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For decades, governments, militaries, 
researchers, and other organizations have 
focused significant resources toward the 
collection and analysis of information 

about illicit human social networks, such as gangs, 
cartels, traffickers, and terrorists. These networks, 
often referred to as dark networks, are difficult to study 
because their clandestine nature limits their observability 
to various data collection means and often precludes a 
full accounting of the network membership, structure, 
function, and dynamics [1–3]. Historically, the social 
sciences have provided the foundation for the study of 
dark networks, largely through the time- and human-in-
tensive manual collection and curation of qualitative 
network data. However, this approach is not efficient, 
does not scale to large organizational studies, and gener-
ally only represents static points in time [4–6]. 

Over the past two decades as asymmetric conflicts 
and complex humanitarian crises have become more 
prevalent across the world, increased emphasis has been 
aimed at characterizing dark networks that operate in 
urban settings to perpetrate acts of violence, such as 
vehicular-borne explosive attacks, i.e., car bombings. 
The use of vehicles to facilitate explosive-laden attacks 
goes back to the 1920s and has been responsible for 
asymmetric attacks ranging from the Provisional Irish 
Republican Army’s bombings during the Troubles in 
Northern Ireland in the 1960s to widespread explosive 
events by terrorist organizations during the conflicts in 
Iraq and Afghanistan in the last 15 years [7]. When a car 
bombing occurs, it can be extremely challenging for law 
enforcement to piece together information to determine 

Illicit social networks, such as trafficking or 
terrorist organizations, are difficult to discover 
because their clandestine nature limits their 
observability to data collection. Technological 
advances in remote sensing and analytical 
software can reduce the time- and human-
intensive nature of network data curation and 
analysis, if effective human-system integration 
is achieved. To better understand this 
integration, researchers at Lincoln Laboratory 
created a succession of serious games to 
investigate methodologies for developing 
user-centered tools and quantitative human-
system instrumentation, with the goal of 
improving network discovery. These games 
were employed in a multiyear study of team 
analytical performance and collaborative 
decision making, encompassing more than 80 
teams and upwards of 400 unique players.
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which vehicles, facilities, and people were involved in the 
attack (Figure 1). This challenge is compounded by urban 
settings that allow perpetrators to flee and meld back into 
the background populous. In the last decade, advances 
in airborne remote sensing and terrestrial surveillance 
have made it possible for military and police agencies to 
observe not only the execution of these types of attacks on 
urban areas but often the events and coordination directly 
before and after. 

However, the ability to triage surveillance video and 
imagery along with other reporting data—such as news, 
law enforcement reports, or social media— immediately 
after an attack is laborious and often requires teams 
of individuals to sift through large amounts of data to 
discover pieces of relevant evidentiary information [8]. 
Additionally, the discovered information must then be 
deconflicted, analyzed, validated, and synthesized to make 
timely risk-informed decisions about potential follow-on 
courses of action. It is unclear how and in what ways 
these teams should organize and operate, and what roles 
analytic and decision support technology should play in 
making these operations more efficient and effective. 

Game Design 
In 2009, we and other researchers at MIT Lincoln 
Laboratory developed a serious game to address some of 
the challenges regarding clandestine network discovery. 
We created a platform to better understand how a team of 
players uses multimodal geospatial data to discover infor-
mation about a dark network and synthesizes those data 
to make decisions [9–11]. 

Serious Games for Research and Development 
Since the 1950s, Lincoln Laboratory has performed 
applied research and development for national security 
missions on a foundation of rigorous systems analysis, 
full system prototyping, and development of long-term 
advanced technologies. As the discrete systems of earlier 
decades have been replaced with complex interconnected 
systems of systems, traditional modeling and simula-
tion and systems analysis can be insufficient because 
these methods often fail to properly account for human 
dynamics. To overcome these limitations, researchers at 
the Laboratory developed a suite of methodologies and 
technologies to design serious games that can be used 
as tools to model, experiment with, and assess complex 

human-system dynamics that approximate those of 
realistic sociotechnical enterprises. In serious games, 
gameplay is used to achieve an explicit purpose other than 
amusement. We have used such games across a spectrum 
of the research and development process, including 
experiential learning, concept exploration, requirements 
analysis, tool development and evaluation, human perfor-
mance assessment, and decision analysis. 

Research Objectives 
We identified four research objectives for this serious 
gaming work: 
• Games as analysis tools. We wanted to demonstrate the 

value of using serious gameplay as a systems analysis 
tool for human-intensive workflows and applications. 

• System requirements derived from decisions. In remote 
sensing research and development, the process often 

FIGURE 1. In this example of a small vehicular-borne explosives 
graph network, the circles (nodes) represent people, locations, 
and events, and the lines (edges) that connect them correspond 
to the nature of the association between the nodes. Arrows on 
the lines represent the directionality of the relationship.
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starts with an understanding of the phenomenology of 
the sensing environment and observables of interest. 
This phase leads to the development of sensor hardware 
that is then integrated and fielded on the premise that 
the sensor capabilities are inherently useful; however, 
many sensor systems have not been jointly developed 
alongside the decision processes their data are meant 
to inform. In this work, we wanted to essentially invert 
this development and acquisition process by starting 
with an understanding of what information is needed 
to make decisions and work backward to build an 
end-to-end workflow that results in actionable infor-
mation. Then, we could use the gaming process and 
simulation capabilities to determine what the technical 
and performance requirements should be for both the 
sensors and their data analysis systems. 

• Effective game development scope. We wanted to learn 
how to build the right level of realism and fidelity into 
the game to create enough immersion and engagement 
to force players into an effective decision process, while 
limiting the scope and cost of development. 

• Rapid tool and workflow utility assessment. Through the 
use of robust human-system instrumentation to collect 
quantitative human performance data, we wanted to 
develop an end-to-end process to assess the value and 
utility of tools early in their development cycle. 

Scenario Development 
During the design phase of the game, we spent a lot of 
effort on generating the requirements for the story-
board (hereafter referred to as the scenario) that drives 
the game data generation and game mechanics toward 
achieving the research goals. The most important require-
ment of the scenario design involved four elements of the 
geographic location of the game: 
1. The game should be based in an area of future strategic 

importance to the U.S. government. At the time of 
design, many activities within the Middle East were 
within the purview of the U.S. Central Command, 
and we decided to focus instead on Africa because 
the U.S. Africa Command had just been established 
in October 2008. 

2. The location should be in an area within Africa that is 
unfamiliar to most players, including potential players 
with a good understanding of global geopolitics or with 
prior military experience. This condition minimizes 

the effect of experiential knowledge and preconcep-
tions about the scenario.

3. The area should have a history of instability and 
violence to build the scenario around, as well as a 
complex environment of actors composed of the indig-
enous population, foreign fighters from neighboring 
areas, an external coalition military presence, and 
multiple nongovernmental organizations (NGOs).

4. The scenario should be focused on a city with a 
compact, dense urban core that quickly fans out into 
a suburban and then rural expanse. This constraint 
limits the scale of the geographic area of regard for 
the game participants and aligns with the field of 
views of the sensor concepts to be used in the data 
simulation. 

On the basis of these criteria, we chose a moder-
ately large city in a landlocked country in Central Africa 
(hereafter referred to as the city). When this scenario was 
developed in 2009, the city had a recent history of insta-
bility. It had been briefly seized by insurgents in 2006, 
and in 2007 local rebels had declared war on foreigners 
and refugees from the surrounding region, requiring the 
deployment of thousands of international peacekeeping 
troops in 2008.

In the city, several prominent groups formed what 
we called the red, blue, gray, and white actors; this color 
naming convention is derived from military wargaming 
nomenclature. The red actors are those operating to incite 
violence in the city, such as the local rebel group, who is 
seen as anti-government and anti-foreigner and who has 
staged many recent attacks through car bombings and 
kidnappings. The blue actors work to counter red groups 
and include an international coalition of peacekeeping 
forces headquartered in the city and the game partici-
pants themselves. The gray actors are those who have an 
unclear affiliation with a side, such as the national army, 
who is undisciplined and believed to be heavily infiltrated 
by rebel groups. Lastly, the white actors consist of various 
NGOs and news media in the region.

