
 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 17

RAPID Prototyping
Technology
Huy Nguyen and Michael Vai

In order to stay competitive in the high-

tech electronics consumer market, compa-

nies must continue to offer new products

with superior capabilities, higher power

efficiency, and smaller form factors at accelerated design

schedules. For example, consumers upgrade their cell

phones about every two years. Manufacturers are thus

challenged to rapidly develop and produce phones that

offer more advanced capabilities and smaller form factors

at lower costs to meet consumer demands.

Military applications also require high-performance

systems that can be developed at low cost and function

within stringent size, weight, and power (SWaP) budgets.

Furthermore, the asymmetric warfare aspect of our cur-

rent defense needs has accelerated the requirement for

high-performance, embedded processors to incorporate

state-of-the-art hardware and software capabilities.

As a cost-saving strategy, many military applications

rely on commercial technologies (e.g., games, communi-

cations, medical equipment) in the development of new

systems. These devices, which evolve rapidly because of

the potential high-volume markets and thus high profits,

are also used by adversaries to support their activities,

such as the remote detonation of improvised explosive

devices. It is thus critical that leading-edge hardware and

software be incorporated rapidly and effectively into our

defense systems to maintain an advantage.

Lincoln Laboratory has been contributing to rapid

capability development in recent years and has pioneered

a prototyping methodology called Rapid Advanced Pro-

cessor In Development, or RAPID. This methodology

systematically reuses previously proven hardware, firm-

ware, and software designs to compose application-spe-

cific embedded systems. The RAPID technique provides

Rapid Advanced Processor In Development
(RAPID) is a prototyping technology that
accelerates the development of state-of-the-art
processor systems, particularly those involving
custom boards and firmware. This technology
enables large productivity gains in prototyping
and a significant reduction of development times
from system concept to operation.

»

18 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

RAPID PROTOTYPING TECHNOLOGY

an easy process for a design to leverage Laboratory-wide

expertise and experience, which are captured in a collec-

tion of documented, previously used good designs.

In addition, an efficient, integrated development

environment that includes reference designs has been cre-

ated to streamline the prototyping process. RAPID offers

a field-programmable gate array (FPGA) common design

environment, referred to as a container, that has open and

stable interfaces. This container framework provides an

enhanced controllability and observability of new designs,

resulting in a significant productivity improvement in

FPGA development, verification, and integration.

RAPID methodology mitigates risk factors associated

with uncertainties in hardware and software performance,

thereby increasing the probability of a first-pass success.

Large savings in development time have been demon-

strated in the prototyping of several high-performance,

embedded processors for various sensor applications.

Prototyping
In many situations, especially those involving cutting-edge

technology, new designs have unanticipated problems

that are difficult to predict by modeling or simulations.

When the performance of a new device is uncertain, an

early development of a prototype can be useful for testing

key features of the design, exploring design alternatives,

testing theories, and confirming performance prior to start-

ing production. Prototyping is typically an iterative process,

in which a series of products will be designed, constructed,

and tested to progressively refine the final design. It is thus

essential to minimize the latency of each prototyping cycle

so that projects adhere to the original design schedules.

A typical prototyping flow of a high-performance

embedded signal processor begins with a design phase in

which the desired system capability is analyzed to deter-

mine hardware and software requirements. Next, in the

implementation phase, the signal processing software

and appropriate computational hardware are developed

accordingly. Figure 1 depicts an example design flow of

an embedded processor. In the conventional develop-

ment flow, design steps are executed sequentially, and the

entire process takes between 15 and 24 months. In the new

RAPID design flow, a surrogate system is used for software

and firmware development while the processor boards are

being customized and fabricated for the objective system.

The open-interface container allows firmware developed

Requirement
analysis

System
description
(algorithm

architecture)

System
development

Packaging and
verification

Demonstration

Conventional development: 15–24 months

RAPID development schedule: 8–12 months

Surrogate system

Board design Objective system

Initial capability demonstration

Firmware migration

12–18 months1–3 months1–3 months

Full capability demonstration

FIGURE 1. The conventional design flow for the
development of an embedded signal processor (top)
can require twice as much time as a design process
that reuses previously proven designs (bottom). RAP-
ID’s (1) parallel focus on board design and develop-
ment of a surrogate system for software and firmware
testing and (2) seamless migration of firmware from
the surrogate system to the objective system help
reduce the development timeline.

