseline for future 
evaluations of decision support tools and human decision 
behavior, to gain feedback for improving the platform and 
presentation of decision support tools, and to provide 
insight on useful scenarios and exercise objectives. 

To measure results, we first prepared the game 
environment by generating observable artifacts that could 
be measured as separate events, including operational 
email logs, malware alerts, and phishing tips. We config-
ured network topology and made prototype tools available 
for players to monitor and control player actions during 
the different OODA steps. We configured the prebuilt 
attacks that the automated attacker would execute and 
the prebuilt courses of action that would be available to 
players at each enterprise threat level. 

Before each game, we configured separate 
automated attack game scenarios. Each game scenario 
included the same enterprise and mission data, but we 
reconfigured the speed at which the attacks occurred to 
be slower at each consecutive game and increased the 
number of alerts that were generated in response to each 
attack. The consecutive game changes were necessary 
to allow the game players to work through the game 
scenario within a one-hour period.

Using instrumented results and white cell obser-
vations, we made two key findings. First, players spent 
most of their time on the orientation step, attempting to 
understand the elements of the log query tool to identify 
correlations between the threat context information and 
log query results. Second, player feedback focused on how 
the tools could be enhanced to improve results. Players’ 
suggestions included adding proactive defensive capabili-
ties to increase the security of enterprise operations before 
attacks occurred and enhancing the game tools to allow 
players to better understand attacks as they unfolded. 

These findings led to several useful lessons learned:
1. “Train like you fight.” We learned that for cyber serious 

games to be useful for practicing attacker scenarios 
and learning training objectives, it is important 
to provide the same tools and cyber environment 
players will face in the operational environment.  
In their game assessments, players focused on how the 
tools helped them play the game. Many recommenda-
tions from the game players related to improvements 
in the usability of different game console elements. 
This kind of feedback would be useful if we were 
seeking to evaluate real tools under development; 
however, because our tools were merely constructs 
intended for gameplay only, this attention to the 
tools diverted players’ feedback from the game itself.  
When a game tool does not have the accuracy to 
emulate the real-world tool, it does not provide for the 
development of “muscle memory” for specific tasks, 
and presents the further risk that conceptual tools 
might inadvertently teach players the wrong lesson. 
These observations confirm the benefit of providing 
pluggable frames for inserting tools players would 
use in a real operational environment, especially if the 
game has a training objective.

2. Orientation. From our game results, it appears that 
without the right human decision support tools, 
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orientation can be the most time-consuming phase of 
the OODA loop in the cyber domain. Our instrumented 
game components allowed us to make comparisons 
between the times spent on the different phases of 
the OODA loop in order to come to that conclusion. 
We noted that players did not spend much time on the 
observe activities, such as network topology relation-
ships and the in-depth node information available from 
the network viewer or from the out-of-band messages 
screen that collected miscellaneous enterprise informa-
tion from different sources. Instead, during most of the 
game, players concentrated on the orient activities. Once 
they were oriented, players went quickly to the decide and 
act stages. Case management data confirmed this result. 
White cell members were able to observe conversa-
tions between team members to confirm that players 
spent the most time attempting to correlate the under-
lying sequence of events and did not devote much 
time to comparing potential course-of-action strate-
gies for responding to the threat. Because players were 
viewing real operational logs but using a conceptual log 
correlation tool, it would be useful to perform further 
comparisons with real operational tools to identify the 
impact tools can have on condensing the orientation 
phase to speed up TOODA.

3. Deep insight. We found that basing the game on 
the Lincoln Laboratory red versus blue concept 
could give us a multifaceted understanding of cyber 
decision-making processes. Our approach—which 
uses observable artifacts, the unified workflow, and 
simulated cyber models—measures multiple dimen-
sions of player behavior simultaneously; it also provides 
a basis for comparing between operational tools and 
underlying assumptions to gain a better understanding 
of their impacts on defenders’ success in managing 
challenges, such as decreasing fog of war and TOODA. 

The level of abstraction was sufficient to allow players 
to initially track and respond to threats. While the tools 
were not accurate representations of specific real-world 
tools, they were accurate enough to reveal the lack of 
correlation between different cyber technologies available 
at the time the tests were run and the effect of this lack on 
the time needed to orient. 

As a result, players offered a number of useful 
suggestions to address this lack of correlation between 
information elements. These suggestions included 

adding summarized metadata to tie system names and 
IP addresses back to their users, making the dependen-
cies between the mission functions and cyber systems 
involved explicit, and providing transparency as to how 
mission health levels, costs, and benefit calculations 
were made. The right kind of platform instrumentation 
to measure human behavior on real and candidate tools, 
and its use to execute a game scenario and submit player 
feedback, could lead to a serious game (or gamification 
using applied serious gaming concepts) that can provide 
a useful format for measuring training results and evalu-
ating the effectiveness of cyber and human tools.

The first two lessons largely validate, in a game 
environment, concepts that continuously plague the 
operational community, while the third highlights an 
opportunity previously unavailable and uniquely plausible 
in the cyber domain. How, then, might serious games 
begin to address these issues?

Looking Forward: Gamified Military Cyberspace 
Operations
Serious games like Cyber Red/Blue provide both a 
controlled game-like venue to answer specific experi-
mental questions and a training sandbox. Gamification 
can take concepts out of the sandbox and into the opera-
tional world in hopes of achieving higher efficiency and 
effectiveness through “the application of game design 
principles in non-gaming contexts” [6]. Let’s look at how 
gamification, informed by serious game experimentation, 
can begin to address these findings toward decreasing fog 
of war and TOODA.

Train Like You Fight
Training like you fight, a concept fostered in military 
doctrine, leads to a soldier’s development of procedural 
memory. For example, for pilots to learn to fly, thousands 
of hours of practice are needed so that they develop the 
reflexes that enable them to act on instinct in life-and-
death combat situations. Not all of these hours can be 
accomplished through actual flight time because of the 
risks associated with flying and the resources required to 
send aircraft out on a training mission. Flight simulators, 
which are designed to emulate every detail of an aircraft 
and its performance, offer a way to increase training 
frequency and duration without the costs and risks associ-
ated with real-world flight. 
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Today in cyberspace operations, most hands-on 
technical training occurs in lab environments with real or 
virtual hardware and software tuned to specific training 
objectives without regard for the holistic operating 
environment (i.e., the configuration of people, processes, 
and technologies that make up the cyber terrain, including 
command and control and intelligence functions). While 
the use of specific programs and commands may trans-
late from the lab into procedural memory useful in the 
real-world, many variables change from the classroom to 
the “battlefield.” Introducing a common human-machine 
interface that employs game elements and game design 
to facilitate learning and efficient operation may open 
opportunities for the cyber equivalent to the flight 
simulator. Learning may be further facilitated through 
the use of gamified motivation techniques, such as points, 
badges, and leaderboards. Training in this manner may 
encode in procedural memory the locations and processes 
in software that soldiers need in order to access relevant 
observable artifacts and therefore decrease TOODA. As 
many practiced players of various roles operate tools and 
interact more efficiently through the game-like interface, 
fog of war may also decrease.

Orientation
In today’s cyber operations environment, orientation 
often requires the assimilation of information from 
diverse sources, distributed via multiple methods and 
modalities that are often nonstandard. Oftentimes, this 
information works its way through intermediaries that 
induce loss to the original information. Once real-world 
operators or analysts have collected and fused actionable 
information, it often takes hours or days to orient to the 
information, decide a course of action, and finally enact 
that course of action. 

Compare the above notional TOODA of real-world 
cyber security operations with that of the real-time 
strategy game StarCraft II®. In StarCraft, a casual player 
can sustain a productivity level of 50 complex, meaningful, 
and multidisciplinary actions per minute (APM) while 
a proficient player can sustain 300 or more APM [7]. 
These numbers, while unlikely in real-world operations, 
represent the TOODA speeds humans are capable of when 
presented with near-lossless interfaces to accurate infor-
mation, capabilities, and real-time feedback. Developing 
an equivalent gamified interface to real-world operations 

may enable players to quickly observe the artifacts 
presented, orient to them with computational augmen-
tation and automation, decide courses of action based on 
probabilities of effectiveness, and from within the same 
interface take actions or issue orders and guidance for 
others to take action. Such a game-like interface may 
decrease time and signal loss from sensor to decision 
maker and from decision maker to actuator, thereby 
decreasing TOODA and fog of war.

Deep Insight
While serious games tend to capture structured data 
regarding the impact that observable artifacts, tools, and 
interactions have on metrics like fog of war and TOODA, 
these data largely go uncaptured in today’s real-world 
operational environment. In a common gamified 
platform, metadata associated with each of the OODA 
steps can be collected and used as immediate player 
feedback in the form of achievement badges, experience 
points, and ranking on leaderboards. These metadata can 
also be used for analytical inquiry into the efficacy of plans 
developed and tactics employed in real-world operations 
or the exercises that precede them.

Where to Begin
In order to apply game elements and game design 
techniques to military cyberspace operations’ mission 
applications, such as battle management systems, we can 
leverage game design approaches, such as Hunicke et 
al.’s mechanics, dynamics, and aesthetics framework [8]. 

Mechanics describes the particular components 
of the game, at the level of data representation and 
algorithms. Dynamics describes the runtime behavior 
of the mechanics acting on the player inputs and each 
other’s outputs over time. Aesthetics describes the desir-
able emotional responses evoked in the players when they 
interact with the game system [8].

MECHANICS AND GAME CONTENT
All games have rules, workflows, assets, levels, roles, and 
a variety of other mechanisms and content that enable 
gameplay. To understand these mechanics for the design 
of a gamified battle management system for cyberspace 
operations, we can turn to the Doctrine for the Armed 
Forces of the United States, which contains thousands of 
pages clearly defining, among other things, the intelligence, 
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operations, and planning methodologies employed in all 
domains of conflict [9]. Applying this doctrine to the 
cyberspace domain requires us to research the specific 
functions and tasks described in cyber security guides and 
literature. By combining the discrete tasks necessary to 
secure and operate networks with the military concepts 
necessary to conduct full-spectrum military operations, 
we can define the mechanics of cyberspace operations. We 
have already started work to describe these mechanics and 
expect the results to feed future prototyping efforts for a 
gamified battle management system. 

DYNAMICS
To keep players interested, game designers often create 
game elements such as time pressure or tension within 
the storyline of the game. However, these elements 
already exist in real-world military conflicts. While cyber-
space operations are likely to have their dynamics driven 
by geopolitics or current in-contact operations, we must 
strive to understand these and other dynamic compo-
nents as we gamify the cyber operations environment. We 
may want to put aesthetic mechanisms in place to convey 
dynamics; for example, we could add countdown clocks 
to indicate deadlines for countermeasure deployment or 
audio feedback to indicate success.

AESTHETICS
To look through the eyes of the player, we must consider 
the aesthetics of the game and the motivations (extrinsic 
or intrinsic) that drive them to play the game. While in 
traditional military system designs aesthetics are rarely 
considered, they are critical in the cyberspace domain. 
Because of the complexity of the cyber environment, 
potential players will always look for ways to decrease 
complexity, using the path of least resistance even if 
doing so inadvertently increases fog of war and TOODA. 
Designing a user interface that considers how the inter-
face will impact the user’s mental and emotional state, 
that is intuitive to operate, and that is even fun to use 
may promote the gamified system’s use over more familiar 
systems that do not consider the game mechanics neces-
sary to decrease fog of war and TOODA. The gamified 
mission application should at minimum provide users 
a venue that makes their role easier, more effective, and 
more motivating than do current methods and modali-
ties, such as email and document-based approaches.

Summary
Lincoln Laboratory’s Cyber Red/Blue game environment 
provides a repeatable methodology for measuring human 
behaviors that affect cyber security outcomes. Inclusion 
of real operational tools in the game environment will 
improve training and analysis results. With actual tools 
and the flexible Cyber Red/Blue measurement frame-
work, it is possible to apply additional measurement 
qualities of mechanics, dynamics, and aesthetics to a 
gamified real-world environment that simultaneously 
measures and trains for the future. We look forward to 
developing this approach further. 
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NASPlay: A Serious Game 
for Air Traffic Control
Hayley J. Reynolds, Brian C. Soulliard, and Richard A. DeLaura

In 1981, the National Airspace System 
(NAS) incurred a massive influx of new 
air traffic controllers brought on by the 
Reagan-era firings of more than 11,000 

striking members of the Professional Air Traffic 
Controllers Association. As the new controllers gained 
experience, many advanced into positions of air traffic 
management, directing not only single aircraft but also 
large flows of many aircraft around bad weather. Because 
the controllers hired in 1981 are now retiring, the air 
traffic management domain is facing a void in experi-
ence, with most current traffic managers having five or 
less years of experience. If the current and new traffic 
managers are prepared with only “on-the-job” training, 
the necessary mental models of weather and traffic 
behavior they acquire will be based on the job experience 
of just five years or less. To combat this lack of experience, 
MIT Lincoln Laboratory researchers created an air traffic 
management serious game, called NASPlay, to enable a 
trainee to experience a year’s worth of difficult days in 
only a day or two. 

There are several reasons to train personnel through 
a gaming approach rather than through practice drills 
on a series of canned, realistic scenarios. By devel-
oping a model of the NAS (which could be scoped to 
various levels of complexity and fidelity depending on 
the purpose of the game), game designers necessarily 
develop hypotheses of the causes and effects of decisions 
within a complex environment. Because this model of 
the NAS can subsequently be revised on the basis of 
newly discovered data from the actual NAS, a more fully 
developed user mental model of the system can form 

A serious game developed for training air traffic 
managers and for exploring new procedures in 
air traffic management enables participants to 
gain broad experience with traffic management 
decision making and the repercussions of 
the decisions. The game gives operators 
the opportunity to tackle in a day or two the 
decisions that they would normally encounter 
throughout a whole year or more.

»
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so that cause-effect linkages between users’ decisions 
and the resultant states of the emulated system can be 
clearly outlined and carried forward to the real system. 
Another benefit is that game players can gain decision-
making experience more quickly than would be possible 
in the real world. A game also allows players to take 
risks and experiment in ways that would be unwise 
on the job. In addition, the gaming environment has 
the potential for time manipulation of the game. For 
example, if the user concludes that a decision was a poor 
one, then he or she could go “back in time” to modify or 
delete the action taken, resulting in a different outcome. 
This back-in-time capability—along with the ability to 
view quantitative, scored outcomes—would encourage 
the user to modify and optimize a strategy through 
iterative trial and error, and a robust scoring metric 
would challenge the user to replay scenarios in order to 
maximize scores.

Traffic Flow Management
Traffic flow management (TFM) is performed at air 
traffic control facilities in the NAS to assess whether 
the traffic demand on the system exceeds the capacity 
of the system. If the demand exceeds capacity, traffic 
management coordinators (TMCs) must decide if and 
how to reduce that demand. This assessment of demand 
and capacity imbalances takes into account NAS 
resources, such as runways, routes, fixes (points along 
routes), and sectors. Options to reduce demand include 
delaying departure of flights (ground delay programs or 
GDPs), stopping the departure of flights to a particular 
airport altogether (ground stops), putting flights into 
holding patterns in the air, or changing the route that 
flights have requested. Airlines may also request that 
flights land at an airport different from the one planned 
(diversions) or cancel flights that they cannot complete 
because of capacity and resource constraints. At the 
national level, mass movements of traffic demand can 
occur if capacity is reduced across a large segment 
of the United States, as often happens during large 
thunderstorm fronts. Options that the national TMCs 
have include airspace flow programs (AFPs), which 
reduce the traffic demand over large airspace segments 
by delaying the departures of any flight flying through 
a Flow Control Area. Some examples of Flow Control 
Areas are shown in Figure 1.

National TMCs also have the option to reroute flights, 
using common strategic reroutes available in the National 
Severe Weather Playbook [1]. Examples of different 
scopes of reroutes are shown in Figure 2.

To assess the demand and capacity imbalances that 
are present across NAS resources, TMCs have several 
information systems available to them. Traffic demand 
for a resource can be assessed through either the Traffic 
Situation Display or the Flight Schedule Monitor, shown 
in Figure 3. The Traffic Situation Display allows the TMC 
to visually identify the points of possible congestion, both 
at the current time and the time projected into the future, 
through either a manual time slider or an automatic 
movie-like projection. The Flight Schedule Monitor’s set 
time bins, which span into the future, provide aggregated 
counts of flights demanding a particular resource (e.g., 
airport or FCA). Fair-weather capacity for resources is 
shown in a horizontal line to enable TMCs to easily 
evaluate demand and capacity imbalance. 

To determine if capacity has been impacted by 
weather, several weather tools are available. The most 
critical weather tool to assess convective weather (condi-
tions that lead to thunderstorms) out to 2 hours into the 
future is the Corridor Integrated Weather System (CIWS) 
[2], which provides convective weather information and 
0- to 2-hour forecasts covering the United States and 
southern Canada. The Consolidated Storm Prediction 
for Aviation (CoSPA) is CIWS’s strategic counterpart, a 

FIGURE 1. In the air traffic manager’s computer display, the 
Flow Control Areas are demarked by lines “in the sky” that 
provide a means to control the rate of traffic traveling either 
north/south or east/west.

FCAA05
Flows to Boston, 
New York, 
Philadelphia, 
Washington, D.C.

FCAA01
Flows to Boston, 
New York, 
Philadelphia

FCAA02
Flows to Boston, 
New York, 
Philadelphia

FCAA08
Flows to Boston, 
New York, 
Philadelphia, 
Washington, D.C.
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prototype that provides deterministic weather projection 
0 to 8 hours into the future [3]. The CIWS and CoSPA 
displays are shown in Figure 4. 

The TMCs face several challenges in assessing and 
addressing demand and capacity imbalances. It can be 
difficult to evaluate the impact of adverse weather on 
route capacity. The varying severity of weather, pilots’ 
unwillingness to fly through bad weather, and the inherent 
uncertainty in forecasts of weather and traffic demand all 
contribute to making the prediction of weather’s impact 
on capacity an art. The Federal Aviation Administration 
(FAA) has a strong interest in keeping the NAS running 
at full capacity because any under-delivery of traffic costs 
the airlines, the FAA’s “customers,” money. In addition, 

multiple TMCs at different air traffic facilities can choose 
to address the demand in different, and often overlapping 
or conflicting, ways. Again, it is an art to determine which 
problems should be addressed at the national level (i.e., 
through AFPs and playbook reroutes) and which should be 
addressed tactically (i.e., through holding, ground stops, 
and tactical reroutes). 