From research into the city’s historical events 
and groups, we constructed a timeline that laid out 
a sequence of activities that would take place in the 
scenario. Next, data from a geographic information 
system were analyzed to determine both public locations, 
such as the city’s airport or the local army garrison, and 
private locations, such as previous weapons caches used 
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by the local rebel group and places that could be sites 
of interest within the scenario. Care was taken to make 
sure the locations chosen for these red actor sites had no 
known associations with public locations in any of the 
information sources examined.

With the locations of interest chosen, we scripted 
a series of activities that formed the scaffolding of the 
scenario, which broke down into three waves of activi-
ties. The first wave started with a truck bombing followed 
by a kidnapping at the local university. Next, the kidnap-
ping prompted a neighborhood search by the national 
army and the discovery of a red safe house, necessitating 
movements of multiple red actors to other locations. In 
the final wave, certain groups staged a riot at the main city 
market to divert attention away from a coordinated attack 
on the airport that included the bombing of the runway 
and a nearby hangar. Next, we designed an intricate series 
of timed vehicle journeys, or tracks, between all of these 
event locations and other locations, such as staging areas 
or headquarter compounds; these tracks formed the basis 
of the networks of vehicles and facilities associated with 
the red actors. To add complexity to the scenario we gave 
many of these vehicle journeys intermediary stops and 

starts or circuitous routes between clandestine facilities, 
as these diversions are typical operational security princi-
ples. The final scenario consisted of nine hours of activity 
and comprised 37 networked sites, 27 of which were 
associated with the red network. Seven of the sites were 
high-value red facilities, eight sites were associated with 
clandestine red activities, seven were associated with overt 
red activities, and five were innocuous red vehicle stops. A 
graphical depiction of the network of these events, sites, 
and intermediary stops, which became the basis of the 
scenario truth, is shown in Figure 2. For simplicity, the 
figure does not show the times associated with each of the 
movement starts and stops. Hereafter, the terms scenario 
vehicles or scenario sites refer to those associated with 
the red network and not those of the background actors 
or their activity. 

Remote Sensing Concepts 
Starting in the mid-2000s, large-format airborne imaging 
systems were being developed and fielded for military 
and other applications. These systems used multiple 
large-format optical focal planes to capture oblique 
panchromatic imagery of the ground from an airborne 

FIGURE 2. The graph of the scenario shows the network of facilities and the vehicle journeys, or tracks, that visit them. The circles 
(nodes) represent locations visited by a vehicle, such as a safe house or weapons cache, and the squares represent an intermediate 
stop of a vehicle. The lines (edges) that connect the circles and squares correspond to discrete vehicle tracks between two 
locations, and arrows represent the directionality of the tracks moving between the sites.
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imagery, and a series of alert messages to cue teams to 
activities within the data. 

The first step in the data generation process was to 
obtain a multispectral satellite image of the city from a 
commercial vendor to use as the basis for all other data 
products. The image was used to assign physical locations 
to the sites and events from the scenario, in congruence 
with the appearance of those locations within the imagery; 
for example, safe houses were chosen at locations of 
remote walled compounds. Next, we used geographic 
information system tools to develop a road network by 
tracing out all the primary, secondary, and tertiary roads. 

With these data, we generated a vehicle track dataset 
by using a commercial vehicle-motion modeling and 
simulation tool that uses a road network, waypoints, and 
vehicle-motion models to generate track data through 
time. The scenario timeline and geographic locations were 
used to construct waypoints for the vehicles associated 
with the scenario activities, and the waypoints evolved 
through multiple runs of the modeling tool to match the 
scenario to the physics of the vehicle-motion simulator. 

Next, background vehicle tracks representing the gray 
and white actors were embedded with the scenario tracks 
to create a realistic and more complex traffic environ-
ment. To create the background activities, we developed 
a statistical model to estimate a rough distribution of 
residences and workplaces across the city. Vehicles were 

platform in a circular orbit. Through sophisticated 
orthorectification algorithms and supercomputer-class 
processing hardware, the systems stitched all the raw data 
into large mosaiced images that appear as if they were 
collected from directly overhead. These early systems, 
which could produce imagery at approximately 0.5 meters 
per pixel at about two frames per second over small 
city-size fields of view, were termed wide-area motion 
imagery (WAMI) sensors [12]. While WAMI sensors 
were an amazing achievement in optical engineering and 
image processing, it was unclear at the time how best 
to make use of these nascent capabilities and the large 
volumes of data they produced. 

When designing this game, we wanted to explic-
itly explore the applications of WAMI to the problems 
of network discovery and so made motion imagery the 
primary mechanism by which data about the scenario 
network were gathered and provided to players. We 
chose a sensing concept in which WAMI is collected 
from a hypothetical sensor over an area of interest that 
is 5 kilometers by 5 kilometers, which would have the 
majority of the roughly 8-kilometer-by-8-kilometer urban 
core of the city continuously within the field of view. A 
graphical depiction of this area is shown in Figure 3. 

Several hypothetical collection concepts of opera-
tions were explored, including the real-time downlink of 
small chips of imagery that are a subset of the full sensor 
field of view and the traditional paradigm of offline data 
processing and the use of WAMI in a forensic capacity 
only. We also developed a companion sensing concept for 
an airborne ground moving target indicator radar that 
would provide coverage of up to a 20-kilometer-by-20- 
kilometer field of view in the suburban and rural areas 
surrounding the city. However, in early testing of this 
concept, users struggled to interpret and make sense of 
this nonliteral data modality, and it was later removed 
from the game to focus on the higher priority task of 
determining the best utility for WAMI. 

Game Implementation 

Data Generation 
With the scenario and remote sensing concepts developed, 
we produced datasets that would become the primary 
sources of information used during gameplay, specifically 
a set of vehicle tracks, a multiresolution corpus of motion 

FIGURE 3. The illustration shows the sensing concept used 
in the game. The projected base image shows the urban core 
of the city and the superimposed blue box represents the 
instantaneous field of view of the wide-area motion imaging 
sensor on board the aircraft. The aircraft orbits around the 
perimeter of the city while the urban core remains persistently 
within the field of view. 
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modeled as starting from randomly selected residential 
locations at a distributed set of times in the morning of the 
scenario with a destination randomly selected from the 
workplace distribution. A series of pauses and additional 
waypoints were then randomly selected for each vehicle 
to complete its waypoint list for the game duration. If a 
vehicle completed its waypoint list before the end of the 
scenario, it repeated the list until the scenario was over. 
This list of tracks and waypoints was then run through 
the same vehicle-motion modeling tool as used for the 
scenario tracks. To avoid confusing the game players and 
incurring possible false team decisions, the start, stop, and 
waypoint locations for background vehicles were filtered 
to reject areas that were at or near any of the static red 
scenario locations. Lastly, the track data were run through 
a process to apply noise to the true vehicle dynamics and 
to break tracks into multiple segments, thus mimicking 
the problems associated with optical multitarget tracking 
systems of the era.

Next, to generate the motion imagery dataset, we 
leveraged a technique from early video game graphics 
by which two-dimensional bitmap images, or sprites, are 
embedded into a larger image and then rendered as a 
single scene. To produce the base image, a graphic artist 
modified the original satellite image of the city to erase any 
vehicles visible on roadways and adjacent to sites associ-
ated with vehicle tracks in the scenario. Additionally, any 
people visible were also removed because the sensing 
concept used in the game instructs users that people are 
not visible at the resolution used. Next, exemplar vehicles, 
such as cars and trucks, were extracted from the unmod-
ified satellite image and turned into sprites. To produce 
the simulated vehicle movements, the vehicle track 
positions at each time step in the scenario were turned 
into pixel locations in the modified base image, and the 
vehicle sprites were rotated to the direction of travel and 
inserted onto the base image. The resulting new image 
was rendered with vehicles embedded. This process was 
repeated for each time step of the scenario to generate a 
full-scale motion imagery dataset. 

Lastly, we developed a dataset of text reports, or 
messages, to help give context to activities in the motion 
imagery data and to help keep the teams focused on the 
game objectives since teams will frequently get stuck on red 
herrings with the sensor data alone. In conjunction with the 
scenario creation, messages were written to tip the players 

to events of interest in the imagery, such as reporting 
of overt attacks. Each message contained information 
about the originating source—for example, regional news 
organizations, local law enforcement, NGOs, and coalition 
military forces—and about the time and location, with 
varying degrees of precision, that the text referenced. Some 
events generated multiple messages from multiple sources, 
requiring players to assess each message’s relevance and 
veracity with respect to the objectives of the game.