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 19

HUY NGUYEN AND MICHAEL VAI

optima on individual dimensions, the designer is bet-

ter served by a global view that balances competing

objectives, such as development cost, production cost,

performance (operation speed and power consump-

tion), time to market, and volume expectation.

The success of a design depends on the availability

of performance benchmarks. However, realistic and

scalable benchmarks are not widely available. Vendor-

touted performance is often theoretical performance

that is obtained under ideal conditions. Furthermore,

benchmarking must be performed at both device and

system levels to model multiple chip and board behav-

iors. Without an accurate benchmark at the system

level, the same chip could perform differently when

used in different boards.

Lincoln Laboratory has a long history in develop-

ing and building high-performance systems for mili-

tary applications. The computing hardware can be a

custom one-of-a-kind design (e.g., ASIC-based) or a

commercial off-the-shelf (COTS) product. The COTS

products have standard form factors so that they can

be assembled easily. Also, COTS vendors often provide

software and firmware libraries (also called intellectual

property cores or “IP cores”) to facilitate the design pro-

cess. COTS products are generally preferable in rapid

and demonstrated in the surrogate system to be migrated

seamlessly into the objective system. The complete system

development time is reduced to 8 to 12 months.

Application-specific technologies are often used to

optimize the prototype performance so that it will meet

real-time requirements. For example, many military

applications (e.g., radars) have data rates as high as sev-

eral billion samples per second. These signal-process-

ing applications have very demanding computational

requirements that are currently beyond the capability of

programmable processors and require the use of applica-

tion-specific integrated-circuit (ASIC) and FPGA tech-

nologies. ASICs can offer very high performance because

they are designed and manufactured for a specific pur-

pose. This advantage comes with the cost of an extremely

high design complexity and a commitment to a chosen

design. In contrast, an FPGA is a fully manufactured

device that contains an array of configurable logic blocks,

memory blocks, arithmetic blocks, and interconnects that

are designer controllable. The reconfigurability of FPGAs

renders them especially attractive in prototyping because,

unlike ASICs, they allow changes. As these application-

specific technologies allow a custom processor to be tai-

lored specifically for the signal processing task at hand,

the overhead of a general-purpose programmable proces-

sor is eliminated. However, these advantages are offset

by a longer design time and reduced flexibility. As such,

ASICs and FPGAs are typically only used to reduce the

data volume to a rate within the capability of program-

mable processors, which complete the signal processing.

A number of programmable technologies are available,

such as general-purpose processors similar to those used

in desktop computers, digital signal processors (i.e., gen-

eral-purpose processors optimized for signal-processing

tasks), and graphics processing units used for their capa-

bility of supporting many parallel tasks.

Given a specific application, the designer will mix

and match different processing technologies to achieve

the desired performance. Figure 2 depicts one such design

flow for a heterogeneous signal processor, which includes

programmable processors, FPGAs, ASICs, and, poten-

tially, a graphics processing unit. The design space of this

processor has four dimensions: algorithm or architecture,

processing technology, processor board, and packaging.

Some design considerations for each of these four dimen-

sions are shown in Figure 3. Instead of searching for local

Application

Compilation

IP core Mask

Synthesis

Mask

Embedded
FPGA

Embedded
ASIC

Programmable
processor

Embedded
custom ASIC

Layout

Application programming interface

Very-high-speed IC
hardware

design language

Control Data Function

Programming

FIGURE 2. A design flow for a heterogeneous signal pro-
cessor includes programmable processors, FPGAs, intel-
lectual property (IP) cores, synthesized and custom ASICs,
and, potentially, other hardware, such as a graphics process-
ing unit (not shown).