Applications of Gaming to Traffic Flow 
Management 
Lincoln Laboratory’s investigation into the benefits 
of a gaming approach to training revealed obvious 
applications of gaming to issues plaguing traffic flow 
management. Several issues with the NAS’s TFM had 

FIGURE 2. National severe 
weather reroute options 
are available to traffic 
management coordinators. 
Each colored line represents a 
different option in the National 
Severe Weather Playbook.

Canada East playbooks

Vulcan, 
Montgomery 
playbooks

Florida to 
Northeast 
playbook

Tactical 
reroutes

(a)

(b)

FIGURE 3. The Traffic Situation Display (a) provides information to traffic 
management coordinators about points at which airspace congestion is possible. 
In the figure, the polygons represent different air traffic control sectors predicted 
to be congested, and the aircraft icons symbolize the flights contributing to the 
congestion. The Flight Schedule Monitor (b) tracks demand for resources, such as 
airports or routes, in color-coded bins. Black represents flights that have already 
landed, red represents flights that are in the air currently, and green represents 
flights that have not yet departed.
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been identified during the prototyping efforts on CIWS, 
the Route Availability Planning Tool (RAPT), Integrated 
Departure Route Planning, and CoSPA [4, 5]. Firstly, 
across the NAS, basic concepts of TFM are misunderstood 
by TMCs at the FAA facilities. To inform their decision 
making, TMCs are constantly striving for information that 
predicts evolving weather conditions as far in advance 
as possible; however, when more reliable information 
becomes available, they often fail to revisit their strategic 
decisions in tactical timeframes. In convective weather 
situations, when decision making has the most impact 
on traffic flow, TMCs often do not regularly reevaluate 
their strategic and tactical decisions to account for the 
fast-changing situation. Frequently, TMCs make decisions 
too early or too late, and they do not base decisions on the 
most diagnostic information available to them, preferring 
to rely on familiar information sources. In addition, traffic 
management experience is acquired slowly. Each day of 
convective weather provides only a single data point for 
the TMC to add to his or her experience. Moreover, traffic 
managers may not have the opportunity to learn from 
their decisions; for example, a TMC may make a decision 
at 8:00 a.m. but be off-shift before that decision shows 
(or does not show) results at 6:00 p.m. As researchers 
seek ways to improve TMC training, human-in-the-
loop experiments to assess new training methods can be 
costly and TFM components can be difficult to replicate 
in the laboratory. Furthermore, because human-in-the-
loop experiments are usually run in real time, they are 
time-constrained to address only a limited number of the 
wide range of scenarios that are likely to be encountered 
in real operations.

The gaming approach provides a means of 
addressing these TFM issues, particularly TMC training. 
Currently, training is performed in a classroom setting 
with TFM concepts conveyed in PowerPoint. The 
concepts that the lecturer is covering may or may not 
be directly connected with real traffic management 
scenarios or data and the information sources available 
to TMCs. A gaming environment could not only ensure 
that the TFM concepts are directly connected with NAS 
data and the information sources available to TMCs, 
but the TMCs could also experience dozens of situations 
that demonstrate the concepts. This immersive form 
of training could better encourage the development of 
strategic heuristics that, if executed correctly, could

FIGURE 4. The Corridor Integrated Weather System (CIWS) 
shows the observed precipitation at 1300 zulu1 (a). The CoSPA 
precipitation forecast issued at 1300 zulu for 2100 zulu is shown 
in (b). The actual precipitation at 2100 zulu is shown in (c). In the 
(a) and (c), green indicates light precipitation; yellow indicates 
medium precipitation, and orange/red is heavy precipitation. 
In (b), white represents light precipitation; yellow is medium 
precipitation, and red is heavy precipitation. While the forecast 
did not capture much of the light precipitation, it did capture 
the heavy precipitation and characterized well the type of storm 
(patchy, heavy in some areas, clear in others as opposed to 
a stationary impenetrable front). This forecast enables the air 
traffic manager to have sufficient information to make reroutes 
around the heavier precipitation.

transfer positively to the real-world environment. Gaming 
is also a natural extension of the methods used to train air 
traffic controllers, who spend hours working a simulated 
traffic control environment.

Another TFM application of gaming is in the explo-
ration of new procedures in consideration for their 
implementation into the NAS. Often, a new procedure 
is proposed by a TMC and then is modified and honed 
during actual operations, to the potential detriment of the 
flights exposed during the early, less effective iterations. If 
a game environment was available, new procedures could 
be explored to identify when to enact or retract a proce-
dure, which traffic flows to target, and what amount of 
action to implement (e.g., what number of miles should 
separate aircraft) without adversely affecting any flights 
in the NAS until the procedure is mature. A third applica-
tion is concept development for TFM products. New tools 
developed for TFM purposes could be tested and iterated 
in TFM games before being deployed into the field. 

1Zulu is a term used to indicate that the time referenced is the 
Coordinated Universal Time (in essence the same as Greenwich 
Mean Time). Referencing time as zulu (presented on a 24-hour scale 
marked with Z) assures there are no misunderstandings as to actual 
time meant. 

(a) (b) (c)
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reroutes. These decisions should be offered at different 
times throughout the scenario day to replicate the condi-
tions under which controllers currently operate. If the 
game is to be used for evaluating new procedures, it 
should provide information on the procedure’s poten-
tial impact, reflect the decision process, and model the 
resulting outcomes.

A useful game will meet several functional require-
ments. The game should allow a scenario day to be 
simulated in only a few minutes. The game player needs 
to be able to replay and make different decisions for the 
same “day” so that he or she can view and assess the 
varying outcomes of decisions. The game should also 
provide some objective feedback about the system’s 
performance, given the decisions made during the 
game. These metrics or scores should reflect operational 
metrics (e.g., delays) that are used currently to diagnose 
NAS issues or experimental metrics (e.g., number of 
times that a traffic manager views information to make 
a particular decision) that may provide new insights into 
operations. Ideally, the game is web-based to allow access 
for players who may have limited alternative access to the 
final game product.

Development of the NASPlay Serious Game 
Prototype
While a serious gaming architecture could support the 
multiple applications described in the previous section, 
Lincoln Laboratory pursued the following development 
goal for NASPlay: develop a serious game architecture 
that supports ingesting data from actual operational days 
and provides the game player with a choice of alternative 
traffic management initiatives that result in an operation-
ally relevant score for each alternative. 

Figure 5 illustrates the architecture and assignment 
of functional capabilities in the current NASPlay system. 
There are three major components, each with specific and 
well-defined functional capabilities and interfaces: the 
NAS simulation engine (NSE), the NASPlay game server, 
and the game interface. Trainees would interact directly 
with the game interface. 

The computational performance of the simulation 
is insufficient to run in real time while the game is being 
played. To accommodate the realities of current simula-
tion performance limitations, the NASPlay developers 
formulated a constrained-choice concept of operations 

Requirements for a Traffic Flow Management 
Serious Game
For a serious game to be successful in aiding traffic flow 
management, it must meet multiple requirements. Many 
of these requisites involve creating a game environ-
ment that faithfully simulates the actual world in which 
TMCs work. The game needs to accurately represent the 
resources in the NAS, including airports, routes, fixes, 
sectors, and facilities. The dynamics of the different 
aircraft types must also be accurately represented, and 
flight behavior must reflect real flights (e.g., filed flight 
levels, standard speeds, and structured routings). The 
game has to provide realistic depictions of current and 
forecasted weather, similar to the CIWS displays used in 
operation. The assessments of capacity impacts have to 
be accurate; aircraft holding and other signs of demand 
and capacity imbalances should correctly reflect the 
simulated weather conditions.

The game environment must also present informa-
tion in ways that replicate the systems and displays that 
TMCs use. The game needs to be able to emulate the 
Traffic Situation Display and Flight Schedule Monitor to 
allow TMCs to assess demand, and it needs to emulate 
CIWS and CoSPA to allow TMCs to assess capacity. Useful 
graphical user interface behaviors, such as filtering flights, 
zooming in and out, and specifying airport resources, 
must also be replicated. When the game is being used to 
test the impacts of new information on decision making 
and operational outcomes, it must support the incorpo-
ration of new components. 

An effective TFM game will provide trainees with 
an experience that is true to what they will encounter 
on the job. The scenarios in the game must replicate 
the complexities of an actual operational day, including 
information uncertainty and multiple overlapping 
decisions. To support the rapid incorporation of lessons 
learned into operations and to enable the creation of a 
large and varied library of experiences for trainees, the 
game must utilize automation for reducing the time 
and effort needed to create new scenarios. The decision 
choices offered in the game should be representative 
of decisions that TMCs would actually make and may 
make in the future. The means to address demand and 
capacity imbalance should be based on the same choices 
that TMCs have now—airspace flow programs (AFPs), 
ground delay programs (GDPs), ground stops, and 
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in which a limited set of traffic management decisions 
is made available to the game player at a sequence of 
discrete decision points during gameplay. As a result, the 
NAS simulation is decoupled from the actual gameplay, 
and changes in NAS states that result from players’ 
decisions are precalculated, stored on disk, and provided 
to the player by the server.

The use of the constrained-choice concept has several 
implications. Clearly, fewer decision options are available 
to the game player, and the extent of option exploration 
is limited to those that were considered by the author of 
the scenario. However, it is still possible to include a huge 
number of choices that reflect all the decisions that a TMC 
could realistically make. The specification of an explicit 
set of decision options also makes it possible to make 
clear comparisons between different traffic management 
strategies and choices. The decoupling of the game from 
the simulation also makes it possible to provide a large 
library of game scenarios that may be accessed as part of a 
progressive training regimen or a concept-engineering and 
validation exercise. This approach puts much less demand 
on the network and server, allowing virtually any number of 
players to access the game at once. With some forethought 
in scenario development, the constrained-choice concept 
can provide a rich and varied environment to address many 
of the challenges in evaluating and training traffic manage-
ment planning and decision making.

NAS Simulation Engine
The NSE implements the rules for NAS behavior (e.g., its 
response to external inputs such as scheduled demand 
and weather impacts) that define specific gameplay 
scenarios. The NSE schedules flight departures, models 
flight trajectories, and implements default behaviors of 
the NAS in response to external events or conditions that 
arise as the simulation proceeds (e.g., what happens to 
flights entering an air traffic control [ATC] sector when 
that sector is at capacity). The NSE also provides the 
capability to model commonly used traffic management 
initiatives, such as ground delay programs, on the basis 
of forecast traffic demand and constraints. The NSE 
provides the capability to harvest data about the evolving 
state of the NAS during the simulation (e.g., the location 
of flights and their delay status) and calculates NAS-wide 
and local performance metrics. Finally, the NSE provides 
fast-time simulation capabilities to facilitate the genera-
tion of NAS outputs corresponding to each branch of the 
constrained-choice decision tree.

To create the level of realism required for meaningful 
game development, the NSE must provide fine-grained 
control of flight trajectories and air traffic control actions, 
particularly in response to external events such as thunder-
storms. The NSE must provide a way to extend or replace 
default behaviors (e.g., pilot decisions to accept or reject 
routes through convective weather-impacted airspace or 

Scenario inputs
(e.g., observed weather, 
forecasts, observed demand) 
ingested into engine

Inputs stored in 
scenario database

Server accesses 
detailed scenario 
information

Player uses NASPlay game 
interface to access scenario

NASPlay game server

NAS simulation engine

FIGURE 5. The NASPlay system architecture contains scenario inputs, the NAS simulation engine, NASPlay game server, a scenario 
database, and the NASPlay game interface. The scenario inputs are ingested into the NAS simulation engine and stored in a scenario 
database. When the scenario is accessed by the NASPlay game server (through the NASPlay game interface by a player), the 
database is accessed for the detailed scenario information, including the action choices indicated by the colors in each branch above. 
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the response of ATC to weather impacts) with models 
such as the Convective Weather Avoidance Model for pilot 
decision making in convective weather–impacted airspace, 
or the Controller Workload Model for sector capacity. 

After a technical evaluation of an array of existing 
simulation products, AirTOpsoft’s simulator, AirTOp 
[6], was chosen because of its agent-based foundation 
and flexible development environment. AirTOp’s imple-
mentation enables fine-grained control over several key 
elements of NAS operation and simulation:
• Dynamic capacity constraints. Simulations may be 

initialized with time-varying capacity constraints 
on any airspace resource that is defined in the NAS 
adaptation.

• Options for tactical weather avoidance. AirTOp 
provides mechanisms to implement tactical weather 
avoidance options, such as no-notice holding and 
trajectory vectoring to avoid weather. In addition, 
thresholds (often referred to as hooks) can be set to 
trigger diversions, ground stops, and other tactical 
responses to airspace constraints.

• Hooks for calculation of default and custom perfor-
mance and scoring metrics. AirTOp supports the 
specification of software watch points that can trigger 
data analysis and the output of user-specified simula-
tion state data for incorporating the generation of 
performance and scoring metrics into the simulation.

• Data are stored in easily modified text files.
After the development staff spent several weeks 

familiarizing themselves with the AirTOp environ-
ment, they input the baseline structure for the NAS 
(e.g., Air Route Traffic Control Center boundaries, ATC 
sector boundaries, navigation fixes, jet routes, aircraft 
types, and airports) into the simulation. Data for a full 
day’s flight plan schedule were assembled and input to 
AirTOp. As is common with navigation data, a signifi-
cant amount of “cleaning” of the data was required to 
return reasonable output:
• Correction (where possible) or removal of ambiguously 

or incorrectly specified navigation fixes from flight 
plans

• Assignment of aircraft performance statistics when the 
aircraft type is unknown to AirTOp

• Proper sequencing of departure times to ensure 
temporal continuity of flight plans that have multiple 
stops and continuation legs

• Filtering of flight plans that are outside the scope of the 
game scenario to reduce simulation run time

• Specification of realistic cruise altitudes and air speeds 
for flight plans that are missing this information

• Conversion of scheduled flight plans into AirTOp’s 
input format

• Determination of which entry is most accurate if the 
same flight plan appears multiple times in the data; 
removal of any “loops” from routings

• Conversion of units of measurement, especially for 
speed (e.g., Mach, indicated airspeed, true airspeed)

Five critical weather-impact capabilities were also 
implemented in NASPlay: time-varying winds for flight 
trajectory modeling; time-varying air traffic control 
sector capacity constraints that include considerations for 
convective weather impacts; time-varying air traffic flow 
capacity constraints that account for convective weather 
impacts; time-varying airport capacity; and time-varying 
fix capacity.

In addition, several initial performance metrics were 
implemented: individual flight delay, separated into 
ground and airborne portions, as well as planned and 
unplanned portions; hourly measurement of aggregate 
delay and holding; time of flight; fuel burned; and cancel-
lations and diversions.

NASPlay Game Server 
The primary role of the NASPlay game server is to provide 
to the game client the current state of the NAS resulting 
from the player’s decision choices up to that point. 
The NAS state includes the flight plans and locations 
of all flights, outputs from operational models for the 
current weather and weather forecasts, and stakeholder 
comments or tactical responses (e.g., a request for a 
ground stop or diversion) derived from external sources 
(e.g., the National Traffic Management Log) or automat-
ically generated by the NSE during scenario preparation. 
The server also records player decisions and interactions 
that will be used for postgame analysis. 

Game Client 
The game client is the player’s window on the NAS world. 
It renders the game display that provides (1) the current 
state of the NAS, such as flight locations and plans, current 
NAS performance statistics, and emulation of commonly 
used tools such as the Flight Status Monitor; (2) feedback 
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comments from other NAS stakeholders; and (3) external 
factors, such as the weather. It provides the game clock 
control, allowing the player to start and pause the action or 
rewind to review the previous state of the world. The client 
prompts the player for decisions, providing NAS modeling 
information relevant to the decision options. Finally, the 
client passes selected player interactions to the server for 
logging and postgame analysis. The client in the current 
NASPlay prototype is shown in Figure 6. 

Game Scenario
The development of the game scenario is key to the 
success of the game. Gaining TMCs’ acceptance of a 
traffic management serious game would be impos-
sible if the scenario did not capture the complexities of 
traffic management and the subtleties of the operational 
environment. To this end, the NASPlay developers chose 
a particularly impactful day that had questionable traffic 
management decisions made during the operation. A 

similarly impactful weather day was further explored with 
respect to forecast uncertainty and decision making [7].

On 11 September 2013, a group of severe thunder-
storms developed between Maine and Tennessee around 
1600Z (4 p.m.), impacting eastbound arrivals starting 
around 1700Z. Traffic managers at the Command Center 
in Virginia opted to address the capacity constraint 
imposed by these storms by rerouting New York–bound 
flights from Fort Worth, Houston, and Memphis centers 
south through the Vulcan Playbook2 (VUZ) reroute and 
AZEZU Playbook reroutes, and by tactically managing 
traffic through ground stops. Managers also implemented 
Airspace Flow Programs at 1650Z for two flow-control 
areas (shown in Figure 7) from 1915Z and 1945Z. There 
was significant NAS disruption, including 69 diversions, 

2A playbook contains a set of standard routes that ATC can utilize to 
fit a particular set of circumstances when the preferred routes are not 
available. These routes were created to allow for rapid implementa-
tion of rerouting as needed.

FIGURE 6. The NASPlay user interface includes display modes, time sliders, filtering options, game time, and other data critical to 
the decisions required, such as the Flight Schedule Monitor.
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55 holding events (totaling 21 hours), 13 ground stops 
(totaling 7 hours), and 72 taxi-backs to the airport gates. 

The critical aspects of a scenario for game recon-
struction include the timeframe and area of interest, the 
decisions available, the information available, and the 
metrics by which the decisions are evaluated. 

The area of interest for this scenario is the New 
York (ZNY)–District of Columbia (ZDC) area. Thus, it 
is important for the player to be able to view and filter 
flights arriving and departing this area of the NAS. 
Also important is the player’s ability to zoom into this 
area to discriminate the local weather and traffic. The 
timeframe of interest is from 1700Z to 2100Z, a busy 
period during which the weather significantly affects the 
high-demand traffic areas. For decision-making purposes, 
it is important to be able to view not only the unfolding 
weather and traffic but also the forecasts of weather and 
traffic demand for this timeframe.

It is critical to identify the key decisions available 
to the TMC to address the demand and capacity imbal-
ance issues for a particular scenario. The strategic traffic 
management decisions available to the TMCs for this 
scenario include reroutes, AFPs, GDPs, and ground stops. 
For convective weather impacts in ZNY and ZDC, the 
appropriate AFPs include FCAOB1 (the eastern boundary 
of Cleveland center) and FCAA08 (west/east line through 
Washington center). Some of the decisions must be made 
no later than four hours before the expected impact 
in order to have the desired effect on the traffic. Thus, 
forecasts for the 1800Z timeframe and beyond need to 
be available to the game player by no later than 1400Z. 
GDPs for the New York airports were made available as 
potential decisions as well. 