Game Architecture 
Because we wanted to employ a large degree of video data 
manipulation and collaborative tools and interfaces, we 
were unable to find an existing game development frame-
work that met all the requirements, so we developed our 
own purpose-built game architecture. The approach was 
to push as much of the processing and display tasks to 
server-side components so that the game client could be 
made lightweight and responsive to players. Additionally, 
we wanted all game state information stored on the 
server so that if players accidentally closed their game 
client, it could restart right where players left off with no 
information loss (this feature is especially important in 
teamwork settings). 

A game client named Bluestreak was developed 
in Java and built around NASA’s WorldWind, an 
open-source software development kit for visualizing 
and hosting geospatial data in a 3D globe-like interface 
[13]. A description of the user-interface features and a 
screenshot are discussed in Figure 4. In addition to the 
individual client features described in the figure caption, 
another major capability was the ability to collaborate 
across Bluestreak clients; for example, when a user made a 
placemark, i.e., a geospatial bookmark, on one client, that 
object showed up on all other clients, greatly improving 
shared awareness that underpins effective collaboration. 
Also included was a set of interfaces that the teams could 
use to codify their final decisions to enable automated 
scoring of their answers. All user actions executed in the 
tool, such as user-interface state changes, and all polling 
events, such as the geospatial and temporal extents of the 
current data displayed in the map, were recorded with 
specialized software instrumentation. 

The game server consisted of three major compo-
nents: a specialized imagery and geospatial data server, 
a relational database, and a web service communication 
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channel. The generated WAMI data was passed to 
Bluestreak through a custom-built JPEG2000 image 
server, designed to scale to multiple streams of imagery 
data sent to tens of clients. Hereafter, the term video will 
be used to refer to the viewing of these streams of motion 
imagery. The base satellite imagery and other geospatial 
data were served via an open-source web mapping system 
called MapServer [14] and translated into a pyramid of 
multiscale image tiles that can be efficiently passed to all 
the game clients for display. All game geospatial, message, 
and instrumentation data were read from or recorded to 
a PostgreSQL relational database, with PostGIS spatial 
database extensions. Lastly, publish and subscribe web 
service interfaces were used to transfer the data between 
the game server and game clients. 

Human-System Instrumentation 
From network operations control centers to expedi-
tionary military detachments, teams of humans 
interoperate with complicated systems to create complex 
sociotechnical enterprises. Within these enterprises, 
the most critical component of overall performance 
is that of the humans, yet their contribution is often 
the least understood. Traditional measurement 
methodologies, such as human observation, are often 
subjective and anecdotal and can suffer from biases and 

FIGURE 4. In the Bluestreak game client, the center 
map display fills the majority of the user interface 
and is flanked by configurable panels on the left and 
a custom timeline control on the bottom. The user-
interface panels on the left are user configurable to 
enable viewing of additional layers of data on the 
map display, including data provided as part of the 
game and data generated by players. Provided data 
include geographic information system data, such 
as named areas and locations of interest relevant 
to the scenario, or text displays that show reports 
received as part of the scenario. User data can be 
geospatial polylines of vehicle movements, called 
tracks; geospatial bookmarks made by users, called 
placemarks; and other information. The timeline 
control allows users to manipulate the rendering of 
imagery, vehicle tracks, and other data by using a 
single temporal extent or selectable time range. This 
function, which gives users the ability to scrub forward 
and backward in time and see patterns in the data 
as they render on the screen, is especially useful for 
analyzing the movement behaviors of vehicles.

differences in interpretation. Additionally, existing tools 
to measure human behavior can be qualitative and are 
insufficient in capturing intricate dynamics within an 
individual (intra-individual) and between individuals 
(inter-individual). Lastly, the time- and human-intensive 
collection of these data does not scale to large organi-
zational studies. These limitations hinder the ability of 
researchers to draw objective conclusions and under-
stand the parameters influencing team success. 

Over several years, we have developed a data-driven 
research methodology and technical framework, Humatics, 
to address the aforementioned challenges by quantitatively 
measuring human behavior, rigorously assessing human 
analytical and cognitive performance, and providing 
data-driven ways to improve the effectiveness of individ-
uals and teams. Humatics incorporates three major areas 
of research: system-level, physiological, and cognitive 
instrumentation; assessment methodology and metrics 
development; and performance feedback and behavioral 
recommendation. Figure 5 depicts our instantiation of this 
approach and its application to the study of teams’ abilities 
to effectively discover data, make sense of those data, and 
make decisions in the context of a serious game. 

The development of an instrumentation and data 
collection strategy for a given human-system research 
effort requires a careful consideration of the specific 
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learning objective for the process under study and the 
identification of observables to be measured to enable 
insight. A measurement strategy can then be based on 
which method and phenomenology are best suited to 
directly or indirectly measure those observables. For our 
research, specific instrumentation modalities were chosen 
to augment qualitative human observations with nearly 
continuous collection to enable the analysis of dynamic 
low-level behavioral signals. 

The first element of the framework in Figure 5 is the 
instrumented analyst workstation, where both system-level 
and physiological instrumentation are used to characterize 
human-system interactions. System-level instrumenta-
tion is accomplished through the insertion or enabling of 
software code that logs graphical user interface interac-
tion events, queries to and transactions with databases, 
the data visible to the user, and more. To add context to 
the data, screen recordings are continuously captured and 
a research-grade eye tracker detects the user’s location of 
gaze on the screen. This physiological information is used 
for cross-referencing the system-level data. 

The next element is cognitive instrumentation, which 
is used to measure behaviors associated with the cognitive 
processing of information. To quantify the comprehension 
and situational understanding of teams during scenario- 

based training or serious games, knowledge elicitation 
techniques are employed [15, 16]. Measuring a player’s or 
team’s understanding requires explicit elicitation of infor-
mation from individuals through a series of free-response 
and targeted multiple-choice or Likert-scale questions 
that are focused on the concepts of comprehension and 
inference development. Comprehension is a measure-
ment of the facts presented in the data (e.g., who, what, 
when, and where), such as the location and time of an 
attack, and an inference is a measure of a player’s inter-
pretation of the data (e.g., how and why), such as who 
a player believes facilitated the attack and the attacker’s 
possible motive. In addition to its use for gaze tracking 
on the screen, the eye tracker is used to perform pupil-
lometry (precise measurement of the pupil’s diameter) 
to noninvasively estimate human cognitive load [17], 
another facet of cognitive instrumentation. 

The last framework instrumentation modality 
uses wearable sensors called sociometric badges [18] 
to record nonlinguistic metadata of speech behaviors, 
body movement, and other data. Originally developed by 
the MIT Media Laboratory, the badges have often been 
employed in longitudinal studies of the communication 
patterns of large organizations. We used badges with 
modified firmware and custom post-processing software 

FIGURE 5. This diagram depicts the Humatics framework—a platform to measure and make sense of human analytical performance 
data. System-level, physiological, and cognitive sensors and instrumentation are used to produce rich quantitative data of 
human-human and human-system interactions. Instrumentation data are jointly processed with advanced metrics and turned into 
measures of human performance that are visualized in custom displays to provide performance feedback and pinpoint areas for 
behavioral recommendation.
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to increase granularity for small group dynamics within 
hierarchical teams. 

Our collected instrumentation data were processed 
with specialized metrics and used for real-time diagnostic 
displays or post-experiment assessment. Real-time 
displays allow for immediate team evaluation to enable 
behavioral redirection, while offline post-processing 
supports in-depth analysis and process improvement. 
Our team assessments are an example of the latter. 

Mechanics and Gameplay 

White Team 
The role of the white team (not to be confused with the 
white scenario actors) is to ensure the smooth, effective 
operation of the game. This oversight includes monitoring 
the physical setup and tear down of the gaming facilities, 
preparing and presenting all materials, conducting brief-
ings and training, and generally facilitating the overall 
event. As facilitators, the white team answered questions 
about tool use and reminded teams about overall objec-
tives, but they did not give away information about the 
scenario or provide feedback during gameplay about the 
relative effectiveness of different strategies. The white 
team provided real-time assessment at the end of the 
game and briefings of the results to the different team 
members. White team members included many of the 
original game developers and other staff who have exten-
sive experience with the game. 