20 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

RAPID PROTOTYPING TECHNOLOGY

Architecture Technology Board Packaging

• Throughput
• Latency
• Memory
• Interface
• Data rate

• FPGA
• ASIC
• DSP
• Design effort

• Form factor (SWaP)
• COTS or custom
• Interface
• Cooling

• COTS or custom
• SWaP
• Backplane
• Cooling

prototyping activities because of their shorter implemen-

tation times. However, when the latest technology (e.g.,

the largest and fastest FPGAs) is required to meet the

demands of rapid capability applications, these commer-

cial products, which are designed to target a broad mar-

ket, may not be tailored for the application at hand and

alterations may not be ready in time. Furthermore, it can

be easy to either overdesign (higher cost) or underdesign

(failure) a system that uses new COTS products, as their

performance in realistic environments often differs from

vendor claims.

Developing custom processors is a viable alternative

but not a panacea, as these systems still have similar prob-

lems to COTS products. Industry has many anecdotes of

board development budget and schedule overruns. In

addition to the cost of chips, hardware and software devel-

opment costs are also significant. A typical system will

need one or more printed circuit boards (PCBs), support

components (e.g., memory), and hardware or software

interfaces with other devices. It is especially challenging

to integrate FPGAs, ASICs, and high-speed inputs and

outputs on a complex PCB. For example, an FPGA can

have more than 1000 pins, which cause a routing chal-

lenge that requires a high number of PCB layers. Signal

paths have to be precisely matched in length to enable

high-speed operations. An approach that optimizes the

design at both system and chip levels should be taken, and

much synergy is required between design team members

to achieve such an integration.

Lincoln Laboratory has been developing embed-

ded processors using a so-called “Lincoln off-the-shelf ”

(LOTS) approach that draws upon previous designs.

When a new project begins, the reuse of a previously

proven custom processor board design is considered, as

this board’s capability is well understood and could be

adapted to meet the new program requirements.

Figure 4 displays examples of the LOTS approach, in

which a base design was modified to support multiple pro-

grams. A custom, sophisticated radar-channelizing and

adaptive-beamforming processor was developed in about

two years for an intelligence, surveillance, and reconnais-

sance (ISR) application. This processor was later adapted

to be used in a new space observation application after it

was determined that there were no COTS products avail-

able to satisfy the requirements. Within eight months, the

firmware was developed, integrated, and tested, and the

system was fielded for this new application.

The baseline processor was also revamped to develop

a real-time radar processor after it was determined that

the use of COTS boards would present a high risk to the

project schedule. Even though the circuit board had to

be modified and manufactured to accommodate a data

interface that operates four times faster, the new applica-

tion was completed within a year. This radar processor

was further adapted for a multifunctional phased-array

radar and was developed in just 6 months.

The LOTS approach achieves a significantly faster

turnaround time by leveraging previous nonrecurring

engineering investments and team experience. As the

baseline processor board has been thoroughly character-

ized, the chance of a first-pass success is improved. How-

ever, risks and issues similar to those of COTS still exist,

and upgradability is a concern as new technologies, such

as new FPGAs, must be incorporated as they become avail-

able to deliver the best performance possible. In addition,

the LOTS approach still lacks the flexibility to meet the

FIGURE 3. Design considerations are grouped across four design dimensions: architecture or algo-
rithm, processing technology, processor board, and packaging.

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 21

HUY NGUYEN AND MICHAEL VAI

quickly changing challenges in fighting an asymmetric

warfare. To address these setbacks, the LOTS approach

has been expanded into a RAPID prototyping meth-

odology that systematically reuses previously proven

hardware, firmware, and software designs to develop

embedded processor systems.

RAPID Methodology
RAPID prototyping methodology’s key features include

reusing previously proven designs, a highly productive

design environment, and an inexpensive prototyping test

bed. The design of the test bed allows the infusion of new

technologies, while maintaining a stable user interface.