An example constrained decision tree was created 
for the game scenario by using these key decisions. 
Figure 8 illustrates a traffic management initia-
tive decision tree that enumerates the set of possible 
decisions for this scenario. At 1315Z and 1715Z, the 
player is able to choose whether to implement an AFP 
or a reroute and whether the AFP should be “mild” or 
“severe.” If a reroute is chosen, then the player is also 
offered the choice at 1915Z to implement a GDP or not. 
Seven outcomes for this scenario are possible, and the 
possible decisions in this example are constrained. A full 
scenario would allow for the 10 to 100 choices that an 
actual national air traffic manager would experience in 
a convective weather day.

To adequately represent the scenario in a context 
familiar to the game player, the information presented 
must be consistent with that used by a TMC. Two infor-
mation sources are used to assess demand over time: the 
Traffic Situation Display and the Flight Schedule Monitor, 
both shown in Figure 3. To assess capacity, TMCs must 
have adequate knowledge of the current and forecasted 
location and severity of the weather, such as is depicted in 
the CIWS and the CoSPA tools shown in Figure 4. Strategic 
TMCs also receive input from local air traffic control facil-
ities (ARTCCs3, TRACONs4, and towers), as well as from 
their airline customers, about what decisions to implement 

3Air Route Traffic Control Centers handle primarily en route aircraft 
on instrumented flight plans; 21 centers cover the regions over the 
United States. 
4Terminal Radar Approach Control facilities handle ATC operations 
near major airports, primarily aircraft arrivals and departures. 

FCAA0B1

FCAA08

CoSPA VIL 2100Z 

FIGURE 7. The map shows the flow control areas (FCAs)—
FCAAOB1 and FCAA08—that were restricted and the 
convective weather existing on 11 September 2013 at 21:00 
zulu. Data are from the CoSPA system, which uses vertically 
integrated liquid measurements to predict convective 
weather activity.
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via phone calls. To simulate this communication in the 
game environment, a chat window was implemented to 
allow facility and airline agents to provide their opinions on 
the decision options. Chat messages were derived from the 
National Traffic Management Log and created in response 
to simulated events.

To understand whether a game player’s decision was 
“good” or “bad,” operational performance metrics must be 
established. A common metric used by the ATC commu-
nity is the amount of delay accrued during an event for the 
NAS. Additional metrics—airborne holding time, ground 
delay time, uncontrolled delay, fuel burn, and number of 
diversions and cancellations—were identified to indicate 
the quality of a decision. Filters identifying where and 
when the delays occurred also provide an indication of 
how the traffic was affected by decisions. The defining and 
weighting of performance metrics in scoring are areas of 
active research, and these are expected to evolve signifi-
cantly as NASPlay development continues.

To acquire the data to ensure the scenario fidelity for 
the game, the following required data from 11 September 
2013 were assembled: 

• NAS definition data
• Scheduled traffic data 
• Wind data
• Lincoln Laboratory’s CIWS and CoSPA weather data 

archives for the NAS
• Lincoln Laboratory’s Route Availability Planning Tool 

data for fix capacities
• Lincoln Laboratory’s Traffic Flow Impact data for 

sector and flow capacities
• Command center teleconference and National Traffic 

Management Log data (what decisions were consid-
ered when, inputs by ATC facilities and airlines)

Emulations of the Traffic Situation Display, Flight 
Schedule Monitor, CIWS, and CoSPA were created to 
ensure realistic representation of the information consis-
tent with the traffic management context. 

Validation and Evaluation of NASPlay
Both validation and evaluation are required to ensure 
that NASPlay meets the needs of the NAS users. A 
detailed report of the validation for NASPlay is provided 
in Davison Reynolds, DeLaura, and Soulliard [8]. It 
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End 
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End 
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End 
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Do nothing
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9:00Z 13:15Z 17:15Z 19:15Z 24:00Z

FIGURE 8. This simplified decision tree for a constrained choice game illustrates the choices available to the player at different times 
during the scenario.
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is important that the simulation dynamics, the traffic 
demand, and the weather capacity algorithms all work 
in concert to provide a valid representation of the NAS 
because conclusions drawn from an invalid model would 
not transfer to the real NAS. Likewise, if the NAS users 
evaluate NASPlay and find that it does not represent the 
NAS in some critical way, NASPlay will not be accepted 
within the community. Thus, initial validation and evalu-
ation have been attempted for NASPlay. 

An initial validation was performed for a nominal, 
unconstrained (fair weather) operational scenario, taken 
from operations on 21 October 2012. The primary focus 
of the validation was to ensure that the schedule cleansing 
and wind data ingest resulted in reasonable flight plans, 
trajectories, and overall number of operations.

Individual Flight-Level Validation—Flight 
Simulations
The total number of flights flown by the simulation 
was 34,928, a number roughly in line with the FAA’s 
OPSNET5 ASPM6 77 terminals’ count of approximately 
56,000 operations for the day. Note that ASPM opera-
tions include both arrivals and departures for domestic 
airports, so their count is roughly double the number of 
flights for 21 October 2012. However, the ASPM count 
does not include general-aviation flights.

AirTOp time of flight was compared to observed time 
of flight for each scheduled flight with a corresponding 
observed departure. The results of the comparisons for 
flights between the 34 largest airports in the continental 
United States are presented in Figure 9 and show good 
agreement between simulated and observed flight times. 
Top-down map views of several flight plans for different 
origin-destination pairs were inspected to ensure that 
“doctored” simulation flight plans were reasonable. The 
distribution of flight altitudes as a function of flight 
distance was also examined to confirm that cruise 
altitudes were sensible in NASPlay. Finally, an initial 
performance measurement analysis capability that will 
form the basis for the game scores was developed. The 
capability currently assesses ground delays (planned 
and unplanned), airborne delays, cancellations, and 

5Operations Network is the official source of data on NAS traffic 
operations and delays.
6Aviation System Performance Metrics is an online database of infor-
mation on flights to and from the 77 U.S. airports.

diversions, all adjusted for the types of flights impacted 
(e.g., passenger, cargo, or general aviation).

Flow-Level Validation—Capacity Modeling
A time-variant capacity constraint was developed for 
flows and sectors. Each flow captures flights going 
through its area in a certain direction. The algorithm was 
previously developed and verified at Lincoln Laboratory. 
Testing indicates that the simulation is performing as the 
model predicts.

NASPlay Evaluation
The NASPlay prototype was initially evaluated by several 
NAS user groups, including trainers and traffic manage-
ment specialists from the Air Traffic Control System 
Command Center (ATCSCC), the manager of tactical 
operations in the Northeast United States, former en 
route/TRACON/tower controllers, and representatives 
from two airlines. An initial introduction to the proto-
type, which included the potential concept of operations 
and use for the tool, was provided to the evaluators. Users 
then played through the demonstration scenario, seeking 
out diagnostic information and making their own choices. 
Once the users completed the demonstration, they were 
asked what, if any, value the prototype concept would 
have in their jobs and what information or function-
ality is missing to achieve that value. Table 1 itemizes the 

FIGURE 9. A comparison of simulated and observed flight times 
for major airport origin-destination pairs are shown.
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Table 2. NAS Users’ Suggested Improvements for NASPlay

USER GROUP SUGGESTED IMPROVEMENT

ATCSCC trainers Generate many severe weather scenarios; explore connecting 
NASPlay to training Flight Schedule Monitor

ATCSCC traffic management specialists Incorporate airline cancellations and pilot diversions into 
functionality; make NASPlay multiplayer and web-based for a 
single scenario

Manager of tactical operations in the 
Northeast United States

Generate tactical scenarios for NASPlay focusing on a single 
en route center and/or TRACON; provide ability to continuously 
monitor airport surface status; make NASPlay scoring consistent 
with the FAA’s internal AERO operational evaluation statistics page

Former air traffic controllers Incorporate airline cancellations, pilot diversions, and tactical 
rerouting into functionality

Airline representatives Make the prototype available for airline use

Table 1. NAS Users’ Estimation of the Value of NASPlay to Their Operations

USER GROUP VALUE OF NASPLAY TO OPERATION

ATCSCC trainers Integration of NASPlay with their laboratory training environment 
to produce fast-time “what if” decisions to a set of specified 
scenarios

ATCSCC traffic management specialists Ability to conduct over-the-shoulder, on-the-job training with new 
traffic management specialists; ability to better understand the 
interaction of traffic management initiatives with one another in a 
controlled environment

Manager of tactical operations in the 
Northeast United States

Capability to support continual offline demand and capacity 
imbalance identification; evaluation of traffic management 
decisions with objective metrics

Former air traffic controllers Ability to try out and evaluate the effects of new procedures offline; 
training in severe weather decision making

Airline representatives Ability to model and better understand the effect of traffic 
management initiatives on their businesses; this understanding 
could lead to effective lobbying for particular initiatives on 
strategic planning
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specific value to their jobs that the user groups saw for 
the prototype.

The users also offered suggestions for additional 
information and functionality to improve the ability of 
NASPlay to meet their identified needs; Table 2 itemizes 
these suggestions.

Future Development
The NASPlay prototype was developed to address serious 
shortfalls in current FAA capabilities for training air traffic 
managers, evaluating current and proposed NAS opera-
tional procedures, and developing and validating new 
operational concepts. Its platform integrates a commer-
cial simulation capability with both the Laboratory’s novel 
algorithms for severe weather capacity and its gaming 
interface. The prototype’s output was validated in both 
fair and severe weather. 

All the NAS users who evaluated NASPlay’s opera-
tional value and functionality prioritization saw useful 
applications of NASPlay for their respective jobs. Many of 
the suggested improvements in information and function-
ality are possible and desirable to accomplish within the 
next year. A more detailed user evaluation is planned for 
the end of next year. The goal of that evaluation will be to 
gather input about both the available decision choices in 
the assembled scenarios and the usability of the current 
NASPlay prototype. 

Over the next year, NASPlay will be expanded into 
the tactical traffic management realm, with the develop-
ment of tactical scenarios (regionally focused rather than 
nationally focused). Additional possibilities for NASPlay’s 
expansion include
• Multimodal performance scoring to evaluate decision 

making according to alternative performance criteria, 
such as environmental impact or passenger experience 

• Multiplayer gaming for advanced training and evalua-
tion of future concepts, such as dynamically configured 
airspace

• Agent-based Monte Carlo simulations to realistically 
assess the potential benefits of new forecast tools and 
procedures, accounting for limitations, such as forecast 
accuracy and uncertainty in the response of pilots and 
controllers to events

• Real-time simultaneous simulations and scoring of 
potential alternate outcomes to guide planners in 
operational decision making 
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Rapid-Play Serious Games 
for Technology Triage
Robert M. Seater

The analysis of user-facing future 
technology is a difficult task but one that 
plays an important role in the process of 
research, development, and technology 

evaluation (RDTE). The RDTE process includes many 
facets, ranging from brainstorming potential threats and 
opportunities all the way to prototyping and conducting 
field evaluations. An efficient RDTE process is important 
to avoid missing opportunities (culling good ideas) or 
investing too much effort into dead ends (failing to cull 
bad ideas). Unfortunately, many technology programs 
fail before they even get started because they are seeking 
to provide a capability that users do not need or will not 
accept. However, recognizing which technologies will 
be useful before they have been developed, prototyped, 
and field tested can appear to be a chicken-and-egg 
problem—how can we triage a set of capabilities before 
they exist?

To understand how to address this problem, it is first 
important to articulate what makes the task difficult. 
Consider, for example, a proposal for a novel detection 
technology that is light enough to be used as a wearable 
sensor for infantry squads. If it is our job to decide if that 
technology is worth maturing for that application, we face 
several immediate challenges:
• First of all, because the technology does not exist yet, 

we don’t know what technical trade-offs it will be able 
to offer, what technical specifications we would want it 
to meet, or where additional research is most needed to 
close the gap. Is it more important that the sensor have 
a low false-positive rate or a high range? A high-fidelity 
image or a fast update rate? We don’t even know where 

Rapid-play serious games can allow players 
to gain intuition about the use of a proposed 
capability, enable researchers to examine 
that capability’s influence on tactics and 
procedures, and collect quantitative data that 
supplement qualitative user feedback to inform 
decisions about which new technologies should 
be pursued with future development. 

»
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a research program should focus its efforts or if the end 
result will be acceptable to users.

• To answer such questions, one typically turns to current 
domain experts and users. Involving experts and users 
can provide valuable feedback on the utility of the new 
capability and its likelihood of being accepted. So, we 
might ask current squad soldiers what they would find 
most helpful in a wearable sensor. Unfortunately, most 
expert decision makers are intuitive thinkers used to 
dealing with concrete situations, not abstract thinkers 
who have a theoretical formalism that can generalize 
to future scenarios [1]. Expert users may not under-
stand why they are experts and thus not understand 
what new capabilities will help them in a novel (future) 
environment [2].

• To make the problem more concrete for the domain 
experts, we might run a tabletop exercise or seminar-
style wargame [3] so that they can get some intuition 
for what it is like to use the proposed capability and how 
it might change their operating environment. However, 
after such an exercise (or even a few), the domain users 
are still novices at using the new technology, and they 
haven’t had much chance to experiment with how to 
use the technology in different ways or to explore how 
it might change doctrine and best practice. The squad 
members have only had a couple of chances to experience 
how a wearable sensor might change their behavior and 
how to incorporate it into current doctrine. In an adver-
sarial setting, the red force will also not have had time 
to develop exploits and counter-tactics. Furthermore, 
we still rely on participants’ qualitative descriptions of 
what they liked or didn’t like about using the sensor—a 
method hindered by users with dominant personalities 
or experts who are not good at theorizing.

• To address the issues that come from a small number 
of qualitative data points, we might run a large number 
of exercises and instrument users to collect data on 
their performance and behaviors. However, that is an 
expensive proposition if one uses traditional exercises 
and tabletop scenarios that take hours or days to run, 
that pull experts away from other tasks, and that 
require participants to travel to a common location. 
Such an approach is costly, burdensome, and slow. 
The early phases of RDTE can seldom afford any of 
those drawbacks, and developers usually face pressure 
to provide a quick, cheap, and low-burden estimate 

of where to focus subsequent efforts so that the next 
phase of the program can get underway with most 
of its budget intact. If we spend all our time under-
standing what wearable sensor to build, the program 
may be canceled or the problem may simply become 
obsolete as the world changes.

So what we are looking for is a method of providing 
users with a concrete environment in which they can explore 
a future capability many times to build intuition, collect 
both quantitative and qualitative data on their perfor-
mance and preferences, and do so without consuming a 
lot of program time, participant time, or budget.

HIVELET: Crowdsourcing Human Creativity
For the last few years, MIT Lincoln Laboratory has 
been using serious games to aid in technology assess-
ment programs. One of the most recent efforts is the 
Human-Interactive Virtual Exploration for Low-Burden 
Evaluation of Technologies (HIVELET). The HIVELET 
approach focuses on early RDTE, especially when suites of 
emerging technology are being considered for user-facing 
roles. This approach combines economic game theory [4] 
with rapid-play digital simulations to collect quantitative 
data, improve qualitative feedback, and crowdsource the 
ingenuity of human experts. 

Under the HIVELET approach, players alternate 
between two modes—capability selection and mission 
simulation, as illustrated in Figure 1.
• Capability selection allows players freedom to select 

different combinations of conceived capabilities, 
allowing them to formulate and explore different 
strategies that may deviate from current doctrine. 
However, the selection mode prevents a player from 
simply choosing all available capabilities; they must 
manage a limited budget (representing cost or weight), 
forcing them to think critically about what capabil-
ities they really need and to carefully prioritize the 
available capabilities. Players are not only judging if a 
capability is useful but also if it is useful enough, given 
its drawbacks and alternatives. 

• Mission simulation gives players a chance to try out the 
set of capabilities they selected to get feedback about 
effectiveness and to build intuition about what did or 
did not work well. The mission simulation is focused 
on being short (e.g., minutes not hours) so that players 
can make multiple attempts within a single sitting to 
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explore different strategies and build more intuition 
through iteration. To achieve these objectives, the 
mission simulator captures a key aspect of a critical 
decision point in the real world and abstracts away 
details not relevant to the evaluation at hand. Design 
principles and scoring incentives are used to create an 
environment that accurately recreates the pressures of 
the real world while simplifying the real-world simula-
tion enough to shorten the duration of gameplay.

After completing the mission simulation using the 
selected capabilities, players return to the selection 
mode. They can stick with their prior choices, refine 
their strategy, or try an entirely different approach. They 
then repeat the simulation, continuing to alternate back 
and forth between the two modes. The alternation forces 
players to combine abstract thinking about the value of 
various capability combinations with concrete feedback 
and intuition about the use of those capabilities on a 
mission. Data collected during the game reveal players’ 
preferences, behaviors, and performance and can be 
used in researchers’ quantitative analyses that comple-
ment the qualitative feedback provided by participants. 
With appropriate design of the framework, a participant 
can complete several cycles of selection and simulation 
in an hour.

Both portions of the game can be hosted online and 
played remotely by participants, thereby greatly reducing 
the burden and cost per each data point. A wide range 
of players remotely playing a series of short simulations 
can quickly compile a lot of data that can shed light on 
the trade-offs and priorities for the capabilities being 
modeled. Researchers can also vary the mission parameters 

to see how players change their preferences and strat-
egies, thereby providing insight into the application or 
the concept of operations (CONOPS) for which a given 
future capability is likely to be best suited. For example, 
the infantry mission simulator shown in Figure 2 can be 
run using a range of different terrain types and mission 
objectives to determine the flexibility or specialization of 
certain capabilities.

This approach is a form of crowdsourcing—using 
humans in large numbers to perform tasks that are diffi-
cult to automate. In this case, the task being automated 
is the creative thinking and ingenuity about how to mix 
and match future capabilities of various quality levels into 
a coherent and effective strategy that manages the risks 
presented by a real-world mission situation. Humans 
are not good at fine-tuned optimization, but they are 
excellent at creatively finding good combinations from 
within a very large decision space. This approach is thus 
well suited to the early stages of RDTE, in which we 
need to rapidly triage an enormous design space to focus 
more systematic traditional evaluation methods on the 
most promising options. HIVELET isn’t the end of the 
RDTE story, but it can be a critical step in making other 
techniques more focused, more efficient, and ultimately 
more likely to succeed than they would be if used alone.

Application to Infantry Technologies
The HIVELET technique has been used to evaluate how 
a small unmanned aerial vehicle (UAV) integrated into 
tactical infantry missions might fundamentally change 
how such squads operate. The game modeled 29 capabili-
ties (e.g., sensors and control mechanisms) and capability 

FIGURE 1. Under the HIVELET approach, players alternate between two modes—capability selection (left) and mission simulation 
(right). The depicted capability list shows unmanned aerial vehicle (UAV)–mounted sensor capabilities and upgrades the player can 
mix and match, each with an abstract resource cost. The depicted mission simulation is a first-person, three-dimensional simulation 
of an urban environment.