Game Event Timeline 
After the initial test versions of the game were employed, 
we honed in on a game event process that would allow for 
four to 12 competitive teams per day to play through the 
exercise, depending on available hardware infrastructure 
and white team members, with a game event lasting one 
or two days. More than 80 teams and 400 participants 
have played this game over the life cycle of this research 
effort, and we have analyzed in detail a large subset of 
these teams. 

We began the game event process by obtaining 
informed consent from the participants in accordance 
with approved human-subject research protocols. During 
different phases of this research, we recruited subjects 
from a wide population that included college students, 
scientists, engineers, professional military analysts, 

military instructors, and senior government officials. 
Next, the participants received introductory briefings that 
highlighted the research purpose and goals, and provided 
background knowledge, such as a primer on social network 
analysis. The network analysis primer is critical to success 
in the exercise because it introduces concepts about how 
people and facilities are associated in a network, what 
differences exist between static and transient location types, 
how leadership is often isolated within dark networks, and 
how to build and interpret graph network diagrams. After 
the background presentations, participants received a live 
plenary tool demonstration, followed by a mission briefing 
that oriented them to the scenario and tasks they would 
be required to perform. This presentation was designed 
with the look and feel of a military-style mission briefing, 
with fragmentary operational orders defining the rules of 
engagement, an overview of the city and its destabilization, 
an overview of the remote sensing and other data capabil-
ities available to teams, and a review of possible end-state 
courses of action and recommended decision criteria. 

Next, individuals were assigned to teams, known 
as the blue teams, through a process that used limited 
demographic data collected during orientation to attempt 
to balance the team members’ backgrounds, skill sets, 
seniority, and organizational affiliations. Teams then 
moved to separate rooms where they could play the 
game and deliberate in private, and where individual-
ized training on the game tools would take place. The 
white team used training checklists to ensure that each 
participant had a minimum proficiency with the game 
software. Next, a team strategy session took place, and 
teams prepared for a practice scenario. The purpose of 
the practice scenario was three-fold: to try out the plans 
of action that teams developed in the strategy session, 
to identify any areas of training that needed reviewing, 
and to be familiarized with each facet of the gameplay. 
A second team strategy session allowed teams to discuss 
what went well and what went wrong during practice, and 
regroup before the start of the main exercise. 

During a short break after the main exercise, the blue 
teams moved back to the plenary room while the white 
team scored and analyzed the teams’ performance. In 
a following “hotwash,” a representative from each team 
explained to all participants what that person’s team 
believed happened in the scenario and what approach 
that team took. Then, the white team gave the scenario 
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reveal, which described step by step all the activities 
within the scenario and the information that teams 
should have found and the decisions that they should have 
made. Finally, the scoring and performance assessment 
results were presented and winners received an inexpen-
sive trophy. In practice, we found that teams compete 
fiercely for the chance to win even an inexpensive trophy, 
and organizational affiliation and pride also significantly 
affect team competitiveness and engagement. 

The usual game block lasted four hours, with the main 
exercise taking up about one and a half hours; generally, 
two game blocks were performed per day with as many as 
six concurrent teams per block. Some of the earliest games 
required eight hours of gameplay per team, but we later 
switched to a shorter, simplified game format to focus on 
specific teamwork and decision-making facets of the game 
and to yield more games played per game event.

Blue Team Strategy 
One of the challenges of collaborative games is that 
team members often do not know one another or have 
not worked together previously. Because this arrange-
ment can lead to ineffective team dynamics, one of the 
purposes of the two team strategy sessions is to force a 
dialog between the individual players to get them to think 
about team structure and roles. During these sessions, we 
instructed the teams to consider these five major facets: 
• Approach. Teams should think about the scenario 

briefing and decide on an initial concept of opera-
tions, which they can later refine in the second strategy 
session once they’ve tried it in practice. Members 
should also discuss their assumptions about the 
scenario, their risk tolerance, and other factors so that 
there is less potential for conflicting ideals later in the 
game. They should also decide if they want to use some 
of the automated tools provided in the game software 
or stick with a more manual tradecraft. 

• Resource allocation. Teams are provided one less game 
workstation than the number of team members, so 
they need to decide how to allocate their human and 
compute resources. In early testing, we found that if 
we gave every player a workstation, the members failed 
to organize into a team, and by having one less game 
client than players, hierarchies formed with one player 
taking a leadership and integration role and the rest 
taking on the discovery tasks. Teams also have the 

option of not using all of the workstations, and some 
opt for a pair programming model with two players 
collaborating around a single workstation. 

• Team roles. Teams need to decide who plays what 
roles, generally leader and worker roles. Leaders 
solicit workers for the latest information to synthe-
size into higher-level meaning and also often serve a 
scribe function by categorizing this information on the 
provided whiteboard or other means. The worker roles 
break out into a multitude of possible tasks, such as 
tracking vehicles from source to destination, watching 
for new messages to alert the team, and building the 
network, either on a whiteboard or in the graph tool 
in the game client. Multiple players may take on any 
of the leadership or worker positions, and it’s up to the 
team to self-organize their gameplay. 

• Collaboration. Teams must ask how they will function 
and collaborate on the tasks that need to be performed. 
For example, who will assign tasks and track their 
status, and who will monitor work that has been 
done? Because the game client provides a number of 
ways to annotate with text and color the information 
discovered and input it into the software, teams should 
discuss naming and color conventions, such as putting 
player initials on information or using the color of 
annotation to label potential decision criteria. 

• Decision making. Teams must decide how to select a 
course of action related to the sites they have discovered 
in the game. They should discuss if they want to make 
decisions as they discover new information or wait until 
the end to take stock of all available information. They 
should also determine how aggressively or conservatively 
to play, judging how their decisions and the ensuing risks 
and rewards impact scoring and game performance. 

Gameplay 
After all the training, practice, and strategy sessions, 
gameplay on the main scenario began with two to six 
concurrent competitive teams. Teams contained between 
three and eight players, with the standard configuration 
being five—four players on computers and one team leader. 
The task given to the teams during the mission briefing 
was to uncover as many of the sites (locations) used by the 
red network to perpetrate the attacks in the scenario, and 
then to make recommendations on a course of action for 
each discovered location by the end of gameplay. Within 
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the game were two main phases: the discovery phase, in 
which players analyzed the video, track, and message data 
to discover red activities and their associated locations, 
and the decision phase, in which players synthesized their 
collected information and adjudicated their uncertainty 
and risk to choose courses of action. How teams moved 
between the two phases was one of preference: some 

teams spent the first 80 percent of gameplay discovering 
information and the last 20 percent making decisions, 
and other teams assigned potential courses of actions to 
sites as they discovered them and continually adjudicated 
those decisions throughout gameplay. A visual depiction 
of the game workflow, broken down by the two phases, is 
shown in Figure 6. 
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FIGURE 6. A canonical workflow diagram of gameplay provides a visual of which steps in the workflow map to specific measures of 
human performance in the game. The top half of the diagram shows the discovery phase of the game, during which players triage 
and make sense of game data to discover the network of actors and facilities they are trying to uncover. The lower half of diagram 
represents the decision phase of the game, during which players adjudicate the information they discovered and make risk-informed 
decisions regarding which locations they believe are part of the scenario network and how strong a course of action should be taken 
against those locations. Each of the three different types (colors) of game performance was the focus of a large human-subject 
experiment and assessment.
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As the scenario began, teams were alerted in 
real-time to events unfolding in the scenario via messages 
that arrived and were cued to the place and time in the 
video associated with the messages. Players observed 
the events in the video and adjudicated the relevance 
and veracity of the associated messages since messages 
can be factual or ambiguous depending on the message 
source. If the location of the activity in the message was 
of interest, players made a placemark there and then 
queried for tracks that either originated or arrived from 
that location. They then determined if any of the tracks 
were associated with the event through spatio-temporal 
analysis of the video. Players followed tracks associated 
with the previous red activity to their source or destina-
tion and entered placemarks at those locations to indicate 
potential association with red activity. As the scenario 
evolved, more messages came in, cueing players to other 
locations of both relevant and nonrelevant activities. 
Through the association of video vehicle tracks with their 
user placemarks, players built out the network of red sites. 
Teams could catalog their understanding of the network 
as it evolved by using tools within Bluestreak or on the 
provided whiteboards and large-format notepads. 