Design Reuse

Reusing previously proven designs saves development

time and mitigates risk in time-critical projects. The

flowchart in Figure 5 illustrates an example design pro-

cess for a processor system having custom boards and

FPGA firmware. The designer first searches the RAPID

Wiki Design Reference Library for a match. If a previous

design exists that satisfies the project’s needs, the designer

downloads the relevant design database for building the

board. If modifications are needed, the designer con-

sults with the original board’s designer to gain insights,

reducing the learning curve and potential for mistakes.

Any new boards and associated firmware and software

created with this process can be easily uploaded into the

30% hardware
change

Real-time radar
processor

450 GOPS

Beamformer processor
130 giga-operations
per second (GOPS)

Design time: 24 months

 12 months 6 months

 8 months

RFID
application

New
firmware
design

Space
observance
application

Ba
se

lin
e

de
sig

n

New
firmware
design

FIGURE 4. Three examples of Lincoln-off-the-shelf
designs that each alter the base design to meet the demands
of a new application (space observation, real-time radar, and
radio frequency identification, or RFID).

MicroTCA
VME/VPX

Custom

Packaging

Previously proven designs

Capture

Design

System architecture

RAPID tiles IP library

Form-factor selection

COTS boards

RAPID prototyping

FPGA
container

infrastructure

Composable
processor

board

Signal
processing

Control IO

FIGURE 5. In RAPID prototyping methodology, designers search a reference library and
capture relevant features (e.g., tiles, software or firmware drivers) for their application.
These features are combined with new system components by using a composable board
design and the container infrastructure. Next, the resulting board is mapped to a form fac-
tor (standard or custom) and packaged for use.

22 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

RAPID PROTOTYPING TECHNOLOGY

The Rapid Advanced Processor
In Development (RAPID) technol-
ogy has been used successfully in
several programs and is gaining
support from the Lincoln Labora-
tory design community.a Several
groups have contributed reference
designs to a RAPID Wiki Portal

that is accessible from within Lin-
coln Laboratory. The wiki, shown in
Figure A, was created to promote
design reuse and sharing.

To help designers acquire
expertise in new technologies and
mitigate uncertainties, RAPID tech-
nology provides a process for lever-
aging Laboratory-wide experience
and expertise, which are captured
in a collection of documented pre-
viously proven designs. For exam-
ple, the schematic and layout of

a memory block and its interface
to an FPGA (collectively called a
“tile” in RAPID terminology) can be
extracted and stored in the library
for future use. This library of veri-
fied circuit board tiles and intellec-
tual properties constitutes the first
component of RAPID.

Another key component of
RAPID is the container, a high-pro-
ductivity FPGA design environment
that is supported by a test bed.b

The container provides enhanced
controllability and observability of
the application under development
by enabling the designer to access
the function cores from a host com-
puter via a gigabit Ethernet con-
nection. Each function core or
group of cores can be individually
addressed, configured, controlled,

and tested. The open interface
provided by the container signifi-
cantly enhances the portability of
the cores. Any cores developed on
a surrogate platform can be ported
over at a later time when the objec-
tive system is available. The result
is a significant productivity improve-
ment in FPGA development, verifi-
cation, and integration.

The third component of RAPID
is a heterogeneous processing test
bed. Serving as a surrogate devel-
opment platform, this test bed
supports the early capability bench-
marking and demonstration tasks in
rapid prototyping programs.

REFERENCES

a. H. Nguyen, M. Vai, A. Heckerling,
M. Eskowitz, F. Ennis, T. Anderson,
L. Retherford, and G. Lambert,
“RAPID–A Rapid Prototyping Meth-
odology for Embedded Systems,”
Proc. High Performance Embedded
Computing Workshop, 2009.

b. A. Heckerling, T. Aderson, H.
Nguyen, G. Proce, S. Siegal, and J.
Thomas, “An Ethernet-Accessible
Control Infrastructure for Rapid
FPGA Development,” Proc. High
Performance Embedded Computing
Workshop, 2008.

RAPID Prototyping at a Glance

FIGURE A. Two screen shots of the Lincoln Laboratory RAPID Wiki Portal,
which helps designers document, share, and reuse previously proven designs.