Rapidly alternate 
between modes
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upgrades (e.g., enhancements to the sensor quality or to 
the player’s weaponry). In the mission simulator, players 
navigated a three-dimensional (3D) real-time environ-
ment and attempted to recover data from a predator or 
reaper drone that went down in a hostile urban environ-
ment (Figure 3). The player has to balance finding the 
objective quickly with safely navigating the terrain to 
avoid or neutralize threats.

The simulated city covered several blocks totaling 
about half a square mile of dense urban terrain. Within the 
city were randomly clustered groups of 20 to 50 civilians 
and 10 to 20 dismounted hostile soldiers on the streets 
and in alleys. Civilians and hostiles varied their behavior 
between standing, walking, investigating noise, and fleeing 
from noise. Once alerted by noise, hostiles became more 
alert, and civilians had a chance to flee or cower. Civilians 
and hostiles were dressed in a similar fashion, and some 
hostiles were dressed identically to civilians. Only hostiles 
were armed. The downed target would be randomly placed 
at ground level somewhere within the map bounds. There 
were between 0 and 2 false positives for the radio-fre-
quency (RF) signal of the target and between 0 and 10 
false positives for infrared (IR) signatures for people. 
Future capability upgrades would differentiate those false 
positives and more accurately classify targets.

HIVELET supports a range of different selection 
mechanisms (drawn from economic game theory) that 
impose different limitations on what capabilities players 
can bring on each mission. These methods provide 
guarantees that rational participants will honestly convey 
their priorities and preferences in the course of optimizing 
their own scores. Different selection mechanisms (such 

FIGURE 2. A player executes a tactical infantry mission in a digital simulation, using in-game models of concept technologies. 
Domain experts who rely on experience and intuition often find it easier to provide feedback on concepts when they can try them out 
in a simple simulation rather than when they are asked to engage in a purely theoretical discussion. Researchers can examine how 
player behavior and preferences change in different environments and for different missions. The environments shown here, left to 
right, are a ruined city, an arctic tundra, a large city, a rocky desert, an island, and a night mission.

FIGURE 3. In this mission simulator, players must navigate a 
hostile urban environment to find a crashed predator or reaper 
drone, recover its data, and extract those data safely. They 
must choose between future capabilities that improve the 
efficiency of the mission and the safety of their squad, and are 
encouraged to experiment with nonstandard tactics enabled by 
those capabilities.
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of research and military backgrounds. From the data 
collected about player choices, performance, and behav-
iors, we can see that the technique is able to bring data 
analytics to bear on answering questions about future 
technology. Figure 6 shows that a few hours of gameplay 
is sufficient for players to start providing coherent data 
to be analyzed: 1 hour of training plus 1 hour of solo play 
was enough for players to stabilize their scores and start 
producing consistent levels of performance. Players’ scores 
were calculated from a combination of completing the 
mission, avoiding enemy fire, and minimizing the number 

as auctions, alternating draft picks, and cake-cutting fair 
division methods) can be useful for collecting different 
types of data. In this application, the players used a 
random market—i.e., before each mission, the players 
are presented with a list of all available capabilities, each 
of which has been assigned a random price, as shown in 
Figure 4. They may select any number of those capabil-
ities, but the prices are deducted from their upcoming 
mission score. In this manner, players are pressured to 
make do with as few upgrades as possible, driving them 
to think critically about the relative values of different 
capabilities. The random market method was used 
because it is quickly understood by novices and suitable 
for a single-player experience.

The capabilities available included RF sensors that 
help locate the objective, IR sensors that help identify 
potential hostiles, image processors that help differen-
tiate civilians from hostiles, various control mechanisms 
for the personal drone, user interface displays available to 
display sensor data, and advanced munitions to give the 
players improved firepower. Players could combine these 
capabilities to support a range of strategies, both conven-
tional and unconventional. For example, players might 
buy a “follow-me” control mechanism, an IR sensor, and 
an augmented-reality helmet display, then perform the 
mission on foot with a visual indicator of nearby potential 
threats (such a strategy is depicted in use in Figure 5). 
Alternatively, they could buy an onboard camera for their 
UAV, robotic underarms, and an onboard RF sensor, then 
attempt to find the objective and complete the mission 
entirely with the drone, without putting their own charac-
ters at risk.

Bringing Quantitative Analysis to Early Concept 
Analysis
Much of the work thus far on HIVELET has been on 
validating its merit rather than on applying its technique 
to particular domains. Data collected from initial exper-
iments indicate that the technique is capable of quickly 
providing useful quantitative data about the value of 
future technologies. In this section, we review some of 
the quantitative analyses that are enabled by this style of 
rapid-play serious game.

We assessed the utility of rapid-play serious games 
by looking at data collected from users who are inter-
acting with the system, including participants with a mix 

FIGURE 4. The technology selection screen is used by players 
to choose what capabilities they will combine for the next 
mission. Each choice is a capability (e.g., IR sensor) or an 
upgrade (e.g., +30 meter range to a sensor). The number to the 
right is an abstract resource cost that forces players to think 
critically about what capabilities are worthwhile.

FIGURE 5. After selecting capabilities, players try them out in 
a real-time simulation of an infantry mission. In the depicted 
scenario, the player is clearing a route of hostile forces and 
buried threats with the help of a UAV-mounted sensor package. 
The player has to select a capability package that will support a 
balance between detection, confirmation, and response.
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of technologies purchased. Players self-reported that 1 to 2 
hours of exposure was sufficient to learn the game, formu-
late a strategy, execute the strategy, and develop opinions 
about the value of the technologies, at least within the 
context of the mission simulated in the game. 

Once we believe that players have had sufficient 
time to develop opinions, we can examine what values 
they expressed. Figure 7 shows the frequency with which 
each of the 29 modeled technologies was selected across 
all participants, and we can see strong trends in player 
preferences within this mission context—finding a 
crashed airborne asset in a hostile urban environment. 
Drone-mounted cameras and long-range drone-
mounted radio-frequency sensors were highly valued 
because they allowed players to quickly and safely scout 
for the lost asset. Interestingly, short-range drone-
mounted RF sensors were considered to be almost 
useless, which helps us to establish the minimum accept-
able requirements for such a device.

Drone-mounted IR sensors of any range were 
selected very rarely by players. This result initially 
surprised the research team as the IR sensors allowed 

Drone camera

IR sensor +60

Follow me mode

Drone robot arms

Extra batteries

Rockets +5

Drone collision 
avoidance

Claymore +5

Drone speakers

Live map

Drone cam 
aug real

DroneArmor

Drone laser 
targeting

Drone repair kit

Grenades +5

Pose detection

IR sensor

Augmented 
reality

RF sensor 1

Fast drone

Rocket obstacle 
avoidance

Quieter drone

RF sensor 2

IR false neg
Longer 

battery life
Pose detection 

enhancement

IR sensor +30

IR false pos

Drone paint job

0 50 100 150

Times chosen—All plays

142

95

77

63

60

55

53

49

48

45

29

29

26

23

22

20

14

14

13

11

11

10

9

5

4

4

3

3

2

FIGURE 7. By logging the technologies that players selected, the prices 
that they were willing to pay, and the combinations that they often brought 
together, we can get a data-driven picture of the relative utility of the 
proposed technologies for the modeled mission. Some items are stand-
alone capabilities while others represent upgrades to other capabilities, 
such as a higher quality (Grenades +5) or a higher range (IR Sensor +30). 
Players had access to a full description of performance characteristics.

–2,000

–1,500

–1,000

–500

0

500

1,000

2,000

2 4 6 8 10 12 14

Pl
ay

er
 s

co
re

Trial number

Mean player score

FIGURE 6. Novice players’ scores improved and converged 
over the course of a 1-hour play session following a 1-hour 
training session. The maximum score is 1000, and the 
minimum is unbounded. Participants completed between 3 
and 15 iterations within the allotted time. Those players  who 
completed 10 or more iterations showed convergence, and 
those that completed fewer appeared to follow that trend. 
Qualitative surveys support the theory that a short session was 
sufficient for participants to formulate an opinion about how 
to incorporate the capabilities into a strategy and how much 
resulting utility those capabilities provided.



 VOLUME 23, NUMBER 1, 2019  n  LINCOLN LABORATORY JOURNAL 77

ROBERT M. SEATER

players to know where hostile forces were in the city. 
This valuation makes more sense when paired with the 
qualitative feedback from players, who described the 
best strategy as running the entire mission with the 
personal drone and avoiding ever entering the city on 
foot. Thus, knowing the location of hostile forces was not 
important to this mission given the available technolo-
gies, and players discovered a strategy not anticipated 
by the research team. One of the strengths of rapid-play 
games is their ability to allow players to experiment with 
new strategies and anticipate how future technology will 
change tactics and doctrine.

Assessing players’ preferences only makes sense 
if one believes that players are making good choices 
for themselves. To allay that concern, we can look for 
correlations in the data between players’ preferences 
and their performance; such a correlation is shown in 
Figure 8. Even though the correlation is weak because 
of a limited data collection, the relationship in the 

data helps to validate two important assumptions: (1) 
in-game scoring motivates players to succeed, and (2) 
players are honestly expressing their opinions in the 
technology selection mechanism. We verified the first 
assumption by demonstrating that players change their 
level of risk aversion when the score penalty for coming 
under enemy fire is adjusted. Even with no real-world 
prize at stake, players who were given higher penal-
ties for being shot within the game showed greater risk 
aversion in their behaviors and technology selections. 
We validated the second assumption by using technology 
selection mechanisms drawn from economic and mathe-
matical game theory. We used methods that are known 
to encourage players to be honest in their assessments 
of value and to not incentivize gaming the system or 
lowballing a bid.

At this point, we have reason to believe that players 
are forming opinions in the time provided, that those 
opinions reflect actual utility within the game, and that 

FIGURE 8. We see a 
correlation between the 
technologies players 
preferred to select and 
the technologies that 
produced better in-game 
performance scores. The 
vertical axis shows the 
average score when the 
capability was selected 
(max 1000). The horizontal 
axis shows the average 
number of times players 
selected the capability 
over all of their plays.
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the game reflects realistic levels of risk aversion. So, we 
can trust the assessments players made of the modeled 
technologies, at least within the bounds of the mission 
they performed, the quality level used to model the 
technologies, and the correct calibration of the scoring 
incentives. As seen earlier, the strategies discovered by 
players sometimes surprise the research team, meaning 
that the method is capable of providing novel insights into 
how the technology will alter current practice.

Assessing the individual value of technologies is one 
thing, but part of the challenge of early-phase RDTE is 
looking at effective technology suites, that is, combina-
tions of technologies or capabilities that will enhance 
performance. So, what we’d really like to discover is which 
technologies are synergistic, providing more value than 
the sum of their parts when deployed in concert. Figure 9 
shows how data collected from rapid-play games might be 
used to answer that question by providing correlations in 
the selection of certain pairs of capabilities. In the illus-
trated example, there is a correlation between the use of 
drone-mounted cameras and drone-mounted manipu-
lative arms, indicating that each of those technologies is 
more valuable when paired with the other. In contrast, 
technologies such as IR and RF sensors show no correla-
tion—the value of each of those sensors is independent of 
whether or not the other is available.

Moving Forward
The broad field of serious games is growing but still early 
in its maturity. By and large, it has been established that 
digital games can be an effective tool for training users 
and changing their behavior, but techniques for doing 
so consistently and reliably are still an ongoing area of 
research [5]. The HIVELET work ongoing at Lincoln 
Laboratory aims to address that gap by providing and 
validating a framework for systematically modeling a 
domain and collecting useful data from it. In general, 
Lincoln Laboratory’s work on serious games focused on 
making games a data-driven field for supporting quanti-
tative analysis, thereby leveraging the Laboratory’s 
data-analysis and domain-analysis strengths. Our view 
tends to be that a game is a sensor for measuring human 
decision making, thereby providing a quantitative way to 
study and learn from human experts. Thinking of a game 
as a sensor helps frame how it can be applied to systemat-
ically evaluating both technology and user performance.

Much of the research on serious games focuses on 
education, training, and medical therapy, and deals with 
the question of transference, that is, whether or not skills 
or behaviors learned in a game will transfer to the real 
world. A smaller portion of the field, including much of 
the research ongoing at Lincoln Laboratory, is examining 
the use of games in broader roles, such as domain analysis, 
technology evaluation, or crowdsourcing. Traditional 
tabletop games and professional wargames do explore all 
of those areas [6], but they are typically not executed in a 
data-driven or iterative fashion. Our continuing research 
effort is to tackle problems traditionally targeted by quali-
tative methods and supplement them with quantitative 
assessment from rapid-play digital games.

The HIVELET work done thus far has used a 
resource-constrained market as the selection mechanism 
that forces players to make cost-benefit assessments of 
proposed capabilities. A market method drives players to 
find a minimalistic solution that will let them succeed at 
the mission. Other selection methods drawn from game 
theory may be effective at collecting different types of data. 
For example, cake-cutting (where one player divides the 
set of capabilities into two groups and the other selects 
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FIGURE 9. In this figure, each point represents a person. The 
x-axis shows how frequently the drone camera was chosen, 
and the y-axis is the frequency of selecting drone robot arms. 
The graph shows a correlation of preference for robot arms and 
preference for cameras, suggesting that the two capabilities 
are synergistic. These results are statistically weaker than the 
individual capability assessments because of the sample size 
used, but they indicate a promising possibility for what we can 
learn from data collected from rapid-play games.
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a preferred group) or drafting (illustrated in Figure 10) 
focuses players on what combinations of technologies are 
most synergistic or most redundant, and a draft (where 
players alternately select the available capabilities) focuses 
players on selecting flexible capabilities and building robust 

strategies that do not rely on any one capability being 
present. For different programmatic objectives, different 
techniques can be swapped into the framework to produce 
different types of data.

The mission simulator described in this article was a 
3D real-time model of tactical situations. The HIVELET 
approach can also be paired with turn-based strategic 
simulators that are used to assess how capabilities might 
impact higher-level decision making. Lincoln Laboratory 
has done prior work on rapid-play games for strategic- 
level decision making, such as the one shown in Figure 11. 
We have not yet combined such games with the HIVELET 
approach; analysis of the viability of such a combination 
is expected in the future.

The infantry example described earlier in this 
article focused on a single-player experience facing an 
automated threat. Multiplayer cooperative and competi-
tive modes need to be explored further to determine if the 
HIVELET technique can also provide insight into how 
technology changes team dynamics and adversarial situa-
tions. Multiplayer implementation of HIVELET is not a 
technically challenging extension, but it complicates the 

FIGURE 10. An alternate selection method drawn from game 
theory is a draft. There is no cost to selecting a technology, but 
each time the player takes a technology, the red force (either 
another human playing the adversary or a computer simulating 
an adversary) excludes three items from the list, forcing the 
player to prioritize selections and avoid brittle combinations.

FIGURE 11. This dashboard style interface is for a rapid-play game that focuses on strategic-level decision making. In this game, 
players are managing a forward-operating supply base that has potentially come under biological attack. Players use proposed future 
capabilities to help determine what precautions are appropriate and how much to jeopardize the mission to protect base personnel.
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collection of data and thus may require many more plays 
before statistically meaningful conclusions can be reached. 
Research into the proper design of both the games and 
experiments will be important to broadening the work in 
that direction. Many emerging technologies focus on how 
multiple users interact, so providing quantitative support 
for the prioritization of technology that improves team 
coordination and effectiveness will be a growing field of 
interest that HIVELET aims to strengthen [7].

The most important piece of future work will be the 
application of the HIVELET technique to additional 
problem domains to refine and further validate the 
technique so that it can be integrated more smoothly into 
the RDTE process.
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For decades, governments, militaries, 
researchers, and other organizations have 
focused significant resources toward the 
collection and analysis of information 

about illicit human social networks, such as gangs, 
cartels, traffickers, and terrorists. These networks, 
often referred to as dark networks, are difficult to study 
because their clandestine nature limits their observability 
to various data collection means and often precludes a 
full accounting of the network membership, structure, 
function, and dynamics [1–3]. Historically, the social 
sciences have provided the foundation for the study of 
dark networks, largely through the time- and human-in-
tensive manual collection and curation of qualitative 
network data. However, this approach is not efficient, 
does not scale to large organizational studies, and gener-
ally only represents static points in time [4–6]. 

Over the past two decades as asymmetric conflicts 
and complex humanitarian crises have become more 
prevalent across the world, increased emphasis has been 
aimed at characterizing dark networks that operate in 
urban settings to perpetrate acts of violence, such as 
vehicular-borne explosive attacks, i.e., car bombings. 
The use of vehicles to facilitate explosive-laden attacks 
goes back to the 1920s and has been responsible for 
asymmetric attacks ranging from the Provisional Irish 
Republican Army’s bombings during the Troubles in 
Northern Ireland in the 1960s to widespread explosive 
events by terrorist organizations during the conflicts in 
Iraq and Afghanistan in the last 15 years [7]. When a car 
bombing occurs, it can be extremely challenging for law 
enforcement to piece together information to determine 

Illicit social networks, such as trafficking or 
terrorist organizations, are difficult to discover 
because their clandestine nature limits their 
observability to data collection. Technological 
advances in remote sensing and analytical 
software can reduce the time- and human-
intensive nature of network data curation and 
analysis, if effective human-system integration 
is achieved. To better understand this 
integration, researchers at Lincoln Laboratory 
created a succession of serious games to 
investigate methodologies for developing 
user-centered tools and quantitative human-
system instrumentation, with the goal of 
improving network discovery. These games 
were employed in a multiyear study of team 
analytical performance and collaborative 
decision making, encompassing more than 80 
teams and upwards of 400 unique players.

»
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which vehicles, facilities, and people were involved in the 
attack (Figure 1). This challenge is compounded by urban 
settings that allow perpetrators to flee and meld back into 
the background populous. In the last decade, advances 
in airborne remote sensing and terrestrial surveillance 
have made it possible for military and police agencies to 
observe not only the execution of these types of attacks on 
urban areas but often the events and coordination directly 
before and after. 

However, the ability to triage surveillance video and 
imagery along with other reporting data—such as news, 
law enforcement reports, or social media— immediately 
after an attack is laborious and often requires teams 
of individuals to sift through large amounts of data to 
discover pieces of relevant evidentiary information [8]. 
Additionally, the discovered information must then be 
deconflicted, analyzed, validated, and synthesized to make 
timely risk-informed decisions about potential follow-on 
courses of action. It is unclear how and in what ways 
these teams should organize and operate, and what roles 
analytic and decision support technology should play in 
making these operations more efficient and effective. 