As the teams entered the final decision phase, they 
went through each of the placemarks believed to be 
associated with the red network, discussed the evidence 
they had accrued about that site and the courses of action 
they should take, and then chose from three potential 
actions in the placemark menu: 
• Assault. Sites that should be assaulted are those that 

have a static association with the red network and that, 
if law enforcement or military were sent to interdict 
these facilities, would certainly reveal red personnel or 
material. Examples of sites to assault are safe houses, 
weapons caches, and the red headquarters. 

• Surveil. Sites for which the team cannot determine if 
they should be assaulted or regarded as transient sites 
associated with temporary red activity, and should be 
nominated for continued surveillance because they 
may be associated with red activities in the future. 
Examples of surveil sites are attack staging areas, the 
garrison of the local army, and long-duration stops by 
red vehicles. 

• No action. No action should be chosen for all place-
marks that are not associated with the red network and 
are innocuous. 

This process continued until all placemarks were 
adjudicated and courses of action chosen, with no action 
being the default action. As teams approached the expira-
tion of game time, team dynamics became very animated, 
often with heated discussion and a frenetic pace of locking 
in and checking all course-of-action choices. An example 
of gameplay can be seen in Figure 7. 

Team Scoring and Evaluation 
Depending on the game event, teams are evaluated 
across multiple performance factors, including decision 
making, information discovery, and verbal communi-
cation, with team decision performance as the primary 
mechanism for declaring a winner. After the teams 

FIGURE 7. Participants engaged in an exercise with the Naval Special Warfare Command. The analysis discovery phase of the 
exercise is picured in (a), and (b) shows the later decision-making phase.

(a) (b)Photo: U.S. Navy Photo: U.S. Navy
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finished the game and their decisions were stored in 
Bluestreak, a server-side scoring script was run to take 
into account several factors, such as geospatial close-
ness, to determine which teams correctly identified 
the location and value of each of the red sites in the 
scenario. A scoring matrix was used to award points to 
each correctly identified site and points were subtracted 
for incorrect decisions, as detailed in Figure 8. 

For red facilities, the correct decision in the game was 
to assault, and it earned the most points. If the facility 
was surveilled instead, then half the point value was 
awarded because some information was gained, and if no 
action was chosen, then points were deducted because the 
opportunity for some discovery was lost. For red activ-
ities, the correct action was to surveil them and points 
were awarded accordingly. If a red activity was assaulted, 
points were deducted because this action added risk to 
the interdicting force and lost good will with the local 
population when an innocuous location was assaulted. If 
no action was chosen for red activities, then points were 
neither awarded nor deducted. For gray sites, or those 
involving the background populous, points were deducted 

for an incorrect assault and for a surveil because these 
actions lost good will and wasted surveillance resources. 
The correct action for all gray sites was no action. 

The weights of the points between the levels of the 
courses of action and their correct and incorrect value 
were constructed to match the concept of the scenario 
while also prohibiting teams from trying to “game” the 
game. Point values for the red facilities and red activities 
were totaled into a single score for each team, and the 
team with the highest score of the game event won. Often, 
scores could be negative if teams were aggressive in their 
approach, and if a tie occurred, additional performance 
measures were used to break the tie. 

Experimentation Phase 1: User-Centered Tool 
Development 
Considering the work involved in the development of the 
sensor and traffic simulation models and the complex 
scenario, we knew that completing this game would be 
challenging and that some tooling and automation would 
be required, especially with respect to information organi-
zation and knowledge management, for the game to be 
effective. However, rather than building those capabil-
ities into the initial iteration of the game software, we 
wanted to use this opportunity to learn new methods for 
designing effective human-system tools. 

In general, users are ineffectual at explaining to 
others what is hard for them and what types of capabil-
ities would improve their work process. Frameworks 
like user-centered design have gone a long way toward 
analyzing and envisioning how users are likely to use 
technology, and then validating those user behavior 
assumptions with real-world tests and evaluation [19]. 
In our case, because we were working with a new type 
of data, WAMI, with no established workflows and best 
practices, explicitly studying the intended user was not 
straightforward. Instead, we wanted to see if gameplay 
could be used to implicitly learn what tasks were hard 
for users and where in the process there was friction. Our 
approach was to study user solutions to the game in the 
absence of the needed tooling and then turn our observa-
tions and user artifacts into a requirements specification 
for developing new user-centered capabilities. Once those 
new capabilities were developed, we could use the same 
methods to deploy the capabilities, measure their utility, 
and retool them to be more effective. 
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FIGURE 8. In the scoring matrix used to adjudicate the decision-
making performance of teams during the game, the columns 
represent three classes of locations, or sites, and the rows 
correspond to three levels of courses of action the teams can 
assign to each instance and class of sites discovered during the 
game. Cells shaded in green indicate that the team’s chosen 
course of action was appropriate for the respective class of site, 
resulting in a gain of points, and red cells represent a course of 
action that was inappropriate, resulting in the loss of points. Gray 
cells represent action and class mappings for which points were 
neither gained nor lost. 
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Experiment Design for Requirements Generation 
In this phase of research, we wanted to better understand 
how users might best use real-time video information to 
aid network discovery during an unfolding event. We 
designed an experiment in which users had a static base 
satellite image on their map display and the ability to 
overlay streams of up to eight real-time 100-meter-by-
100-meter video chips from the airborne WAMI sensor’s 
field of view. Users could slave those chips to follow a 
specific vehicle or persistently stare at a location on 
the ground. In this construct, players not only had to 
manage their human and compute resources but also 
their sensor resources. While video was only available 
within the eight available chips, track positions of 
vehicles were available across the entire sensor field of 
view. However, when vehicles stopped within the scene, 
the track broke and started with a new track identifier as 
the vehicle started moving again, thus requiring teams 
to devise methods for how best to mentally stitch all 
these tracks back into a single vehicle journey. We knew 
bookkeeping was going to be a challenge in this experi-
ment but wanted to see the methods that teams came up 
with through gameplay. 

A series of team games was deployed, and we used 
both photographic and room video recordings to track 
how teams discussed and captured information via 

the whiteboard and hardcopy maps. Among the many 
different approaches to capturing and coding the game 
network information were the two examples of this 
instrumentation seen in Figure 9. 

By studying how teams solved various problems 
through different methods on the whiteboard and paper 
map, we determined the requirements for a set of tools 
that users would have liked to have had during the 
exercise. Figure 10 shows how a team’s map suggests ideas 
for a new tool. In this example, a player could benefit from 
a network visualization tool that is integrated with the 
map and track paradigms within the game client. The 
requirements for the tool fall into three groups of network 
information representation: 
• Node information. Users would like the ability to 

customize the names of sites (nodes) with their own 
annotations and to represent track metadata, such as 
the duration of a vehicle stop, as attributes of a partic-
ular node. 

• Link information. Users would like the ability to 
visualize track metadata along links (tracks) between 
nodes (sites); such metadata could include name 
annotations, departure and arrival times, autogene-
rated track identifiers associated with a track, and the 
number of track (vehicle) counts between two nodes. 

• Graph layout. Users would like to represent 

FIGURE 9. Teams used a whiteboard and map to manually organize information during gameplay. The image in (a) shows a node-and-
link network diagram representing different sites (circles) discovered in the game data and the vehicle tracks between them (lines). Also 
annotated on this diagram are names given to each of the sites and tracks by the teams, and the start and stop times of the vehicle 
journeys. The image in (b) shows a geospatial network view of similar information using markers and sticky notes on a laminated map.

(a) (b)
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source-to-destination directionality of tracks and 
to minimize the crossing of links in the graph 
representation. 

Development of Network Analysis Tools 
Our requirements development process led to three new 
major features that were added into Bluestreak and the 
back-end game architecture:
• Joint space-time queries. In the initial iterations of 

the game, if players had interest in vehicles that may 
depart or arrive from a site of interest, they would 
have to scrub through all of the temporal extents of 
the data to find tracks. To increase the efficiency of this 
operation, we created a feature called Nomination to 
allow players to choose a point on the map, a temporal 
extent, such as 30 minutes before and 30 minutes after 
the current time step, and a geographic radius, such as 
50 meters around the selected point. The game server 
would retrieve all tracks that matched that joint space-
time query and display those to players. 