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 23

HUY NGUYEN AND MICHAEL VAI

RAPID Wiki Portal for future use by the Lincoln Labo-

ratory community. The reference design library consists

of schematics, layout, component data sheets, design

reviews, and software and firmware drivers for previously

proven designs. The most valuable benefit, though, is the

venue for designers to discuss functional trade-offs and

lessons learned in the design process. The availability of

this expertise is crucial for reducing design uncertainty

and increasing first-trial success.

The RAPID user, in consultation with the origi-

nal designer, must decide what level of design reuse is

appropriate for a specific project. For example, if there is

a significant overlap in functionality, it may prove most

advantageous to use the design as a starting point, delete

superfluous items, and add new components. This is the

usual previously proven board approach. When several

pieces from various previously proven designs are to

be integrated, a new method called Composable Board

Design is used.

A user may extract elements of previous designs into

tiles in computer-aided-design (CAD) format. Recently,

a number of commercial PCB design tools are beginning

to support the creation of a new circuit board by merging

two or more previous designs and modifying the result.

The resultant board layout is then mapped to a desired

form factor. The design can be a standard size or a custom

size to fit small and irregular enclosures, such as the pay-

loads of miniature, unmanned aerial vehicles.

Note that RAPID prototyping methodology does not

exclude the use of COTS boards, especially those success-

fully used in previous projects. In fact, a good source of

library elements is the evaluation boards available

from component vendors who routinely develop

and sell evaluation boards that integrate their lat-

est products (FPGAs, analog-to-digital converters),

IP cores (interface), and other common peripheral

devices (memory, Ethernet interface). These evalu-

ation boards are excellent surrogates for developing

firmware for specific applications while the custom

circuit boards are being developed, thus converting

a sequential design process into a parallel one. Fur-

thermore, the schematics and layouts of evaluation

circuit boards are often available and can be used to

populate the reusable tile library. This approach pro-

vides an easy path to keep the library synchronized

with state-of-the-art technologies.

High-Productivity Design Environment

As mentioned earlier, the reconfigurability of FPGAs

motivates their use in many areas that require applica-

tion-specific performance. This FPGA benefit will only be

fully realized if a design environment that facilitates appli-

cation development and debugging is available. Unfortu-

nately, current FPGA design tools require the designer to

write code to perform almost any debugging activities,

such as setting and examining the internal values of an

FPGA. This situation is reminiscent of the early days of

computing when computers did not have an operating

system. In addition, lacking a low-overhead, standardized

control infrastructure for the FPGA is a huge barrier for

other subsystems to interface with the FPGA.

 The above limitations are addressed with the con-

tainer, a small-footprint, computer-accessible control

structure on the FPGA. As shown in Figure 6, the con-

tainer provides an infrastructure on which a developer

can build an application quickly. Through Ethernet

connections, external software can observe and control

the internal states of an application function core being

developed. In fact, the container has enough functionality

to serve as a computer-FPGA control interface for a real-

time FPGA-based processor system.

The container is accessible through software calls

from a host computer. A C++ software library allows the

application software on the host computer to request

reads and writes to the FPGA address space by handling

the details of formatting one or more requested gigabit

Ethernet (Gig-E) packets and interpreting the returned

results. In this manner, the process is abstracted to simple

RDMA library

Real-time
application

Debug
utility

Computer

C++
interface

Gig-E

FPGA board

M
em

ory

Bus

Ports

Registries

Interface

Controller

Container

Function
core

FPGA

FIGURE 6. The computer-accessible container framework con-
trol structure for the FPGA provides an infrastructure on which a
developer can build an application quickly.

24 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

RAPID PROTOTYPING TECHNOLOGY

remote direct-memory access (RDMA) calls. In the cur-

rent version of the container, calls to the software library

are implemented by sending control messages to the

FPGA using the User Dataram Protocol (UDP), although

other underlying protocols also may be used after minor

changes to the calling application.

During the FPGA debug phase, interactive data prob-

ing is more desirable than running compiled programs.