Game Design 
In 2009, we and other researchers at MIT Lincoln 
Laboratory developed a serious game to address some of 
the challenges regarding clandestine network discovery. 
We created a platform to better understand how a team of 
players uses multimodal geospatial data to discover infor-
mation about a dark network and synthesizes those data 
to make decisions [9–11]. 

Serious Games for Research and Development 
Since the 1950s, Lincoln Laboratory has performed 
applied research and development for national security 
missions on a foundation of rigorous systems analysis, 
full system prototyping, and development of long-term 
advanced technologies. As the discrete systems of earlier 
decades have been replaced with complex interconnected 
systems of systems, traditional modeling and simula-
tion and systems analysis can be insufficient because 
these methods often fail to properly account for human 
dynamics. To overcome these limitations, researchers at 
the Laboratory developed a suite of methodologies and 
technologies to design serious games that can be used 
as tools to model, experiment with, and assess complex 

human-system dynamics that approximate those of 
realistic sociotechnical enterprises. In serious games, 
gameplay is used to achieve an explicit purpose other than 
amusement. We have used such games across a spectrum 
of the research and development process, including 
experiential learning, concept exploration, requirements 
analysis, tool development and evaluation, human perfor-
mance assessment, and decision analysis. 

Research Objectives 
We identified four research objectives for this serious 
gaming work: 
• Games as analysis tools. We wanted to demonstrate the 

value of using serious gameplay as a systems analysis 
tool for human-intensive workflows and applications. 

• System requirements derived from decisions. In remote 
sensing research and development, the process often 

FIGURE 1. In this example of a small vehicular-borne explosives 
graph network, the circles (nodes) represent people, locations, 
and events, and the lines (edges) that connect them correspond 
to the nature of the association between the nodes. Arrows on 
the lines represent the directionality of the relationship.
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starts with an understanding of the phenomenology of 
the sensing environment and observables of interest. 
This phase leads to the development of sensor hardware 
that is then integrated and fielded on the premise that 
the sensor capabilities are inherently useful; however, 
many sensor systems have not been jointly developed 
alongside the decision processes their data are meant 
to inform. In this work, we wanted to essentially invert 
this development and acquisition process by starting 
with an understanding of what information is needed 
to make decisions and work backward to build an 
end-to-end workflow that results in actionable infor-
mation. Then, we could use the gaming process and 
simulation capabilities to determine what the technical 
and performance requirements should be for both the 
sensors and their data analysis systems. 

• Effective game development scope. We wanted to learn 
how to build the right level of realism and fidelity into 
the game to create enough immersion and engagement 
to force players into an effective decision process, while 
limiting the scope and cost of development. 

• Rapid tool and workflow utility assessment. Through the 
use of robust human-system instrumentation to collect 
quantitative human performance data, we wanted to 
develop an end-to-end process to assess the value and 
utility of tools early in their development cycle. 

Scenario Development 
During the design phase of the game, we spent a lot of 
effort on generating the requirements for the story-
board (hereafter referred to as the scenario) that drives 
the game data generation and game mechanics toward 
achieving the research goals. The most important require-
ment of the scenario design involved four elements of the 
geographic location of the game: 
1. The game should be based in an area of future strategic 

importance to the U.S. government. At the time of 
design, many activities within the Middle East were 
within the purview of the U.S. Central Command, 
and we decided to focus instead on Africa because 
the U.S. Africa Command had just been established 
in October 2008. 

2. The location should be in an area within Africa that is 
unfamiliar to most players, including potential players 
with a good understanding of global geopolitics or with 
prior military experience. This condition minimizes 

the effect of experiential knowledge and preconcep-
tions about the scenario.

3. The area should have a history of instability and 
violence to build the scenario around, as well as a 
complex environment of actors composed of the indig-
enous population, foreign fighters from neighboring 
areas, an external coalition military presence, and 
multiple nongovernmental organizations (NGOs).

4. The scenario should be focused on a city with a 
compact, dense urban core that quickly fans out into 
a suburban and then rural expanse. This constraint 
limits the scale of the geographic area of regard for 
the game participants and aligns with the field of 
views of the sensor concepts to be used in the data 
simulation. 

On the basis of these criteria, we chose a moder-
ately large city in a landlocked country in Central Africa 
(hereafter referred to as the city). When this scenario was 
developed in 2009, the city had a recent history of insta-
bility. It had been briefly seized by insurgents in 2006, 
and in 2007 local rebels had declared war on foreigners 
and refugees from the surrounding region, requiring the 
deployment of thousands of international peacekeeping 
troops in 2008.

In the city, several prominent groups formed what 
we called the red, blue, gray, and white actors; this color 
naming convention is derived from military wargaming 
nomenclature. The red actors are those operating to incite 
violence in the city, such as the local rebel group, who is 
seen as anti-government and anti-foreigner and who has 
staged many recent attacks through car bombings and 
kidnappings. The blue actors work to counter red groups 
and include an international coalition of peacekeeping 
forces headquartered in the city and the game partici-
pants themselves. The gray actors are those who have an 
unclear affiliation with a side, such as the national army, 
who is undisciplined and believed to be heavily infiltrated 
by rebel groups. Lastly, the white actors consist of various 
NGOs and news media in the region.

From research into the city’s historical events 
and groups, we constructed a timeline that laid out 
a sequence of activities that would take place in the 
scenario. Next, data from a geographic information 
system were analyzed to determine both public locations, 
such as the city’s airport or the local army garrison, and 
private locations, such as previous weapons caches used 
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by the local rebel group and places that could be sites 
of interest within the scenario. Care was taken to make 
sure the locations chosen for these red actor sites had no 
known associations with public locations in any of the 
information sources examined.

With the locations of interest chosen, we scripted 
a series of activities that formed the scaffolding of the 
scenario, which broke down into three waves of activi-
ties. The first wave started with a truck bombing followed 
by a kidnapping at the local university. Next, the kidnap-
ping prompted a neighborhood search by the national 
army and the discovery of a red safe house, necessitating 
movements of multiple red actors to other locations. In 
the final wave, certain groups staged a riot at the main city 
market to divert attention away from a coordinated attack 
on the airport that included the bombing of the runway 
and a nearby hangar. Next, we designed an intricate series 
of timed vehicle journeys, or tracks, between all of these 
event locations and other locations, such as staging areas 
or headquarter compounds; these tracks formed the basis 
of the networks of vehicles and facilities associated with 
the red actors. To add complexity to the scenario we gave 
many of these vehicle journeys intermediary stops and 

starts or circuitous routes between clandestine facilities, 
as these diversions are typical operational security princi-
ples. The final scenario consisted of nine hours of activity 
and comprised 37 networked sites, 27 of which were 
associated with the red network. Seven of the sites were 
high-value red facilities, eight sites were associated with 
clandestine red activities, seven were associated with overt 
red activities, and five were innocuous red vehicle stops. A 
graphical depiction of the network of these events, sites, 
and intermediary stops, which became the basis of the 
scenario truth, is shown in Figure 2. For simplicity, the 
figure does not show the times associated with each of the 
movement starts and stops. Hereafter, the terms scenario 
vehicles or scenario sites refer to those associated with 
the red network and not those of the background actors 
or their activity. 

Remote Sensing Concepts 
Starting in the mid-2000s, large-format airborne imaging 
systems were being developed and fielded for military 
and other applications. These systems used multiple 
large-format optical focal planes to capture oblique 
panchromatic imagery of the ground from an airborne 

FIGURE 2. The graph of the scenario shows the network of facilities and the vehicle journeys, or tracks, that visit them. The circles 
(nodes) represent locations visited by a vehicle, such as a safe house or weapons cache, and the squares represent an intermediate 
stop of a vehicle. The lines (edges) that connect the circles and squares correspond to discrete vehicle tracks between two 
locations, and arrows represent the directionality of the tracks moving between the sites.
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imagery, and a series of alert messages to cue teams to 
activities within the data. 

The first step in the data generation process was to 
obtain a multispectral satellite image of the city from a 
commercial vendor to use as the basis for all other data 
products. The image was used to assign physical locations 
to the sites and events from the scenario, in congruence 
with the appearance of those locations within the imagery; 
for example, safe houses were chosen at locations of 
remote walled compounds. Next, we used geographic 
information system tools to develop a road network by 
tracing out all the primary, secondary, and tertiary roads. 

With these data, we generated a vehicle track dataset 
by using a commercial vehicle-motion modeling and 
simulation tool that uses a road network, waypoints, and 
vehicle-motion models to generate track data through 
time. The scenario timeline and geographic locations were 
used to construct waypoints for the vehicles associated 
with the scenario activities, and the waypoints evolved 
through multiple runs of the modeling tool to match the 
scenario to the physics of the vehicle-motion simulator. 

Next, background vehicle tracks representing the gray 
and white actors were embedded with the scenario tracks 
to create a realistic and more complex traffic environ-
ment. To create the background activities, we developed 
a statistical model to estimate a rough distribution of 
residences and workplaces across the city. Vehicles were 

platform in a circular orbit. Through sophisticated 
orthorectification algorithms and supercomputer-class 
processing hardware, the systems stitched all the raw data 
into large mosaiced images that appear as if they were 
collected from directly overhead. These early systems, 
which could produce imagery at approximately 0.5 meters 
per pixel at about two frames per second over small 
city-size fields of view, were termed wide-area motion 
imagery (WAMI) sensors [12]. While WAMI sensors 
were an amazing achievement in optical engineering and 
image processing, it was unclear at the time how best 
to make use of these nascent capabilities and the large 
volumes of data they produced. 

When designing this game, we wanted to explic-
itly explore the applications of WAMI to the problems 
of network discovery and so made motion imagery the 
primary mechanism by which data about the scenario 
network were gathered and provided to players. We 
chose a sensing concept in which WAMI is collected 
from a hypothetical sensor over an area of interest that 
is 5 kilometers by 5 kilometers, which would have the 
majority of the roughly 8-kilometer-by-8-kilometer urban 
core of the city continuously within the field of view. A 
graphical depiction of this area is shown in Figure 3. 

Several hypothetical collection concepts of opera-
tions were explored, including the real-time downlink of 
small chips of imagery that are a subset of the full sensor 
field of view and the traditional paradigm of offline data 
processing and the use of WAMI in a forensic capacity 
only. We also developed a companion sensing concept for 
an airborne ground moving target indicator radar that 
would provide coverage of up to a 20-kilometer-by-20- 
kilometer field of view in the suburban and rural areas 
surrounding the city. However, in early testing of this 
concept, users struggled to interpret and make sense of 
this nonliteral data modality, and it was later removed 
from the game to focus on the higher priority task of 
determining the best utility for WAMI. 

Game Implementation 

Data Generation 
With the scenario and remote sensing concepts developed, 
we produced datasets that would become the primary 
sources of information used during gameplay, specifically 
a set of vehicle tracks, a multiresolution corpus of motion 

FIGURE 3. The illustration shows the sensing concept used 
in the game. The projected base image shows the urban core 
of the city and the superimposed blue box represents the 
instantaneous field of view of the wide-area motion imaging 
sensor on board the aircraft. The aircraft orbits around the 
perimeter of the city while the urban core remains persistently 
within the field of view. 
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modeled as starting from randomly selected residential 
locations at a distributed set of times in the morning of the 
scenario with a destination randomly selected from the 
workplace distribution. A series of pauses and additional 
waypoints were then randomly selected for each vehicle 
to complete its waypoint list for the game duration. If a 
vehicle completed its waypoint list before the end of the 
scenario, it repeated the list until the scenario was over. 
This list of tracks and waypoints was then run through 
the same vehicle-motion modeling tool as used for the 
scenario tracks. To avoid confusing the game players and 
incurring possible false team decisions, the start, stop, and 
waypoint locations for background vehicles were filtered 
to reject areas that were at or near any of the static red 
scenario locations. Lastly, the track data were run through 
a process to apply noise to the true vehicle dynamics and 
to break tracks into multiple segments, thus mimicking 
the problems associated with optical multitarget tracking 
systems of the era.

Next, to generate the motion imagery dataset, we 
leveraged a technique from early video game graphics 
by which two-dimensional bitmap images, or sprites, are 
embedded into a larger image and then rendered as a 
single scene. To produce the base image, a graphic artist 
modified the original satellite image of the city to erase any 
vehicles visible on roadways and adjacent to sites associ-
ated with vehicle tracks in the scenario. Additionally, any 
people visible were also removed because the sensing 
concept used in the game instructs users that people are 
not visible at the resolution used. Next, exemplar vehicles, 
such as cars and trucks, were extracted from the unmod-
ified satellite image and turned into sprites. To produce 
the simulated vehicle movements, the vehicle track 
positions at each time step in the scenario were turned 
into pixel locations in the modified base image, and the 
vehicle sprites were rotated to the direction of travel and 
inserted onto the base image. The resulting new image 
was rendered with vehicles embedded. This process was 
repeated for each time step of the scenario to generate a 
full-scale motion imagery dataset. 

Lastly, we developed a dataset of text reports, or 
messages, to help give context to activities in the motion 
imagery data and to help keep the teams focused on the 
game objectives since teams will frequently get stuck on red 
herrings with the sensor data alone. In conjunction with the 
scenario creation, messages were written to tip the players 

to events of interest in the imagery, such as reporting 
of overt attacks. Each message contained information 
about the originating source—for example, regional news 
organizations, local law enforcement, NGOs, and coalition 
military forces—and about the time and location, with 
varying degrees of precision, that the text referenced. Some 
events generated multiple messages from multiple sources, 
requiring players to assess each message’s relevance and 
veracity with respect to the objectives of the game.

Game Architecture 
Because we wanted to employ a large degree of video data 
manipulation and collaborative tools and interfaces, we 
were unable to find an existing game development frame-
work that met all the requirements, so we developed our 
own purpose-built game architecture. The approach was 
to push as much of the processing and display tasks to 
server-side components so that the game client could be 
made lightweight and responsive to players. Additionally, 
we wanted all game state information stored on the 
server so that if players accidentally closed their game 
client, it could restart right where players left off with no 
information loss (this feature is especially important in 
teamwork settings). 

A game client named Bluestreak was developed 
in Java and built around NASA’s WorldWind, an 
open-source software development kit for visualizing 
and hosting geospatial data in a 3D globe-like interface 
[13]. A description of the user-interface features and a 
screenshot are discussed in Figure 4. In addition to the 
individual client features described in the figure caption, 
another major capability was the ability to collaborate 
across Bluestreak clients; for example, when a user made a 
placemark, i.e., a geospatial bookmark, on one client, that 
object showed up on all other clients, greatly improving 
shared awareness that underpins effective collaboration. 
Also included was a set of interfaces that the teams could 
use to codify their final decisions to enable automated 
scoring of their answers. All user actions executed in the 
tool, such as user-interface state changes, and all polling 
events, such as the geospatial and temporal extents of the 
current data displayed in the map, were recorded with 
specialized software instrumentation. 

The game server consisted of three major compo-
nents: a specialized imagery and geospatial data server, 
a relational database, and a web service communication 
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channel. The generated WAMI data was passed to 
Bluestreak through a custom-built JPEG2000 image 
server, designed to scale to multiple streams of imagery 
data sent to tens of clients. Hereafter, the term video will 
be used to refer to the viewing of these streams of motion 
imagery. The base satellite imagery and other geospatial 
data were served via an open-source web mapping system 
called MapServer [14] and translated into a pyramid of 
multiscale image tiles that can be efficiently passed to all 
the game clients for display. All game geospatial, message, 
and instrumentation data were read from or recorded to 
a PostgreSQL relational database, with PostGIS spatial 
database extensions. Lastly, publish and subscribe web 
service interfaces were used to transfer the data between 
the game server and game clients. 

Human-System Instrumentation 
From network operations control centers to expedi-
tionary military detachments, teams of humans 
interoperate with complicated systems to create complex 
sociotechnical enterprises. Within these enterprises, 
the most critical component of overall performance 
is that of the humans, yet their contribution is often 
the least understood. Traditional measurement 
methodologies, such as human observation, are often 
subjective and anecdotal and can suffer from biases and 

FIGURE 4. In the Bluestreak game client, the center 
map display fills the majority of the user interface 
and is flanked by configurable panels on the left and 
a custom timeline control on the bottom. The user-
interface panels on the left are user configurable to 
enable viewing of additional layers of data on the 
map display, including data provided as part of the 
game and data generated by players. Provided data 
include geographic information system data, such 
as named areas and locations of interest relevant 
to the scenario, or text displays that show reports 
received as part of the scenario. User data can be 
geospatial polylines of vehicle movements, called 
tracks; geospatial bookmarks made by users, called 
placemarks; and other information. The timeline 
control allows users to manipulate the rendering of 
imagery, vehicle tracks, and other data by using a 
single temporal extent or selectable time range. This 
function, which gives users the ability to scrub forward 
and backward in time and see patterns in the data 
as they render on the screen, is especially useful for 
analyzing the movement behaviors of vehicles.

differences in interpretation. Additionally, existing tools 
to measure human behavior can be qualitative and are 
insufficient in capturing intricate dynamics within an 
individual (intra-individual) and between individuals 
(inter-individual). Lastly, the time- and human-intensive 
collection of these data does not scale to large organi-
zational studies. These limitations hinder the ability of 
researchers to draw objective conclusions and under-
stand the parameters influencing team success. 

Over several years, we have developed a data-driven 
research methodology and technical framework, Humatics, 
to address the aforementioned challenges by quantitatively 
measuring human behavior, rigorously assessing human 
analytical and cognitive performance, and providing 
data-driven ways to improve the effectiveness of individ-
uals and teams. Humatics incorporates three major areas 
of research: system-level, physiological, and cognitive 
instrumentation; assessment methodology and metrics 
development; and performance feedback and behavioral 
recommendation. Figure 5 depicts our instantiation of this 
approach and its application to the study of teams’ abilities 
to effectively discover data, make sense of those data, and 
make decisions in the context of a serious game. 

The development of an instrumentation and data 
collection strategy for a given human-system research 
effort requires a careful consideration of the specific 
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learning objective for the process under study and the 
identification of observables to be measured to enable 
insight. A measurement strategy can then be based on 
which method and phenomenology are best suited to 
directly or indirectly measure those observables. For our 
research, specific instrumentation modalities were chosen 
to augment qualitative human observations with nearly 
continuous collection to enable the analysis of dynamic 
low-level behavioral signals. 