• Track repair tool. As mentioned in the section on data 
generation, track breaks were introduced to mimic the 
real-world performance of optical multitarget tracking 
systems of the day. With those systems, tracks would 
manifest as single source-to-destination journeys and 

comprise multiple track segments, requiring players 
to monitor which track identifications corresponded 
to which vehicle journey. To improve this process, we 
developed a tool named Bloodhound to allow players 
to use the video data to positively identify when the 
same vehicle is responsible for the end of one track 
and the start of another. Bloodhound then lets players 
stitch those two system tracks into an analyst track, 
greatly simplifying the information management and 
network representation.

• Integrated network visualization tools. As shown in 
Figures 9 and 10, organizing and visualizing all of 
the information related to the sites and tracks that 
form the scenario network requires a lot of effort and 
bookkeeping to be useful for unraveling the game 
scenario. The new Nomination and Bloodhound 
features enabled the players to quickly find tracks 
associated with points of interest and quickly repair 
them from source to destination, allowing the network 
to be rapidly built out and effectively visualized. 
We developed two graph visualization tools, one to 
produce abstract node-and-link diagrams and one to 
produce a geospatial node-and-link diagram showing 
the spatial representation of the sites and tracks in 
network. An example of both representations can be 

FIGURE 10. Studying how teams manually organized their information can provide insight on ways to improve information 
management through new tool development and optimization of existing capabilities. In this example, the callouts detail software 
requirements or features that would address some of the information management and visual layout needs of building a network 
diagram of sites of interest and the vehicle tracks that transit between them.
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seen in Figure 11. While abstract node-link diagrams 
have been used for a long time, the geospatial graph 
was entirely novel at the time of development. Lastly, 
one additional key feature of the abstract graph is that 
it was built to be fully collaborative with the other game 
clients, so when one player moved a node on a client, 
the node also moved on all the other game clients, 
allowing teams to have true shared representations. 

Utility Assessment 
After some initial user testing of the new tools, a series of 
game exercises was employed to assess the utility of these 
tools in improving the abilities of teams and reducing some 
of the human-intensive aspects of the network discovery 
and information management. During the debriefings 
from these exercises, we found that in general the players 
really liked the Nomination feature to find tracks associ-
ated with a site of interest. However, the judicious use of 
this feature had an unintended consequence. The tool 
developers thought that after a Nomination was executed 
and the results returned, it would be convenient for the 

player to have the site and tracks associated with the 
Nomination automatically placed on the graph. But this 
automation ended up cluttering the graph displays with 
both user-placed and system-placed information, with 
no clear distinction between the two. Once this clutter 
occurred, the team stopped using the graph tool and went 
back to using the whiteboard because that was a repre-
sentation over which they had full control. One player 
described the automated placement function as similar to 
using the top of a desk to store documents that need to be 
read, without realizing that other people would constantly 
place other documents on the desktop, rendering it useless 
as an organizational mechanism. 

To fix the placement problem, we added a step that 
asks users after they make a Nomination query if they 
also want the results added to the graph. The graph tools 
then started to provide great utility for network organi-
zation, and several winning teams in this testing phase 
used it exclusively. A comparison of a graph cluttered 
by the system and one built solely by players is depicted 
in Figure 12. This example of gameplay forcing users to 

(a) (b)

FIGURE 11. Abstract and geospatial graph representation tools are developed through a user-centered requirements process. In the 
abstract graph view (a), the circles (nodes) represent locations visited by a vehicle, and the squares represent an intermediate stop 
of a vehicle. The lines (edges) that connect the circles and squares correspond to discrete vehicle tracks between two locations, 
and arrows represent the directionality track moving between the sites. Similarly, (b) is the geospatial graph view. The blue circles, 
squares, and lines have the same connotations as the symbols in the abstract view; however, the edges now follow the full geospatial 
extent of the tracks they represent. Additionally, the multicolor pushpin icons represent placemarks of interest to the team.
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evaluate what parts of new features have utility and which 
need refinement or reimagining was much more efficient 
and effective than simply asking users how they might 
make use of a particular tool or feature.

In addition to qualitative analysis of user experi-
ence, we leveraged the game client instrumentation to 

characterize how well players used the eight available 
video chips described in the experiment design. In the 
initial games without the improved tools, the imagery 
analysis and information management tasks dominated 
the teams’ time, precluding their ability to make best use 
of the eight possible video feeds, as shown in Figure 13a. 

(a) (b)

FIGURE 12. Network graphs are generated by players during utility testing of new tools. The circles (nodes) represent locations visited 
by a vehicle, and the squares represent an intermediate stop of a vehicle. The lines (edges) that connect the circles and squares 
correspond to discrete vehicle tracks between two locations. The diagram in (a) is from a game in which automation added information 
to the user’s graph, inadvertently cluttering the workspace with information of unknown provenance and limiting the utility of the tool. 
The diagram in (b) is a user graph from a subsequent exercise in which players were given the option to accept or reject automated 
information, leading to much more effective use of the tool because of a greater understanding and trust of the automation. 
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FIGURE 13. The plots provide an analysis of video feed utilization by game players. The x-axis represents the elapsed time during 
gameplay. The y-axis represents the number of instantaneous video feeds being viewed by a team at a given time step, with 0 
representing no feeds in use and 8 representing all the feeds being used. The maximum number of feeds is represented by the 
dashed red line and the average number of feeds used is represented by the dashed blue line. Case (a) shows video utilization with 
the baseline tooling that precluded effective use of the video feeds, with an instantaneous average of 1.3 video chips. Case (b) shows 
improved video usage after new tools were deployed in a subsequent game to better integrate the video into the workflow and reduce 
the human-intensive nature of using the video, with an instantaneous average of 2.9 chips. Case (c) shows increased video usage after 
refinements were made to the new tools in response to targeted user feedback, with an instantaneous average of 4.8 chips.
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The plot in Figure 13b details increased video utiliza-
tion after the deployment of the new network analysis 
tools (Nomination and Bloodhound) that improved the 
integration of the video feeds into the workflow. The plot 
in Figure 13c shows both additional increased video usage 
after the user-feedback process led to the refinement 
of the new tools and more effective use of the graph to 
organize and prioritize work. 

Besides analyzing video utilization, we looked at how 
well teams kept up with real-time information as the 
scenario evolved because this ability is often associated 
with stronger game performance and decision making. 
Instrumentation was built into the Bluestreak game client 
that logs both the elapsed game time when players are 
looking at data and the point in the scenario timeline that 
the data are referencing. An example of this instrumen-
tation data is shown in Figure 14. As the scenario began, 
an abundance of activity caused teams to spend a lot of 
time looking forensically at older data to orient themselves 
before they felt comfortable reviewing new data arriving 
in near-real time. Through our analyses, we found that the 
addition of the three network analysis tools shortened the 
amount of game time teams spent observing data forensi-
cally before they transitioned to real-time operations. 

Experimentation Phase 2: Assessing Teamwork 
and Decision-Making Performance 
A major finding from our first phase of experiments was 
that team dynamics played a critical role in the outcome 
of the game, and anecdotally we could often predict just 
by observing the strategy sessions and gameplay which 
teams would do well at decision making. We had teams 
that were introverted and precise in their coordination 
and communication, and we had teams that were verbose 
and constantly challenging each other’s assumptions; both 
of these team dynamics were found to be successful. The 
success of two almost opposite styles of teamwork made 
us want to understand on a granular level the underlying 
factors that influenced success. We designed a set of experi-
ments to study teamwork and its effect on decision making. 
For these experiments, we modified the game format and 
employed the Humatics human-system instrumentation 
framework to augment our qualitative human observations 
with quantitative, persistent, and objective measurements 
of human-system behavior. By jointly processing the 
collected multimodal instrumentation data, we could make 

holistic characterizations of human-human and human-
system interaction. The fidelity and granularity of these 
data were informative and, in some instances, could predict 
performance in the activities being measured [20]. 

Experiment Design for Instrumenting the 
Analysis and Decision Processes 
To implement the second phase of experiments, we 
modified the format of the game to emphasize the 
team collaboration and decision-making components 
and to reduce human-intensive data analysis aspects of 
the original game. In this second format, we made the 
following primary modifications:
• Shortened the length of the scenario by half so that 

gameplay and the overall game event would be shorter.
• Changed the sensing concept to make all motion 

imagery available to players across the entire field of 
regard at the start of the game; having all the video 
data rather than only eight small time-based video 
chips would increase information discovery. 