Therefore, a command-line interface may be used for

loading data into an FPGA, initiating processing, and

retrieving the output data and status. The command-

line interface provides a similar functionality to the C++

software library. Using this command-line interface,

commands can be entered interactively or issued with a

prepared script file. Typically, a developer would first use

the command line to verify FPGA operations, proceed to

using scripts for automatic FPGA processor testing, and

eventually create a C++ program to integrate the FPGA

processor into the overall system. Figure 7 illustrates com-

ponents on the FPGA side of the container structure: a

UDP controller, a DMA controller, a Wishbone bus (an

open-source hardware computer bus), and Wishbone

peripherals.

The UDP controller receives packets from an Eth-

ernet media access control (MAC) and decodes properly

addressed and formatted UDP packets into commands

for the DMA controller. UDP was chosen as a transport-

layer protocol because it is efficient and more suitable

for implementation in digital logic than a complicated

protocol such as the transmission control protocol. The

command-response protocol implemented on top of UDP

was designed for simple translation into commands for

the DMA controller.

The DMA controller translates the received com-

mands into the required master read or write cycles on the

Wishbone bus, providing a simple connection between

the DMA controller and a variety of registers and periph-

erals that are useful for FPGA development. Once the

command has been executed by the DMA controller, the

resulting status and data responses are repackaged into

UDP messages and reported back to the network address

that made the request.

The Wishbone bus is an industry standard for mem-

ory-mapped, open-source buses that are used to connect

devices on the same chip. In general, it connects one or

more “master” devices that generate read or write cycles to

one or more “slave” devices that respond to read or write

cycles within an assigned range of addresses.

“Register File” and “Port Array” are two Wishbone-

compatible peripherals developed at Lincoln Laboratory.

The Register File provides access to a set of registers for

general control and monitoring of an FPGA application.

The Port Array provides a set of first-in, first-out

(FIFO) ports, each of which has an address and can be writ-

ten to or read from. The port array can be used for testing

purposes to communicate with an FPGA processing core.

Another Wishbone peripheral developed at Lincoln

Laboratory is a dual-port memory controller bridge for off-

chip DDR2 SDRAM memory access. This bridge has one

port that connects the DDR2 controller to the Wishbone

bus and a second “pass-through” port for the processing

application. This design allows high-speed processing logic

to share memory with the lower-speed control and debug-

ging logic. From the computer, an input pattern can be eas-

ily loaded into memory as a stimulus; processed results can

be read back to the computer for application debugging.

RAPID’s controller infrastructure was implemented

and tested on the Xilinx Virtex-5 family. The resource

usage or overhead of this infrastructure on the Virtex-5

95SXT is between 7 and 12% and is summarized in

Table 1. The software library has been tested under Win-

dows XP/Cygwin and VxWorks. The highest communica-

Wishbone
bus

Control logic

Register
file Port array Wishbone

bridge

Xilinx DDR2
controller

C
om

puter
Function cores (IPs)

Container

M
em

ory

...

UDP
controller

DMA
controller Peripheral

Gig-E

FIGURE 7. The FPGA side of the container structure
includes a UDP controller, a DMA controller, a Wishbone
bus, and Wishbone peripherals, some of which were devel-
oped at Lincoln Laboratory.

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 25

HUY NGUYEN AND MICHAEL VAI

tion rate with the computer, as supported by the current

software library, reached 13 MB/s. On the FPGA side, the

control infrastructure is expected to support data rates

of gigabit Ethernet speeds or higher. The achievable data

rate will depend on the specifications and operating con-

ditions of the FPGA.

RAPID Test Bed: A Surrogate Development Platform

A RAPID heterogeneous processing test bed has been

implemented as a surrogate development platform to

support early capability benchmarking and demonstra-

tion tasks in rapid prototyping programs. This test bed

is equipped with stable interfaces and appropriate soft-

ware/firmware support to improve application devel-

opment productivity. In addition, this test bed can be

readily replicated at low cost to support multiple pro-

grams at the same time.