The first element of the framework in Figure 5 is the 
instrumented analyst workstation, where both system-level 
and physiological instrumentation are used to characterize 
human-system interactions. System-level instrumenta-
tion is accomplished through the insertion or enabling of 
software code that logs graphical user interface interac-
tion events, queries to and transactions with databases, 
the data visible to the user, and more. To add context to 
the data, screen recordings are continuously captured and 
a research-grade eye tracker detects the user’s location of 
gaze on the screen. This physiological information is used 
for cross-referencing the system-level data. 

The next element is cognitive instrumentation, which 
is used to measure behaviors associated with the cognitive 
processing of information. To quantify the comprehension 
and situational understanding of teams during scenario- 

based training or serious games, knowledge elicitation 
techniques are employed [15, 16]. Measuring a player’s or 
team’s understanding requires explicit elicitation of infor-
mation from individuals through a series of free-response 
and targeted multiple-choice or Likert-scale questions 
that are focused on the concepts of comprehension and 
inference development. Comprehension is a measure-
ment of the facts presented in the data (e.g., who, what, 
when, and where), such as the location and time of an 
attack, and an inference is a measure of a player’s inter-
pretation of the data (e.g., how and why), such as who 
a player believes facilitated the attack and the attacker’s 
possible motive. In addition to its use for gaze tracking 
on the screen, the eye tracker is used to perform pupil-
lometry (precise measurement of the pupil’s diameter) 
to noninvasively estimate human cognitive load [17], 
another facet of cognitive instrumentation. 

The last framework instrumentation modality 
uses wearable sensors called sociometric badges [18] 
to record nonlinguistic metadata of speech behaviors, 
body movement, and other data. Originally developed by 
the MIT Media Laboratory, the badges have often been 
employed in longitudinal studies of the communication 
patterns of large organizations. We used badges with 
modified firmware and custom post-processing software 

FIGURE 5. This diagram depicts the Humatics framework—a platform to measure and make sense of human analytical performance 
data. System-level, physiological, and cognitive sensors and instrumentation are used to produce rich quantitative data of 
human-human and human-system interactions. Instrumentation data are jointly processed with advanced metrics and turned into 
measures of human performance that are visualized in custom displays to provide performance feedback and pinpoint areas for 
behavioral recommendation.
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to increase granularity for small group dynamics within 
hierarchical teams. 

Our collected instrumentation data were processed 
with specialized metrics and used for real-time diagnostic 
displays or post-experiment assessment. Real-time 
displays allow for immediate team evaluation to enable 
behavioral redirection, while offline post-processing 
supports in-depth analysis and process improvement. 
Our team assessments are an example of the latter. 

Mechanics and Gameplay 

White Team 
The role of the white team (not to be confused with the 
white scenario actors) is to ensure the smooth, effective 
operation of the game. This oversight includes monitoring 
the physical setup and tear down of the gaming facilities, 
preparing and presenting all materials, conducting brief-
ings and training, and generally facilitating the overall 
event. As facilitators, the white team answered questions 
about tool use and reminded teams about overall objec-
tives, but they did not give away information about the 
scenario or provide feedback during gameplay about the 
relative effectiveness of different strategies. The white 
team provided real-time assessment at the end of the 
game and briefings of the results to the different team 
members. White team members included many of the 
original game developers and other staff who have exten-
sive experience with the game. 

Game Event Timeline 
After the initial test versions of the game were employed, 
we honed in on a game event process that would allow for 
four to 12 competitive teams per day to play through the 
exercise, depending on available hardware infrastructure 
and white team members, with a game event lasting one 
or two days. More than 80 teams and 400 participants 
have played this game over the life cycle of this research 
effort, and we have analyzed in detail a large subset of 
these teams. 

We began the game event process by obtaining 
informed consent from the participants in accordance 
with approved human-subject research protocols. During 
different phases of this research, we recruited subjects 
from a wide population that included college students, 
scientists, engineers, professional military analysts, 

military instructors, and senior government officials. 
Next, the participants received introductory briefings that 
highlighted the research purpose and goals, and provided 
background knowledge, such as a primer on social network 
analysis. The network analysis primer is critical to success 
in the exercise because it introduces concepts about how 
people and facilities are associated in a network, what 
differences exist between static and transient location types, 
how leadership is often isolated within dark networks, and 
how to build and interpret graph network diagrams. After 
the background presentations, participants received a live 
plenary tool demonstration, followed by a mission briefing 
that oriented them to the scenario and tasks they would 
be required to perform. This presentation was designed 
with the look and feel of a military-style mission briefing, 
with fragmentary operational orders defining the rules of 
engagement, an overview of the city and its destabilization, 
an overview of the remote sensing and other data capabil-
ities available to teams, and a review of possible end-state 
courses of action and recommended decision criteria. 

Next, individuals were assigned to teams, known 
as the blue teams, through a process that used limited 
demographic data collected during orientation to attempt 
to balance the team members’ backgrounds, skill sets, 
seniority, and organizational affiliations. Teams then 
moved to separate rooms where they could play the 
game and deliberate in private, and where individual-
ized training on the game tools would take place. The 
white team used training checklists to ensure that each 
participant had a minimum proficiency with the game 
software. Next, a team strategy session took place, and 
teams prepared for a practice scenario. The purpose of 
the practice scenario was three-fold: to try out the plans 
of action that teams developed in the strategy session, 
to identify any areas of training that needed reviewing, 
and to be familiarized with each facet of the gameplay. 
A second team strategy session allowed teams to discuss 
what went well and what went wrong during practice, and 
regroup before the start of the main exercise. 

During a short break after the main exercise, the blue 
teams moved back to the plenary room while the white 
team scored and analyzed the teams’ performance. In 
a following “hotwash,” a representative from each team 
explained to all participants what that person’s team 
believed happened in the scenario and what approach 
that team took. Then, the white team gave the scenario 
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reveal, which described step by step all the activities 
within the scenario and the information that teams 
should have found and the decisions that they should have 
made. Finally, the scoring and performance assessment 
results were presented and winners received an inexpen-
sive trophy. In practice, we found that teams compete 
fiercely for the chance to win even an inexpensive trophy, 
and organizational affiliation and pride also significantly 
affect team competitiveness and engagement. 

The usual game block lasted four hours, with the main 
exercise taking up about one and a half hours; generally, 
two game blocks were performed per day with as many as 
six concurrent teams per block. Some of the earliest games 
required eight hours of gameplay per team, but we later 
switched to a shorter, simplified game format to focus on 
specific teamwork and decision-making facets of the game 
and to yield more games played per game event.

Blue Team Strategy 
One of the challenges of collaborative games is that 
team members often do not know one another or have 
not worked together previously. Because this arrange-
ment can lead to ineffective team dynamics, one of the 
purposes of the two team strategy sessions is to force a 
dialog between the individual players to get them to think 
about team structure and roles. During these sessions, we 
instructed the teams to consider these five major facets: 
• Approach. Teams should think about the scenario 

briefing and decide on an initial concept of opera-
tions, which they can later refine in the second strategy 
session once they’ve tried it in practice. Members 
should also discuss their assumptions about the 
scenario, their risk tolerance, and other factors so that 
there is less potential for conflicting ideals later in the 
game. They should also decide if they want to use some 
of the automated tools provided in the game software 
or stick with a more manual tradecraft. 

• Resource allocation. Teams are provided one less game 
workstation than the number of team members, so 
they need to decide how to allocate their human and 
compute resources. In early testing, we found that if 
we gave every player a workstation, the members failed 
to organize into a team, and by having one less game 
client than players, hierarchies formed with one player 
taking a leadership and integration role and the rest 
taking on the discovery tasks. Teams also have the 

option of not using all of the workstations, and some 
opt for a pair programming model with two players 
collaborating around a single workstation. 

• Team roles. Teams need to decide who plays what 
roles, generally leader and worker roles. Leaders 
solicit workers for the latest information to synthe-
size into higher-level meaning and also often serve a 
scribe function by categorizing this information on the 
provided whiteboard or other means. The worker roles 
break out into a multitude of possible tasks, such as 
tracking vehicles from source to destination, watching 
for new messages to alert the team, and building the 
network, either on a whiteboard or in the graph tool 
in the game client. Multiple players may take on any 
of the leadership or worker positions, and it’s up to the 
team to self-organize their gameplay. 

• Collaboration. Teams must ask how they will function 
and collaborate on the tasks that need to be performed. 
For example, who will assign tasks and track their 
status, and who will monitor work that has been 
done? Because the game client provides a number of 
ways to annotate with text and color the information 
discovered and input it into the software, teams should 
discuss naming and color conventions, such as putting 
player initials on information or using the color of 
annotation to label potential decision criteria. 

• Decision making. Teams must decide how to select a 
course of action related to the sites they have discovered 
in the game. They should discuss if they want to make 
decisions as they discover new information or wait until 
the end to take stock of all available information. They 
should also determine how aggressively or conservatively 
to play, judging how their decisions and the ensuing risks 
and rewards impact scoring and game performance. 

Gameplay 
After all the training, practice, and strategy sessions, 
gameplay on the main scenario began with two to six 
concurrent competitive teams. Teams contained between 
three and eight players, with the standard configuration 
being five—four players on computers and one team leader. 
The task given to the teams during the mission briefing 
was to uncover as many of the sites (locations) used by the 
red network to perpetrate the attacks in the scenario, and 
then to make recommendations on a course of action for 
each discovered location by the end of gameplay. Within 
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the game were two main phases: the discovery phase, in 
which players analyzed the video, track, and message data 
to discover red activities and their associated locations, 
and the decision phase, in which players synthesized their 
collected information and adjudicated their uncertainty 
and risk to choose courses of action. How teams moved 
between the two phases was one of preference: some 

teams spent the first 80 percent of gameplay discovering 
information and the last 20 percent making decisions, 
and other teams assigned potential courses of actions to 
sites as they discovered them and continually adjudicated 
those decisions throughout gameplay. A visual depiction 
of the game workflow, broken down by the two phases, is 
shown in Figure 6. 
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FIGURE 6. A canonical workflow diagram of gameplay provides a visual of which steps in the workflow map to specific measures of 
human performance in the game. The top half of the diagram shows the discovery phase of the game, during which players triage 
and make sense of game data to discover the network of actors and facilities they are trying to uncover. The lower half of diagram 
represents the decision phase of the game, during which players adjudicate the information they discovered and make risk-informed 
decisions regarding which locations they believe are part of the scenario network and how strong a course of action should be taken 
against those locations. Each of the three different types (colors) of game performance was the focus of a large human-subject 
experiment and assessment.
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As the scenario began, teams were alerted in 
real-time to events unfolding in the scenario via messages 
that arrived and were cued to the place and time in the 
video associated with the messages. Players observed 
the events in the video and adjudicated the relevance 
and veracity of the associated messages since messages 
can be factual or ambiguous depending on the message 
source. If the location of the activity in the message was 
of interest, players made a placemark there and then 
queried for tracks that either originated or arrived from 
that location. They then determined if any of the tracks 
were associated with the event through spatio-temporal 
analysis of the video. Players followed tracks associated 
with the previous red activity to their source or destina-
tion and entered placemarks at those locations to indicate 
potential association with red activity. As the scenario 
evolved, more messages came in, cueing players to other 
locations of both relevant and nonrelevant activities. 
Through the association of video vehicle tracks with their 
user placemarks, players built out the network of red sites. 
Teams could catalog their understanding of the network 
as it evolved by using tools within Bluestreak or on the 
provided whiteboards and large-format notepads. 

As the teams entered the final decision phase, they 
went through each of the placemarks believed to be 
associated with the red network, discussed the evidence 
they had accrued about that site and the courses of action 
they should take, and then chose from three potential 
actions in the placemark menu: 
• Assault. Sites that should be assaulted are those that 

have a static association with the red network and that, 
if law enforcement or military were sent to interdict 
these facilities, would certainly reveal red personnel or 
material. Examples of sites to assault are safe houses, 
weapons caches, and the red headquarters. 

• Surveil. Sites for which the team cannot determine if 
they should be assaulted or regarded as transient sites 
associated with temporary red activity, and should be 
nominated for continued surveillance because they 
may be associated with red activities in the future. 
Examples of surveil sites are attack staging areas, the 
garrison of the local army, and long-duration stops by 
red vehicles. 

• No action. No action should be chosen for all place-
marks that are not associated with the red network and 
are innocuous. 

This process continued until all placemarks were 
adjudicated and courses of action chosen, with no action 
being the default action. As teams approached the expira-
tion of game time, team dynamics became very animated, 
often with heated discussion and a frenetic pace of locking 
in and checking all course-of-action choices. An example 
of gameplay can be seen in Figure 7. 

Team Scoring and Evaluation 
Depending on the game event, teams are evaluated 
across multiple performance factors, including decision 
making, information discovery, and verbal communi-
cation, with team decision performance as the primary 
mechanism for declaring a winner. After the teams 

FIGURE 7. Participants engaged in an exercise with the Naval Special Warfare Command. The analysis discovery phase of the 
exercise is picured in (a), and (b) shows the later decision-making phase.

(a) (b)Photo: U.S. Navy Photo: U.S. Navy
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finished the game and their decisions were stored in 
Bluestreak, a server-side scoring script was run to take 
into account several factors, such as geospatial close-
ness, to determine which teams correctly identified 
the location and value of each of the red sites in the 
scenario. A scoring matrix was used to award points to 
each correctly identified site and points were subtracted 
for incorrect decisions, as detailed in Figure 8. 

For red facilities, the correct decision in the game was 
to assault, and it earned the most points. If the facility 
was surveilled instead, then half the point value was 
awarded because some information was gained, and if no 
action was chosen, then points were deducted because the 
opportunity for some discovery was lost. For red activ-
ities, the correct action was to surveil them and points 
were awarded accordingly. If a red activity was assaulted, 
points were deducted because this action added risk to 
the interdicting force and lost good will with the local 
population when an innocuous location was assaulted. If 
no action was chosen for red activities, then points were 
neither awarded nor deducted. For gray sites, or those 
involving the background populous, points were deducted 

for an incorrect assault and for a surveil because these 
actions lost good will and wasted surveillance resources. 
The correct action for all gray sites was no action. 

The weights of the points between the levels of the 
courses of action and their correct and incorrect value 
were constructed to match the concept of the scenario 
while also prohibiting teams from trying to “game” the 
game. Point values for the red facilities and red activities 
were totaled into a single score for each team, and the 
team with the highest score of the game event won. Often, 
scores could be negative if teams were aggressive in their 
approach, and if a tie occurred, additional performance 
measures were used to break the tie. 

Experimentation Phase 1: User-Centered Tool 
Development 
Considering the work involved in the development of the 
sensor and traffic simulation models and the complex 
scenario, we knew that completing this game would be 
challenging and that some tooling and automation would 
be required, especially with respect to information organi-
zation and knowledge management, for the game to be 
effective. However, rather than building those capabil-
ities into the initial iteration of the game software, we 
wanted to use this opportunity to learn new methods for 
designing effective human-system tools. 

In general, users are ineffectual at explaining to 
others what is hard for them and what types of capabil-
ities would improve their work process. Frameworks 
like user-centered design have gone a long way toward 
analyzing and envisioning how users are likely to use 
technology, and then validating those user behavior 
assumptions with real-world tests and evaluation [19]. 
In our case, because we were working with a new type 
of data, WAMI, with no established workflows and best 
practices, explicitly studying the intended user was not 
straightforward. Instead, we wanted to see if gameplay 
could be used to implicitly learn what tasks were hard 
for users and where in the process there was friction. Our 
approach was to study user solutions to the game in the 
absence of the needed tooling and then turn our observa-
tions and user artifacts into a requirements specification 
for developing new user-centered capabilities. Once those 
new capabilities were developed, we could use the same 
methods to deploy the capabilities, measure their utility, 
and retool them to be more effective. 
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FIGURE 8. In the scoring matrix used to adjudicate the decision-
making performance of teams during the game, the columns 
represent three classes of locations, or sites, and the rows 
correspond to three levels of courses of action the teams can 
assign to each instance and class of sites discovered during the 
game. Cells shaded in green indicate that the team’s chosen 
course of action was appropriate for the respective class of site, 
resulting in a gain of points, and red cells represent a course of 
action that was inappropriate, resulting in the loss of points. Gray 
cells represent action and class mappings for which points were 
neither gained nor lost. 
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Experiment Design for Requirements Generation 
In this phase of research, we wanted to better understand 
how users might best use real-time video information to 
aid network discovery during an unfolding event. We 
designed an experiment in which users had a static base 
satellite image on their map display and the ability to 
overlay streams of up to eight real-time 100-meter-by-
100-meter video chips from the airborne WAMI sensor’s 
field of view. Users could slave those chips to follow a 
specific vehicle or persistently stare at a location on 
the ground. In this construct, players not only had to 
manage their human and compute resources but also 
their sensor resources. While video was only available 
within the eight available chips, track positions of 
vehicles were available across the entire sensor field of 
view. However, when vehicles stopped within the scene, 
the track broke and started with a new track identifier as 
the vehicle started moving again, thus requiring teams 
to devise methods for how best to mentally stitch all 
these tracks back into a single vehicle journey. We knew 
bookkeeping was going to be a challenge in this experi-
ment but wanted to see the methods that teams came up 
with through gameplay. 

A series of team games was deployed, and we used 
both photographic and room video recordings to track 
how teams discussed and captured information via 

the whiteboard and hardcopy maps. Among the many 
different approaches to capturing and coding the game 
network information were the two examples of this 
instrumentation seen in Figure 9. 

By studying how teams solved various problems 
through different methods on the whiteboard and paper 
map, we determined the requirements for a set of tools 
that users would have liked to have had during the 
exercise. Figure 10 shows how a team’s map suggests ideas 
for a new tool. In this example, a player could benefit from 
a network visualization tool that is integrated with the 
map and track paradigms within the game client. The 
requirements for the tool fall into three groups of network 
information representation: 
• Node information. Users would like the ability to 

customize the names of sites (nodes) with their own 
annotations and to represent track metadata, such as 
the duration of a vehicle stop, as attributes of a partic-
ular node. 

• Link information. Users would like the ability to 
visualize track metadata along links (tracks) between 
nodes (sites); such metadata could include name 
annotations, departure and arrival times, autogene-
rated track identifiers associated with a track, and the 
number of track (vehicle) counts between two nodes. 

• Graph layout. Users would like to represent 

FIGURE 9. Teams used a whiteboard and map to manually organize information during gameplay. The image in (a) shows a node-and-
link network diagram representing different sites (circles) discovered in the game data and the vehicle tracks between them (lines). Also 
annotated on this diagram are names given to each of the sites and tracks by the teams, and the start and stop times of the vehicle 
journeys. The image in (b) shows a geospatial network view of similar information using markers and sticky notes on a laminated map.

(a) (b)
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source-to-destination directionality of tracks and 
to minimize the crossing of links in the graph 
representation. 