• Replaced the track dataset, including its track breaks 
and sensor ambiguities, with the ground truth track 

FIGURE 14. The plot depicts an analysis of how timely teams 
were at keeping up with real-time game data as the scenario 
evolved. The x-axis represents the elapsed game time from 
the beginning to the end. The y-axis represents the time in the 
scenario that the data references. Each green dot represents 
a record of these two timestamps, achieved through the 
software instrumentation within the game client. A team 
analyzing the data in real time would create green dots across 
the diagonal, and any dots below the diagonal represent a 
forensic examination of data. As teams oriented to the initial 
set of activities in the scenario, they began to view the arriving 
data and often did deep backward dives in time to assess all 
activities at a particular location. 
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data to allow players to focus on determining the 
connections between source and destination locations 
rather than spending a lot of time stitching together 
broken tracks.

• Increased the number and relevance of the game 
messages to ensure teams focused on the game 
objectives.

We also made improvements to the staging of the 
game event by standardizing training processes, materials 
given to teams, and types of information provided by game 
docents to players. The intent of this standardization was to 
reduce as much variability in the game events as possible so 
that the game could be run many times with different teams 
to produce a dataset for follow-on human-subject research.

Team Assessment Case Study 
To assess human performance during the game, we 
decomposed each major step of the workflow and mapped 
it to instrumentation data and performance metrics that 
characterize players’ behaviors. As noted in Figure 6, 
three major facets of performance emerged: client inter-
action, information triage, and discovery and decision. 
Additionally, the performance of this entire workflow is 
underpinned by a team’s ability to effectively organize and 
collaborate through face-to-face communication. Our case 

study of four five-member teams illustrates how system-
level and physiological instrumentation can be used to 
better characterize a team’s performance during gameplay. 

Game Client Interaction Performance 
Software instrumentation built into Bluestreak recorded 
various user interactions both on demand and at specific 
intervals. The recorded data can be used to understand 
macro behaviors, such as the volume or rate of interac-
tions with specific tools in the client. For example, by 
recording placemark creation and modification attri-
butes, we can quantify team analytical behaviors in the 
workflow as a function of time. These data can also be 
used to analyze micro behaviors, such as a user’s current 
look at geospatial data, known as the viewport [9]. 
Viewport data are recorded each second and include the 
current time of gameplay, the time in the scenario being 
displayed, and the geospatial bounding box of the video 
footprint in the map section of Bluestreak. An example of 
viewport instrumentation is shown in Figure 15. 

Scenario Information Triage Performance 
After the viewport data were logged, they were correlated 
with the scenario ground truth and processed using 
specialized information theoretic metrics [9, 21] to 

(a) (b)

FIGURE 15. In this illustration of viewport instrumentation, the game client (a) is viewing a portion of the video data, whose viewport, 
or geospatial extents, are represented by the orange box on the game client and heat map (b), as indicated by the orange arrow. In 
the viewport heat map, areas of magenta represent areas in which the teams viewed a large amount of video data, whereas the cyan 
areas indicate areas looked at infrequently. These heat maps can be used to understand a team’s geospatial analysis strategy.
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determine which relevant (scenario network) and irrele-
vant (background population) tracks or sites were being 
viewed at each scenario time step. 

A graphical representation of the scenario and 
background track information, shown in Figure 16a, was 
used to assess a team’s ability to effectively triage vehicle 
track data. If players were properly interpreting the infor-
mation in the report messages, they should have focused 
only on the red scenario vehicle tracks and not the yellow 
background population tracks. As shown in Figure 16b, 
the performance of Team 3 and Team 4 plateaued as the 
scenario evolved, whereas Team 1 and Team 2 continued 
to find and analyze more relevant (red) scenario tracks 
throughout gameplay. 

A graphical representation of the scenario red sites is 
shown in Figure 17a. If players are properly interpreting 
the information in the report messages, they should focus 
only on vehicle behaviors and activities around the sites 
with the red icons and not on the ones denoted with 
yellow dots that indicate locations of the background 
population not associated with the red network. 

Similarly, Figure 17b illustrates teams’ ability to effec-
tively triage video of site-related activities. As the figure 
shows, Team 1 and Team 2 spent substantially more effort 
observing scenario site information compared to Team 3 
and Team 4. In many cases, teams spent a lot of time 
analyzing sites but ultimately chose an incorrect action 
or took no action at all. 

Team Discovery and Decision-Making 
Performance 
Because the scenario was constructed to have the scenario 
activities completely separated from the background 
activity, the game can be analyzed from the perspective of 
signal detection theory. Essentially, teams can be consid-
ered detectors of scenario network activity in that they 
are attempting to extract these signals from the noise of 
the normal activities of the rest of the population [10]. 
The receiver operating characteristics (ROC) measure-
ments of detection theory can be used to assess the teams’ 
performance (Figure 18). 

Results from two different tasks are plotted: the 
discovery of scenario sites, which is measured by team 
placemarks at those sites, and the declaration of scenario 
sites, which is the subset of the total placemarks that are 
assigned a course-of-action decision. Decision actions are 

(a)
Scenario vehicle track Background vehicle track

FIGURE 16. Team vehicle triage performance is depicted in the 
two plots. The plot in (a) shows the extents of all vehicle track 
data in the game, with the red lines denoting tracks associated 
with the scenario network vehicles and the yellow denoting tracks 
of background population tracks. The plot in (b) shows the team 
triage performance, with the y-axis representing the percentage of 
total red tracks observed in the video and the x-axis representing 
the number of minutes elapsed since the start of the game.
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directly related to the teams’ comprehension of the scenario 
and their confidence in that understanding. For example, it 
can be seen that Team 2 had placemarks on 100 percent of 
the scenario sites but only had the confidence to declare 30 
percent of those sites. They also declared sites not part of 
the network, resulting in a 0.2 percent probability of false 
declaration. Team 4 had discovery performance similar to 

that of Team 1 and zero probability of false declaration. 
Team 1 had the highest detection probability but at the 
expense of more false declarations. 

Team Verbal Communication Performance 
Face-to-face communication is a key factor in overall 
team performance for highly cooperative tasks [22–25]. 
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FIGURE 17. Team site triage performance is depicted. The plot in (a) shows the scenario sites to be discovered, annotated with red 
icons, and the background sites, denoted with yellow dots. The table in (b) shows teams’ performance at accumulating information 
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FIGURE 18. In this receiver operating 
characteristics plot, the y-axis represents 
the probability of correct declaration, or the 
fraction of correct sites found and acted upon 
by the teams, and the x-axis represents the 
probability of false declaration, or the ratio of 
incorrect sites declared divided by the total 
possible discoverable sites. The blue squares 
represent decision performance for sites 
that were declared to be associated with the 
network. The red circles show the fraction of 
all sites that were correctly discovered before 
the course-of-action selection process. The 
black arrows show the amount of performance 
lost moving from the information discovery 
process to the decision process, with the 
amount of performance loss a factor of each 
team’s certainty about their understanding 
of the scenario, their risk tolerance, and their 
approach to making decisions.
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Player CPlayer D

Player E Player E

Player CPlayer D

Player B

Team 1 Team 2

Traditional methods to characterize these communica-
tions have largely focused on speech content; however, 
more recent methods center on the collection of nonlin-
guistic speech features that enable the characterization of 
team dynamics without having to analyze the linguistic 
content of a team’s utterances [18, 23]. 

To collect speech metadata, we gave sociometric 
badges to each player during gameplay (Figure 19). The 
badges continuously recorded the time, duration, and 
identity of each player’s speech, and post-processing 
software provided measurements of when a player 
spoke alone, when speech overlapped with another 
player, which players were listening, and when players 
were silent. These data naturally formed a directed 
graph of communication between players (Figure 20). 
For simplicity, graphs for only Team 1 and Team 2 are 
provided here. 