A basic configuration of the test bed has a MicroTCA

chassis (a standard form factor) that contains one sin-

gle-board computer and one or more FPGA boards. The

MicroTCA design environment provides a gigabit Ethernet

hub connecting all payload slots in the system via a high-

speed backplane connection that supports the RAPID con-

tainer development framework. The costs for a complete

MicroTCA development system start between $2000 and

$10,000, which is equivalent to the price of a single proces-

sor board available from a defense industry vendor.

Multiple general processing unit nodes and PCI

Express expansion capabilities can be added to the test

bed. In order to support new hardware and communica-

tion protocols, the container infrastructure is being aug-

mented with additional capabilities. For example, new

communication protocols such as Serial RapidIO and PCI

Express are being evaluated.

Applications
RAPID prototyping methodology has been successfully

employed in the development of a number of new, chal-

lenging designs. Three applications of the RAPID meth-

odology have been selected as examples: a four-channel

adaptive beamformer radar processor, a twenty-channel

vehicle-mounted laser vibrometer signal-processing sys-

tem, and an FPGA front-end processor for an airborne

synthetic aperture radar (SAR) imaging system.

Adaptive Beamformer Radar Processor

RAPID methodology was used in the development of a

front-end processor for the Radar Open Systems Archi-

tecture II (ROSA II) project, in which a common infra-

structure for modular hardware and software enables

radar systems to be implemented and upgraded with

minimal overhead. New enhancements for ROSA II

included a four-channel adaptive digital beamformer,

which enables airborne systems with higher pulse rates,

and a publish-subscribe capability through thin commu-

nication layers for even more flexibility in system data and

message passing.

One of the key challenges of this project was the high

level of concurrent development. The front-end proces-

sor was planned to be a critical subsystem of a ROSA II

system demonstration, and its development was under-

way while the specifications for ROSA II system were still

being finalized. However, by using the RAPID container

framework, the design team was able to commence devel-

 ARCHITECTURE LOOKUP FLIP- BLOCK RAM CLOCK
 TABLES FLOPS (KBYTES) RATE (MHZ)
 Controller core functions 3172 3853 83.25 125

Register file 132 200 0 0

Port array 96 1 0 125

DDR2 bridge / 2309 2275 31.5 125
memory controller 200

 Total 6009 6859 114.75

 (Total as percentage) (10.2%) (11.6%) (10.5%)

TABLE 1. RAPID’s controller infrastructure was implemented and tested on the Xilinx Virtex-5
95SXT. The resource usage or overhead of this infrastructure is between 7 and 12%.

26 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

RAPID PROTOTYPING TECHNOLOGY

opment of the signal processing portion

while the control portion was still evolving.

As shown in Figure 8, some of the signal

processing included analog-to-digital con-

version, digital in-phase and quadrature

processing, adaptive beamforming, and

data packetizing.

The processor included several boards

and modules, such as a high-performance

FPGA processor board in MicroTCA form

factor and a number of FPGA Mezzanine

Card boards created with RAPID meth-

odology. The FPGA board leverages the

design of an evaluation board chosen

from the repertoire of an FPGA vendor.

Based on a Virtex-5 FPGA operating at a

peak frequency of 550 MHz, the processor

provides a throughput of 100 to 200 giga-

flops per second and consumes 25 W. The

board also hosts 1 gigabyte of RAM oper-

ating at 3.2 gigabytes per second (GB/s)

and 8 megabytes of SRAM at 0.8 GB/s.

The external input and output data rates

are 5 GB/s.

Although this was the pilot test run

of RAPID prototyping methodology and extra time was

spent in tool configuration and verification, the FPGA

processor was completed in five months. It is expected

that an experienced design team could deliver a design of

similar complexity in only three months.

The open-interface container approach allowed the

design of the FPGA firmware to begin simultaneously

with the processor board design. The firmware was veri-

fied on the test bed using a surrogate COTS processor

with only a quarter of the required throughput, permit-

ting a six-month head start on the development of FPGA

firmware. When the target processor was completed, the

team demonstrated a seamless migration of FPGA func-

tionality from the surrogate system to the objective plat-

form in just three weeks.