Development of Network Analysis Tools 
Our requirements development process led to three new 
major features that were added into Bluestreak and the 
back-end game architecture:
• Joint space-time queries. In the initial iterations of 

the game, if players had interest in vehicles that may 
depart or arrive from a site of interest, they would 
have to scrub through all of the temporal extents of 
the data to find tracks. To increase the efficiency of this 
operation, we created a feature called Nomination to 
allow players to choose a point on the map, a temporal 
extent, such as 30 minutes before and 30 minutes after 
the current time step, and a geographic radius, such as 
50 meters around the selected point. The game server 
would retrieve all tracks that matched that joint space-
time query and display those to players. 

• Track repair tool. As mentioned in the section on data 
generation, track breaks were introduced to mimic the 
real-world performance of optical multitarget tracking 
systems of the day. With those systems, tracks would 
manifest as single source-to-destination journeys and 

comprise multiple track segments, requiring players 
to monitor which track identifications corresponded 
to which vehicle journey. To improve this process, we 
developed a tool named Bloodhound to allow players 
to use the video data to positively identify when the 
same vehicle is responsible for the end of one track 
and the start of another. Bloodhound then lets players 
stitch those two system tracks into an analyst track, 
greatly simplifying the information management and 
network representation.

• Integrated network visualization tools. As shown in 
Figures 9 and 10, organizing and visualizing all of 
the information related to the sites and tracks that 
form the scenario network requires a lot of effort and 
bookkeeping to be useful for unraveling the game 
scenario. The new Nomination and Bloodhound 
features enabled the players to quickly find tracks 
associated with points of interest and quickly repair 
them from source to destination, allowing the network 
to be rapidly built out and effectively visualized. 
We developed two graph visualization tools, one to 
produce abstract node-and-link diagrams and one to 
produce a geospatial node-and-link diagram showing 
the spatial representation of the sites and tracks in 
network. An example of both representations can be 

FIGURE 10. Studying how teams manually organized their information can provide insight on ways to improve information 
management through new tool development and optimization of existing capabilities. In this example, the callouts detail software 
requirements or features that would address some of the information management and visual layout needs of building a network 
diagram of sites of interest and the vehicle tracks that transit between them.
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seen in Figure 11. While abstract node-link diagrams 
have been used for a long time, the geospatial graph 
was entirely novel at the time of development. Lastly, 
one additional key feature of the abstract graph is that 
it was built to be fully collaborative with the other game 
clients, so when one player moved a node on a client, 
the node also moved on all the other game clients, 
allowing teams to have true shared representations. 

Utility Assessment 
After some initial user testing of the new tools, a series of 
game exercises was employed to assess the utility of these 
tools in improving the abilities of teams and reducing some 
of the human-intensive aspects of the network discovery 
and information management. During the debriefings 
from these exercises, we found that in general the players 
really liked the Nomination feature to find tracks associ-
ated with a site of interest. However, the judicious use of 
this feature had an unintended consequence. The tool 
developers thought that after a Nomination was executed 
and the results returned, it would be convenient for the 

player to have the site and tracks associated with the 
Nomination automatically placed on the graph. But this 
automation ended up cluttering the graph displays with 
both user-placed and system-placed information, with 
no clear distinction between the two. Once this clutter 
occurred, the team stopped using the graph tool and went 
back to using the whiteboard because that was a repre-
sentation over which they had full control. One player 
described the automated placement function as similar to 
using the top of a desk to store documents that need to be 
read, without realizing that other people would constantly 
place other documents on the desktop, rendering it useless 
as an organizational mechanism. 

To fix the placement problem, we added a step that 
asks users after they make a Nomination query if they 
also want the results added to the graph. The graph tools 
then started to provide great utility for network organi-
zation, and several winning teams in this testing phase 
used it exclusively. A comparison of a graph cluttered 
by the system and one built solely by players is depicted 
in Figure 12. This example of gameplay forcing users to 

(a) (b)

FIGURE 11. Abstract and geospatial graph representation tools are developed through a user-centered requirements process. In the 
abstract graph view (a), the circles (nodes) represent locations visited by a vehicle, and the squares represent an intermediate stop 
of a vehicle. The lines (edges) that connect the circles and squares correspond to discrete vehicle tracks between two locations, 
and arrows represent the directionality track moving between the sites. Similarly, (b) is the geospatial graph view. The blue circles, 
squares, and lines have the same connotations as the symbols in the abstract view; however, the edges now follow the full geospatial 
extent of the tracks they represent. Additionally, the multicolor pushpin icons represent placemarks of interest to the team.
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evaluate what parts of new features have utility and which 
need refinement or reimagining was much more efficient 
and effective than simply asking users how they might 
make use of a particular tool or feature.

In addition to qualitative analysis of user experi-
ence, we leveraged the game client instrumentation to 

characterize how well players used the eight available 
video chips described in the experiment design. In the 
initial games without the improved tools, the imagery 
analysis and information management tasks dominated 
the teams’ time, precluding their ability to make best use 
of the eight possible video feeds, as shown in Figure 13a. 

(a) (b)

FIGURE 12. Network graphs are generated by players during utility testing of new tools. The circles (nodes) represent locations visited 
by a vehicle, and the squares represent an intermediate stop of a vehicle. The lines (edges) that connect the circles and squares 
correspond to discrete vehicle tracks between two locations. The diagram in (a) is from a game in which automation added information 
to the user’s graph, inadvertently cluttering the workspace with information of unknown provenance and limiting the utility of the tool. 
The diagram in (b) is a user graph from a subsequent exercise in which players were given the option to accept or reject automated 
information, leading to much more effective use of the tool because of a greater understanding and trust of the automation. 
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FIGURE 13. The plots provide an analysis of video feed utilization by game players. The x-axis represents the elapsed time during 
gameplay. The y-axis represents the number of instantaneous video feeds being viewed by a team at a given time step, with 0 
representing no feeds in use and 8 representing all the feeds being used. The maximum number of feeds is represented by the 
dashed red line and the average number of feeds used is represented by the dashed blue line. Case (a) shows video utilization with 
the baseline tooling that precluded effective use of the video feeds, with an instantaneous average of 1.3 video chips. Case (b) shows 
improved video usage after new tools were deployed in a subsequent game to better integrate the video into the workflow and reduce 
the human-intensive nature of using the video, with an instantaneous average of 2.9 chips. Case (c) shows increased video usage after 
refinements were made to the new tools in response to targeted user feedback, with an instantaneous average of 4.8 chips.
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The plot in Figure 13b details increased video utiliza-
tion after the deployment of the new network analysis 
tools (Nomination and Bloodhound) that improved the 
integration of the video feeds into the workflow. The plot 
in Figure 13c shows both additional increased video usage 
after the user-feedback process led to the refinement 
of the new tools and more effective use of the graph to 
organize and prioritize work. 

Besides analyzing video utilization, we looked at how 
well teams kept up with real-time information as the 
scenario evolved because this ability is often associated 
with stronger game performance and decision making. 
Instrumentation was built into the Bluestreak game client 
that logs both the elapsed game time when players are 
looking at data and the point in the scenario timeline that 
the data are referencing. An example of this instrumen-
tation data is shown in Figure 14. As the scenario began, 
an abundance of activity caused teams to spend a lot of 
time looking forensically at older data to orient themselves 
before they felt comfortable reviewing new data arriving 
in near-real time. Through our analyses, we found that the 
addition of the three network analysis tools shortened the 
amount of game time teams spent observing data forensi-
cally before they transitioned to real-time operations. 

Experimentation Phase 2: Assessing Teamwork 
and Decision-Making Performance 
A major finding from our first phase of experiments was 
that team dynamics played a critical role in the outcome 
of the game, and anecdotally we could often predict just 
by observing the strategy sessions and gameplay which 
teams would do well at decision making. We had teams 
that were introverted and precise in their coordination 
and communication, and we had teams that were verbose 
and constantly challenging each other’s assumptions; both 
of these team dynamics were found to be successful. The 
success of two almost opposite styles of teamwork made 
us want to understand on a granular level the underlying 
factors that influenced success. We designed a set of experi-
ments to study teamwork and its effect on decision making. 
For these experiments, we modified the game format and 
employed the Humatics human-system instrumentation 
framework to augment our qualitative human observations 
with quantitative, persistent, and objective measurements 
of human-system behavior. By jointly processing the 
collected multimodal instrumentation data, we could make 

holistic characterizations of human-human and human-
system interaction. The fidelity and granularity of these 
data were informative and, in some instances, could predict 
performance in the activities being measured [20]. 

Experiment Design for Instrumenting the 
Analysis and Decision Processes 
To implement the second phase of experiments, we 
modified the format of the game to emphasize the 
team collaboration and decision-making components 
and to reduce human-intensive data analysis aspects of 
the original game. In this second format, we made the 
following primary modifications:
• Shortened the length of the scenario by half so that 

gameplay and the overall game event would be shorter.
• Changed the sensing concept to make all motion 

imagery available to players across the entire field of 
regard at the start of the game; having all the video 
data rather than only eight small time-based video 
chips would increase information discovery. 

• Replaced the track dataset, including its track breaks 
and sensor ambiguities, with the ground truth track 

FIGURE 14. The plot depicts an analysis of how timely teams 
were at keeping up with real-time game data as the scenario 
evolved. The x-axis represents the elapsed game time from 
the beginning to the end. The y-axis represents the time in the 
scenario that the data references. Each green dot represents 
a record of these two timestamps, achieved through the 
software instrumentation within the game client. A team 
analyzing the data in real time would create green dots across 
the diagonal, and any dots below the diagonal represent a 
forensic examination of data. As teams oriented to the initial 
set of activities in the scenario, they began to view the arriving 
data and often did deep backward dives in time to assess all 
activities at a particular location. 
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data to allow players to focus on determining the 
connections between source and destination locations 
rather than spending a lot of time stitching together 
broken tracks.

• Increased the number and relevance of the game 
messages to ensure teams focused on the game 
objectives.

We also made improvements to the staging of the 
game event by standardizing training processes, materials 
given to teams, and types of information provided by game 
docents to players. The intent of this standardization was to 
reduce as much variability in the game events as possible so 
that the game could be run many times with different teams 
to produce a dataset for follow-on human-subject research.

Team Assessment Case Study 
To assess human performance during the game, we 
decomposed each major step of the workflow and mapped 
it to instrumentation data and performance metrics that 
characterize players’ behaviors. As noted in Figure 6, 
three major facets of performance emerged: client inter-
action, information triage, and discovery and decision. 
Additionally, the performance of this entire workflow is 
underpinned by a team’s ability to effectively organize and 
collaborate through face-to-face communication. Our case 

study of four five-member teams illustrates how system-
level and physiological instrumentation can be used to 
better characterize a team’s performance during gameplay. 

Game Client Interaction Performance 
Software instrumentation built into Bluestreak recorded 
various user interactions both on demand and at specific 
intervals. The recorded data can be used to understand 
macro behaviors, such as the volume or rate of interac-
tions with specific tools in the client. For example, by 
recording placemark creation and modification attri-
butes, we can quantify team analytical behaviors in the 
workflow as a function of time. These data can also be 
used to analyze micro behaviors, such as a user’s current 
look at geospatial data, known as the viewport [9]. 
Viewport data are recorded each second and include the 
current time of gameplay, the time in the scenario being 
displayed, and the geospatial bounding box of the video 
footprint in the map section of Bluestreak. An example of 
viewport instrumentation is shown in Figure 15. 

Scenario Information Triage Performance 
After the viewport data were logged, they were correlated 
with the scenario ground truth and processed using 
specialized information theoretic metrics [9, 21] to 

(a) (b)

FIGURE 15. In this illustration of viewport instrumentation, the game client (a) is viewing a portion of the video data, whose viewport, 
or geospatial extents, are represented by the orange box on the game client and heat map (b), as indicated by the orange arrow. In 
the viewport heat map, areas of magenta represent areas in which the teams viewed a large amount of video data, whereas the cyan 
areas indicate areas looked at infrequently. These heat maps can be used to understand a team’s geospatial analysis strategy.
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determine which relevant (scenario network) and irrele-
vant (background population) tracks or sites were being 
viewed at each scenario time step. 

A graphical representation of the scenario and 
background track information, shown in Figure 16a, was 
used to assess a team’s ability to effectively triage vehicle 
track data. If players were properly interpreting the infor-
mation in the report messages, they should have focused 
only on the red scenario vehicle tracks and not the yellow 
background population tracks. As shown in Figure 16b, 
the performance of Team 3 and Team 4 plateaued as the 
scenario evolved, whereas Team 1 and Team 2 continued 
to find and analyze more relevant (red) scenario tracks 
throughout gameplay. 

A graphical representation of the scenario red sites is 
shown in Figure 17a. If players are properly interpreting 
the information in the report messages, they should focus 
only on vehicle behaviors and activities around the sites 
with the red icons and not on the ones denoted with 
yellow dots that indicate locations of the background 
population not associated with the red network. 

Similarly, Figure 17b illustrates teams’ ability to effec-
tively triage video of site-related activities. As the figure 
shows, Team 1 and Team 2 spent substantially more effort 
observing scenario site information compared to Team 3 
and Team 4. In many cases, teams spent a lot of time 
analyzing sites but ultimately chose an incorrect action 
or took no action at all. 

Team Discovery and Decision-Making 
Performance 
Because the scenario was constructed to have the scenario 
activities completely separated from the background 
activity, the game can be analyzed from the perspective of 
signal detection theory. Essentially, teams can be consid-
ered detectors of scenario network activity in that they 
are attempting to extract these signals from the noise of 
the normal activities of the rest of the population [10]. 
The receiver operating characteristics (ROC) measure-
ments of detection theory can be used to assess the teams’ 
performance (Figure 18). 

Results from two different tasks are plotted: the 
discovery of scenario sites, which is measured by team 
placemarks at those sites, and the declaration of scenario 
sites, which is the subset of the total placemarks that are 
assigned a course-of-action decision. Decision actions are 

(a)
Scenario vehicle track Background vehicle track

FIGURE 16. Team vehicle triage performance is depicted in the 
two plots. The plot in (a) shows the extents of all vehicle track 
data in the game, with the red lines denoting tracks associated 
with the scenario network vehicles and the yellow denoting tracks 
of background population tracks. The plot in (b) shows the team 
triage performance, with the y-axis representing the percentage of 
total red tracks observed in the video and the x-axis representing 
the number of minutes elapsed since the start of the game.
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directly related to the teams’ comprehension of the scenario 
and their confidence in that understanding. For example, it 
can be seen that Team 2 had placemarks on 100 percent of 
the scenario sites but only had the confidence to declare 30 
percent of those sites. They also declared sites not part of 
the network, resulting in a 0.2 percent probability of false 
declaration. Team 4 had discovery performance similar to 

that of Team 1 and zero probability of false declaration. 
Team 1 had the highest detection probability but at the 
expense of more false declarations. 

Team Verbal Communication Performance 
Face-to-face communication is a key factor in overall 
team performance for highly cooperative tasks [22–25]. 
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FIGURE 17. Team site triage performance is depicted. The plot in (a) shows the scenario sites to be discovered, annotated with red 
icons, and the background sites, denoted with yellow dots. The table in (b) shows teams’ performance at accumulating information 
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FIGURE 18. In this receiver operating 
characteristics plot, the y-axis represents 
the probability of correct declaration, or the 
fraction of correct sites found and acted upon 
by the teams, and the x-axis represents the 
probability of false declaration, or the ratio of 
incorrect sites declared divided by the total 
possible discoverable sites. The blue squares 
represent decision performance for sites 
that were declared to be associated with the 
network. The red circles show the fraction of 
all sites that were correctly discovered before 
the course-of-action selection process. The 
black arrows show the amount of performance 
lost moving from the information discovery 
process to the decision process, with the 
amount of performance loss a factor of each 
team’s certainty about their understanding 
of the scenario, their risk tolerance, and their 
approach to making decisions.
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Player A Player A

Player B

Player CPlayer D

Player E Player E

Player CPlayer D

Player B

Team 1 Team 2

Traditional methods to characterize these communica-
tions have largely focused on speech content; however, 
more recent methods center on the collection of nonlin-
guistic speech features that enable the characterization of 
team dynamics without having to analyze the linguistic 
content of a team’s utterances [18, 23]. 

To collect speech metadata, we gave sociometric 
badges to each player during gameplay (Figure 19). The 
badges continuously recorded the time, duration, and 
identity of each player’s speech, and post-processing 
software provided measurements of when a player 
spoke alone, when speech overlapped with another 
player, which players were listening, and when players 
were silent. These data naturally formed a directed 
graph of communication between players (Figure 20). 
For simplicity, graphs for only Team 1 and Team 2 are 
provided here. 

Previous studies of face-to-face communication 
behaviors of small teams in a collaborative setting have 
found that balanced participation and speaking time 
along with increased turn-taking are associated with 
better team performance [26]. In Figure 20, Team 1 
players A and C are dominating the conversation, as seen 
by their edge thicknesses, while the rest of the players are 

FIGURE 19. A U.S. Navy service member wears a sensor 
called a sociometric badge (a) that can record nonlinguistic 
metadata of speech behaviors, body movement, and other 
data. The battery-powered badge (b) incorporates a number 
of sensors, including a microphone, wireless and infrared 
transceivers, and a three-axis accelerometer. Microphones 
combined with specialized filters and signal processing 
characterize when the wearer is speaking. Wireless and 
infrared transceivers allow the badges to identify other badges 
proximal to them, and when data from the nearby badges are 
combined with the speech data, the communication patterns 
of who speaks to whom within a team can be determined. This 
directed speaking data can be used to measure team-based 
speech behaviors, such as turn-taking and interruptions. The 
accelerometer data can determine features associated with 
excitement and engagement.

FIGURE 20. The graphs illustrate face-to-face communication networks. Vertices (circles) represent players and edges (lines) 
represent directed communication from one player to another. Vertex size is proportional to total participation for a player, edge 
thickness is proportional to directed speech time to each teammate, and edge color indicates directionality by matching the source 
vertex color. 

(a) (b)
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less engaged with lower participation (smaller vertices) 
and less speaking time (thinner edges). Conversely, 
Team 2 has a much more balanced distribution of both 
speaking time and participation than Team 1, with player 
A acting in the role of team leader. Analysis that uses such 
graph data is a promising area of active research into 
group influencers and team role estimation [27]. 