Previous studies of face-to-face communication 
behaviors of small teams in a collaborative setting have 
found that balanced participation and speaking time 
along with increased turn-taking are associated with 
better team performance [26]. In Figure 20, Team 1 
players A and C are dominating the conversation, as seen 
by their edge thicknesses, while the rest of the players are 

FIGURE 19. A U.S. Navy service member wears a sensor 
called a sociometric badge (a) that can record nonlinguistic 
metadata of speech behaviors, body movement, and other 
data. The battery-powered badge (b) incorporates a number 
of sensors, including a microphone, wireless and infrared 
transceivers, and a three-axis accelerometer. Microphones 
combined with specialized filters and signal processing 
characterize when the wearer is speaking. Wireless and 
infrared transceivers allow the badges to identify other badges 
proximal to them, and when data from the nearby badges are 
combined with the speech data, the communication patterns 
of who speaks to whom within a team can be determined. This 
directed speaking data can be used to measure team-based 
speech behaviors, such as turn-taking and interruptions. The 
accelerometer data can determine features associated with 
excitement and engagement.

FIGURE 20. The graphs illustrate face-to-face communication networks. Vertices (circles) represent players and edges (lines) 
represent directed communication from one player to another. Vertex size is proportional to total participation for a player, edge 
thickness is proportional to directed speech time to each teammate, and edge color indicates directionality by matching the source 
vertex color. 

(a) (b)
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less engaged with lower participation (smaller vertices) 
and less speaking time (thinner edges). Conversely, 
Team 2 has a much more balanced distribution of both 
speaking time and participation than Team 1, with player 
A acting in the role of team leader. Analysis that uses such 
graph data is a promising area of active research into 
group influencers and team role estimation [27]. 

For deeper insight into the communication network, 
we explored a social network analysis approach to charac-
terizing player interaction. By computing the directed, 
normalized closeness centrality of each player [28], we 
can derive an estimate of the connectedness of players. 
Larger centrality magnitudes indicate a player’s graph 
closeness to all other players. One useful application of 
this measure is to inspect the time-varying behavior of 
player centrality [29] during gameplay (Figure 21). In the 
figure, the visual representation of Team 1’s and Team 2’s 
closeness centrality can be useful for identifying team 
dynamics, such as the emergence of a leader. In Team 1, 
we see the same communication dominance exhibited by 
players A and C as seen in Figure 20. In Team 2, player A 
clearly emerges as the leader during the discovery phase 
of the game, with A’s centrality decreasing toward the 
end when the team moved into the collective decision-
making phase of the game. 

In addition to performing a social network analysis, we 
did a recurrent pattern analysis that used the data collected 
by the sociometric badges. First, speech patterns were 
coded into symbols according to various speech behav-
iors and then analyzed as a time series [30]. The strength 
of the recurrent structure within these code sequences is 
called determinism (DET). In a strict turn-taking situation, 
DET will be high (near 100 percent) as the conversation is 
highly structured. In a situation with random speech inter-
vals, DET will be low (close to 0 percent), indicating that 
the conversation is highly unstructured. DET scores were 
comparable for the four teams, with local maxima near 60 
percent and local minima near 30 percent. Fluctuations 
in the values occurred over time, indicating that the struc-
ture of the communication ebbed and flowed throughout 
gameplay. Further analysis showed a high correlation 
between DET magnitude and the percentage of time an 
individual spoke while all others listened, suggesting that 
structure occurs, even in a complex team setting with five 
participants, when individuals speak and others listen. 

Total Team Performance 
We quantitatively measured team performance at several 
points in the overall game workflow. However, combining 
these metrics into a single total performance measure 

FIGURE 21. The plots depict the time-varying player communication centrality. Centrality is a social network analysis measure 
that can be used to identify the most important vertices in a network. The directed normalized closeness centrality of each player 
is an estimate of the connectedness of players in a network. The x-axis represents elapsed time during gameplay, and the y-axis 
represents the centrality of a player. Larger centrality magnitudes indicate a player’s graph closeness to all other players. In both 
teams, player A is considered the leader and transitions to gain the highest centrality midway through the game. Qualitative 
observations during gameplay supported these findings. 
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game client interaction was also associated with more 
effective observations of scenario site information and 
track information. Essentially, teams who were more 
effective at interacting with the functions of the game 
client observed more relevant scenario information and 
found more correct sites. 

• Information triage effectiveness. The second propo-
sition asked whether discovery of more scenario 
information led to better game outcomes. From our 
analysis, we found that teams who observed more 
relevant scenario site information and track informa-
tion also scored higher in game outcome. The overall 
game score takes into account several aspects of how 
well the players perform, but it also encapsulates the 
confidence of players’ decisions (course–of-action 
strength) and reflects their overall strategy for the 
game (aggressive to risk averse). 

• Team communication effectiveness. The third propo-
sition asked whether teams who communicate more 
effectively have higher game performance. Our 
analysis found that teams who communicated more 
(total time) throughout the exercise also observed 
more relevant scenario site information and track 
information. Additionally, teams who had higher 
participation (frequency of communication) from 
all members throughout the game also observed 
more relevant scenario site information and track 
information. Lastly, teams who communicated more 
(total time) throughout the exercise also made better 
decisions on the most challenging sites to adjudicate. 
These findings about total team engagement and 
participation agree with our qualitative observations 
of teams during the decision-making process. Team 
centrality metrics did not have a significant associ-
ation with other aspects of team performance and 
warrant further investigation. 

Follow-on Work 
The concepts explored during this work and the lessons 
learned yielded two major accomplishments. The first 
included the expansion of the Humatics instrumenta-
tion framework to take in additional sources and types 
of data, the development of new methods for real-time 
and post-exercises metrics and assessment visualizations, 
and a series of research efforts focused on a better under-
standing of analytical performance. 

warrants careful consideration. Qualitatively, Team 1 
and Team 2 excelled at communication, triage, and site 
discovery, but they had more false declarations than Team 
3 or Team 4. Conversely, although Team 3 and Team 4 
did not observe as much information or discover as many 
sites as did Team 1 and Team 2, they were very accurate in 
adjudicating what they found. Team 2 ultimately won the 
four-team competition with the best overall performance 
and game scores. 

Predicting Team Performance 
When we assessed teams’ analytical and decision-making 
performance, common questions arose regarding how 
performance in one facet of a decision process affects the 
performance of either subsequent processes or the aggre-
gate overall process. The previous sections illustrate that 
the collected measurements enabled detailed insight 
about individual facets of performance; however, we 
wanted to take this a step further to determine whether 
behaviors in specific facets of the intra-game workflow 
were predictive of analytical performance of players or 
the outcomes of games. To approach this investigation, we 
processed data collected over several years of gameplay, 
encompassing 71 different teams and more than 350 
unique players. For all 71 teams, system instrumentation 
data were recorded. For a subset of 15 teams, face-to-face 
communication data were also collected. 

Robust linear regression analyses were used to statis-
tically estimate how predictive were the various facets 
of intra-game performance with respect to workflow 
processes. For each model, residual analysis, significance 
testing, and other regression diagnostics were performed, 
and were evaluated for each prediction finding. In 
undertaking this analysis, we wanted to address three 
overarching research propositions: 
• Client interaction effectiveness. The first proposition 

asked whether more effective interaction with the 
game software client led to better game performance. 
From our analysis, we found that teams who had higher 
usage across all analytic functions of the game client 
discovered more total sites and had a higher proba-
bility of correct site discovery. The effect was even more 
pronounced for the functions of the game client associ-
ated with the frequency with which players submitted 
Nomination space-time queries for track data and its 
correlation with increased site discovery. Higher total 
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The second major consequence was the production 
of two serious games that followed a set of development 
and employment mechanisms that were similar to those 
we used in our work. One game focused on an airport 
security scenario in which teams who had access to actual 
closed-circuit video from a major U.S. airport monitored 
the video and other data feeds to discover suspicious activ-
ities being performed by scripted actors. The second game 
involved all-source information analysis during which 
participants analyzed documents, answered questions, 
and made recommendations regarding a complex geopo-
litical event while intricate human-system interaction 
data were collected with a high-frame-rate, near-infrared, 
eye-tracking system and a custom instrumented instance 
of the Palantir Technologies data analysis platform. 
This latter game focused on a detailed user-workflow 
decomposition and metrics development to characterize 
individuals’ reading behaviors, estimate their cognitive 
load, and objectively assess their performance at infor-
mation discovery, factual recall, inference development, 
and decision making.
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