For deeper insight into the communication network, 
we explored a social network analysis approach to charac-
terizing player interaction. By computing the directed, 
normalized closeness centrality of each player [28], we 
can derive an estimate of the connectedness of players. 
Larger centrality magnitudes indicate a player’s graph 
closeness to all other players. One useful application of 
this measure is to inspect the time-varying behavior of 
player centrality [29] during gameplay (Figure 21). In the 
figure, the visual representation of Team 1’s and Team 2’s 
closeness centrality can be useful for identifying team 
dynamics, such as the emergence of a leader. In Team 1, 
we see the same communication dominance exhibited by 
players A and C as seen in Figure 20. In Team 2, player A 
clearly emerges as the leader during the discovery phase 
of the game, with A’s centrality decreasing toward the 
end when the team moved into the collective decision-
making phase of the game. 

In addition to performing a social network analysis, we 
did a recurrent pattern analysis that used the data collected 
by the sociometric badges. First, speech patterns were 
coded into symbols according to various speech behav-
iors and then analyzed as a time series [30]. The strength 
of the recurrent structure within these code sequences is 
called determinism (DET). In a strict turn-taking situation, 
DET will be high (near 100 percent) as the conversation is 
highly structured. In a situation with random speech inter-
vals, DET will be low (close to 0 percent), indicating that 
the conversation is highly unstructured. DET scores were 
comparable for the four teams, with local maxima near 60 
percent and local minima near 30 percent. Fluctuations 
in the values occurred over time, indicating that the struc-
ture of the communication ebbed and flowed throughout 
gameplay. Further analysis showed a high correlation 
between DET magnitude and the percentage of time an 
individual spoke while all others listened, suggesting that 
structure occurs, even in a complex team setting with five 
participants, when individuals speak and others listen. 

Total Team Performance 
We quantitatively measured team performance at several 
points in the overall game workflow. However, combining 
these metrics into a single total performance measure 

FIGURE 21. The plots depict the time-varying player communication centrality. Centrality is a social network analysis measure 
that can be used to identify the most important vertices in a network. The directed normalized closeness centrality of each player 
is an estimate of the connectedness of players in a network. The x-axis represents elapsed time during gameplay, and the y-axis 
represents the centrality of a player. Larger centrality magnitudes indicate a player’s graph closeness to all other players. In both 
teams, player A is considered the leader and transitions to gain the highest centrality midway through the game. Qualitative 
observations during gameplay supported these findings. 
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game client interaction was also associated with more 
effective observations of scenario site information and 
track information. Essentially, teams who were more 
effective at interacting with the functions of the game 
client observed more relevant scenario information and 
found more correct sites. 

• Information triage effectiveness. The second propo-
sition asked whether discovery of more scenario 
information led to better game outcomes. From our 
analysis, we found that teams who observed more 
relevant scenario site information and track informa-
tion also scored higher in game outcome. The overall 
game score takes into account several aspects of how 
well the players perform, but it also encapsulates the 
confidence of players’ decisions (course–of-action 
strength) and reflects their overall strategy for the 
game (aggressive to risk averse). 

• Team communication effectiveness. The third propo-
sition asked whether teams who communicate more 
effectively have higher game performance. Our 
analysis found that teams who communicated more 
(total time) throughout the exercise also observed 
more relevant scenario site information and track 
information. Additionally, teams who had higher 
participation (frequency of communication) from 
all members throughout the game also observed 
more relevant scenario site information and track 
information. Lastly, teams who communicated more 
(total time) throughout the exercise also made better 
decisions on the most challenging sites to adjudicate. 
These findings about total team engagement and 
participation agree with our qualitative observations 
of teams during the decision-making process. Team 
centrality metrics did not have a significant associ-
ation with other aspects of team performance and 
warrant further investigation. 

Follow-on Work 
The concepts explored during this work and the lessons 
learned yielded two major accomplishments. The first 
included the expansion of the Humatics instrumenta-
tion framework to take in additional sources and types 
of data, the development of new methods for real-time 
and post-exercises metrics and assessment visualizations, 
and a series of research efforts focused on a better under-
standing of analytical performance. 

warrants careful consideration. Qualitatively, Team 1 
and Team 2 excelled at communication, triage, and site 
discovery, but they had more false declarations than Team 
3 or Team 4. Conversely, although Team 3 and Team 4 
did not observe as much information or discover as many 
sites as did Team 1 and Team 2, they were very accurate in 
adjudicating what they found. Team 2 ultimately won the 
four-team competition with the best overall performance 
and game scores. 

Predicting Team Performance 
When we assessed teams’ analytical and decision-making 
performance, common questions arose regarding how 
performance in one facet of a decision process affects the 
performance of either subsequent processes or the aggre-
gate overall process. The previous sections illustrate that 
the collected measurements enabled detailed insight 
about individual facets of performance; however, we 
wanted to take this a step further to determine whether 
behaviors in specific facets of the intra-game workflow 
were predictive of analytical performance of players or 
the outcomes of games. To approach this investigation, we 
processed data collected over several years of gameplay, 
encompassing 71 different teams and more than 350 
unique players. For all 71 teams, system instrumentation 
data were recorded. For a subset of 15 teams, face-to-face 
communication data were also collected. 

Robust linear regression analyses were used to statis-
tically estimate how predictive were the various facets 
of intra-game performance with respect to workflow 
processes. For each model, residual analysis, significance 
testing, and other regression diagnostics were performed, 
and were evaluated for each prediction finding. In 
undertaking this analysis, we wanted to address three 
overarching research propositions: 
• Client interaction effectiveness. The first proposition 

asked whether more effective interaction with the 
game software client led to better game performance. 
From our analysis, we found that teams who had higher 
usage across all analytic functions of the game client 
discovered more total sites and had a higher proba-
bility of correct site discovery. The effect was even more 
pronounced for the functions of the game client associ-
ated with the frequency with which players submitted 
Nomination space-time queries for track data and its 
correlation with increased site discovery. Higher total 
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The second major consequence was the production 
of two serious games that followed a set of development 
and employment mechanisms that were similar to those 
we used in our work. One game focused on an airport 
security scenario in which teams who had access to actual 
closed-circuit video from a major U.S. airport monitored 
the video and other data feeds to discover suspicious activ-
ities being performed by scripted actors. The second game 
involved all-source information analysis during which 
participants analyzed documents, answered questions, 
and made recommendations regarding a complex geopo-
litical event while intricate human-system interaction 
data were collected with a high-frame-rate, near-infrared, 
eye-tracking system and a custom instrumented instance 
of the Palantir Technologies data analysis platform. 
This latter game focused on a detailed user-workflow 
decomposition and metrics development to characterize 
individuals’ reading behaviors, estimate their cognitive 
load, and objectively assess their performance at infor-
mation discovery, factual recall, inference development, 
and decision making.
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Researchers worked through the operational logic of a complex defense system 
in the early years of U.S. missile defense research.

Early Gaming at Lincoln Laboratory: 
The Missile Defense Engagement Exercises 
of 1966 to 1968

What brought Lincoln Laboratory into missile defense 
research? The Laboratory was established in the early 
1950s to develop a continental air defense against Soviet 
bombers carrying nuclear weapons. The architecture of 
this air defense system, developed under U.S. Air Force 
leadership, featured a wide deployment of radars to detect 
and track attacking bombers, and fighter interceptors to 
engage and destroy the enemy aircraft. This architecture 
was essentially a defense of the full area of the United 
States and Canada.

A different architecture was favored by the U.S. 
Army and its major development arm, the presti-
gious Bell Telephone Laboratories. Their architecture, 
referred to as the Nike Ajax System, featured a local-
ized defense around major cities with radar sensors and 
guided-missile interceptors. The extreme concern in the 
United States concerning nuclear attacks led to both 
architectures being deployed, and by the 1960s the air 
defense of the United States and Canada comprised a 
truly massive system.

The late 1950s development of long-range ballistic 
missiles capable of delivering nuclear warheads to inter-
continental distances began to shift the nation’s concern 
away from air defense toward missile defense. The U.S. 
Army had the lead role in missile defense and, together 
with Bell Laboratories, conducted a successful intercept 
of an intercontinental ballistic missile (ICBM) target at 
Kwajalein Atoll of the Marshall Island in 1962.

In this same era, Lincoln Laboratory became 
involved in systems to warn of ballistic missile attack, 
performing architecture work on the Ballistic Missile 
Early Warning System (BMEWS) that became opera-
tional in early 1964. This work naturally led the 

Laboratory to consider the technological challenges of 
ballistic missile defense.

Some of the leadership in the Department of Defense 
thought the Army–Bell Laboratories approach to ballistic 
missile defense embodied in the Nike-X system was 
unduly conservative. The technology of ballistic missiles 
was improving rapidly and the department encouraged 
projects that were technologically more advanced than 
the Army’s Nike-X program.

The Laboratory entered the missile defense 
domain in the early 1960s with experiments designed 
to capture the physics of a missile warhead reentering 
Earth’s atmosphere at hypersonic speeds. This “reentry 
physics” effort focused on how to distinguish a real 
warhead from a wide variety of debris from the parent 
rocket and possibly countermeasure devices such as 
decoys. Experiments began at Wallops Island, Virginia, 
then migrated to the White Sands Missile Range, New 
Mexico, and finally to the Kwajalein Atoll in the Pacific 
in 1962. This reentry physics challenge was daunting. 
All we needed to do was weigh objects at a substan-
tial distance (100 km) by “tickling” them with a radar 
beam! The objects are moving at greater than 20,000 
feet per second. They are decelerating at a peak of 60 
gs, and they may have an ionized trail attached. We need 
to do this weighing process in a few seconds, possibly 
on a number of objects—a heroic challenge, but an 
intriguing one!

The Lincoln Laboratory Effort
Considerable controversy has surrounded missile 
defense since its inception: “hitting a bullet with a 
bullet” was judged too difficult in those early days. A 
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missile defense system must function almost completely 
automatically; there is not enough time in the engage-
ment of a ballistic missile for a lot of human control and 
decision making. Skeptics in that era, and even today, 
believe the necessity for a rapid and flawless execution 
of an engagement logic is one of the big impossibilities 
in missile defense. 

We researchers at Lincoln Laboratory were intensely 
curious as to how much of this automated engagement 
logic had been worked out by Bell Labs for their Nike-X 
urban defense architecture. The Bell Labs scientists 
alluded to work on the topic but never presented any 
results. We suspected that they had not gotten very far on 
that problem. So, we began to look at the rough elements 

The Nike-X interceptors: These two high-performance interceptor missiles (produced by McDonnell Douglas and the Martin Marietta 
Company) were the backbone of U.S. missile defense research and development in the 1960s and 1970s. They featured high speed 
and high acceleration, and their launches were spectacular. The author had a box-seat for the first Spartan launch shown in photo (a) 
at Kwajalein in 1968. The Sprint missile in photo (b) was launched from White Sands Missile Range, New Mexico. These interceptors 
became major components in the Safeguard missile defense of 1975.

(a) (b)
Photo: William Delaney Photo: U.S. Army
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of a logic that would be needed to launch an interceptor 
at some incoming ICBM warhead and not launch inter-
ceptors at the various pieces of missile hardware junk or 
countermeasures that could accompany the warheads. 
These early missile defense systems did their most confi-
dent defense in the atmosphere, so there were many 
reentry physics logic questions to answer. We used 
models of the Nike-X interceptors in our work but posed 
new radar models with more advanced capabilities than 
the Nike radars.

This engagement logic work was done in the Radar 
Division under the calm leadership of Donald Clark, 
who was convinced that the engagement logic question 
was critical to missile defense. The less calm intellectual 
lead on missile defense systems was Joel Resnick, and 
the principal system-oriented staff members were John 
Fielding, Stephen Weiner, and this author.

The Engagement Logic Development and 
Gaming
Putting together the computer-logic flow for a missile 
defense system was a challenging task. No one had done 
it before, but we bravely marched in. How to test one’s 
logic became a prominent question, and we evolved the 
“Engagement Exercises” as a gaming process to test our 
logic. An exercise was a bit like our current “red-blue” 
discrimination games that challenge one set of partici-
pants (red team) to devise methods to prevent a defender 
from knowing which of many objects around an attacking 
ICBM complex is a real warhead and another set (blue 
team) to determine strategies to discriminate the missile 
from decoys or debris. However, our scope was much 
broader than just discrimination. We featured the whole 
set of surveillance, detection, verification, tracking, 
discrimination, interceptor commitment, and guidance 
processes. We started simple, with simple offense-defense 
scenarios and built up to more complex games over the 
course of three years.

The archives show that our first exercise was in 
May 1966, and exercises followed at roughly six-month 
intervals for a total of six exercises until the last one in 
early 1968. We would work for six months preparing the 
defense logic, which was quite detailed with numerical 
thresholds for the initiation of some defense process or 
some defense identification of an object. The setting of 

numerical thresholds on all processes was a challenge. 
This “defense team” was opposed by an “offense team” 
that conjured up a missile threat in gory detail. We were 
isolated from each other, and the secrecy was tight. 

Overseeing both defense and offense teams was the 
“umpire team” that set ground rules on how much knowl-
edge the opposing teams had of each other (mimicking 
the information gathered by intelligence communities) 
and generally inspecting both teams’ work for complete-
ness and fairness. The umpire team was a major force 
in making things proceed in a logical and productive 
manner, and when we met for the engagement exercise, 
the umpires were very much in charge. I recall that John 
Fielding often chaired the umpire team, and that role 
suited him very well. He assumed a somewhat imperious 
style, a bit like that of a judge. He coined the phrase 
“social stigma” as the presumed penalty for overstate-
ments of capability by the defense or offense as we 
engaged each other. Our group leader Don Clark was 
often an umpire and his aura of total fairness helped 
keep things calm.

I was always a defender as was Joel Resnick. The 
very creative Bob Bergemann of the Data Systems 
Division and Dave Towle of the Radar Division were 
professional offense team leaders. A few supporting 
organization were involved with us. The Cornell 
Aeronautical Laboratory in Ithaca, New York, and 
the Kaman Nuclear Corporation of Albuquerque, 
New Mexico, provided support in threat modeling. A 
dominant contribution came from the Defense Research 
Corporation (DRC), later named the General Research 
Corporation (GRC), of Santa Barbara, California; they 
were building a huge computer representation of a 
ballistic missile engagement and had many useful tools, 

We were informing ourselves and 
our sponsor on the complexities 
of missile defense warfare—and 
that was good training for the 
Laboratory’s ensuing 50+ years 
in missile defense.
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such as trajectory generators and interceptor missile 
fly-out trajectories. 

The DRC team was a collection of very smart “West 
Coasters” who were intensely interested in our work 
because Lincoln Laboratory had lots of real-world depth 
in discrimination, tracking, detection, and false-alarm 
mitigation. The Laboratory’s experience from Kwajalein 
and many air defense hardware efforts was a great 
complement to their predominant computer simulation 
expertise. They became a major player in this work, and 
we felt a great deal of satisfaction in having two great 
teams with a shared vision. Jack Ballantine led the DRC 
team; he was a lot like the Laboratory’s Don Clark in 
calm demeanor. The DRC team’s “California cool” was a 
good offset to the East Coast aggressive styles of Resnick, 
Fielding, and Delaney.

The Engagement Exercises (Game)
The engagement exercises each took a full three days. 
They were conducted in a somewhat formal manner, 
much like a courtroom. The defense team, accompanied 
by a pile of large paper drawings of the “defense logic,” 
sat in their designated area in a big room. The offense 
team, armed with their technical documentation of their 
“threat,” did the same. 

The umpires sat in a central position. The urban 
defense system for the United States had been specified 
well in advance by the defense. The umpires would start 
with a statement on the world situation, an input on the 
state of the Soviet Union, and any warning indicators. 
Then, for example, they might tell us that an Alaskan 
BMEWS radar was down for repair. 

The action would begin when the umpires announced 
that the BMEWS radar at Thule, Greenland, had received 
signal return from some object at such-and-such a range 
and angle and asked the defense, “What do you do next?” 
Our logic would call for a verify transmission and then 
a velocity estimate to see if the detection was caused by 
a satellite or a missile. If the target report passed our 
missile thresholds, we would send out additional pulses 
and then follow our logic train of crude impact-point 
determination, handover to a tracker, track to refine an 
intercept point, followed by an intercept process. But, 
things never went that smoothly. At the first engagement 
exercise, we could not get anything logical to happen in 

response to our repeated attempts to start a target track 
or predict an impact point. Eventually, after several hours 
of tortuous debate and argument with the umpires, they 
confessed to giving us highly range-ambiguous returns 
from the moon as our first target (mirroring a real-world 
event with BMEWS).

Developing a defense logic was a complicated process, 
even for simple threats, and along the way we noted many 
shortcomings in our logic. Our leader, Don Clark, would 
remind us that our goal was to find those shortfalls, and 
while we intellectually agreed, we defenders wanted to win!  

Eventually, our exercises attracted an audience 
beyond the participants. I recall sometimes acting more 
like a defense lawyer and doing a bit of showboating along 
the way. On one such exercise, I had Lincoln Laboratory’s 
Kent Kresa as my cochair on the defense team (Kent went 
on to a most impressive career, culminating in a position 
as CEO of Northrop Grumman). On the third day of the 
exercise, the defense logic was beginning to ferret out 
the real warheads to be intercepted in a background of 
countermeasures and interference, and we were launching 
our Sprint interceptors left and right per our logic. Kent 
came up and put a Red Auerbach cigar in my mouth, lit 
it for me, and said, “We beat these guys!” So there was a 
spirit of winning that kept us on our toes throughout this 
six-month process we called an exercise.

We continued to conduct these exercises, each with 
a six-month preparation, over three years, and the game 
became increasingly complex as we dealt with counter-
measures, such as chaff, decoys, jammers, and nuclear 
blackout generated by the offense or by our own defense 
interceptor bursts. As defenders, we were learning some 
tricks of our own, like precommitment of interceptors 
to provide early intercept options and shoot-look-
shoot opportunities. We were finding out which radar 
capabilities made a big difference. We were also dealing 
with some nightmare scenarios involving huge enemy 
warheads that could destroy a city by bursting at very 
high altitudes, and we invented “the big bomb alarm” 
and defense logic to thwart that attack. 

Overall, we were informing ourselves and our 
sponsor on the complexities of missile defense warfare. 
While our work did not appear directly in a system, we 
were teaching ourselves just how difficult the missile 
defense job might be, and that was good training for 
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the Laboratory’s ensuing 50+ years of work in missile 
defense. I claim we were the first in the nation to take a 
hard look at this daunting missile defense engagement 
logic problem and test ourselves with a gaming process. 
I am proud to have been part of that fine team of talent.

— WILLIAM DELANEY

Bill is a veteran of 61 years at the 
Laboratory. He is currently the 
Director’s Office Fellow and is a 
former Assistant Director. He spent 
many years in missile defense activ-
ities with a tour at the Kwajalein 
test site and a tour in the Office of 

the Secretary of Defense with responsibilities for missile 
defense research and development.
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