Laser Vibrometer Signal Processor System

RAPID methodology and test bed were also leveraged in

the development of a vehicle-mounted laser vibrometer

system. The signal processing subsystem involved the fil-

tering and instantaneous frequency demodulation of 20

signal channels, all performed in real time.

Because of the schedule of the application, there

was significant overlap between development and

experimentation. For example, the signal processing

flow was designed and evaluated while parameters

such as processing block sizes, method of detection,

etc., were still under investigation. In this situation,

the collection of raw data for analysis was extremely

valuable. After a minor modification to the RAPID

test bed, a functional recording system was delivered

in three weeks. This is a remarkable turnaround time

when compared to the six- to eight-week window typi-

cally required for acquisition of an equivalent COTS

system, plus a few additional weeks required to develop

the desired operations.

While the algorithm and associated firmware were

being developed using the RAPID test bed, the semi-

ruggedized objective hardware was advancing in paral-

lel. A single-channel real-time processor was successfully

created for a proof-of-concept demonstration. A seam-

less firmware migration from the test bed to the objective

hardware is expected.

FIGURE 8. RAPID methodology was used for designing a processor for the
ROSA II system, whose development was underway while the specifications
were still being finalized. Some of the signal processing included analog-to-dig-
ital conversion (ADC), digital in-phase and quadrature (DIQ) processing, finite
impulse response (FIR), adaptive beamforming (ABF), and data packetizing.

System development time ~12 months

Receiver array
4 channels

20 MHz BW

RAPID�
front-end�

signal
processor

Back-end�
processor

ROSA II
system

computer

Timing
signals

Analog
data Processed

dataDIQ FIR ABF

Control Control

ADC
dataPacket

forming

Packet
forming

Data pathSample
timing

container

ADC

Board 1 Board 2

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 27

HUY NGUYEN AND MICHAEL VAI

Acknowledgments
The authors would like to thank RAPID team members

A. Heckling, T. Anderson, M. Eskowitz, F. Ennis, S. Siegal,

A. Horst, L. Retherford, S. Chen, and T. Kortz for their

contributions. Special thanks to R. Bond for his vision

and guidance and to the Lincoln Laboratory Technology

Office for funding support. n

Processor for Synthetic Aperture Radar Imaging

RAPID’s high-productivity container framework was also

used in the design of an FPGA front-end processor for an

airborne SAR imaging system. The processor interfaces

with analog-to-digital converters, performs spectrum

processing, and packetizes data into multiple gigabit Eth-

ernet links that are fed into a back-end multicore, real-

time processor.

Pressed to meet a short development schedule, the

design team concentrated its efforts on the back-end,

real-time processor (a 128-core parallel processor). The

required high volume of data transfer between the front-

end and the back-end processors would not have been

developed in time without the efficient gigabit Ethernet

infrastructure available in the RAPID library.

Future Work
RAPID prototyping methodology has been extended into

a self-sustaining infrastructure to serve all of Lincoln

Laboratory. As the embedded processor design commu-

nity continues to adopt RAPID methodology, more and

more design tutorials, examples, and workshops are being

added to the library through the Wiki portal.

New strategic technologies are also being pursued,

such as the development of a data-path container to aug-

ment the firmware development environment. This data-

path container will support protocol standards, such as

PCI Express and Serial RapidIO protocols, with the goal

of incorporating the general-purpose, graphics processing

technology into the RAPID test bed.

The grand vision for RAPID is to provide an inte-

grated design environment for a heterogeneous embed-

ded processor system that could easily be composed from

different processing technologies along with their avail-

able intellectual properties. For example, a matrix com-

putational function in the signal processing chain may

be implemented in software for a proof-of-concept dem-

onstration during the early phases of development. At a

later phase of development, the software implementation

can be retargeted to an FPGA for improved performance.

This type of cross-technology migration will allow a new

system to be quickly validated on a desktop computer,

then migrated to a non-form-factor benchtop system for

a real-time demonstration, and finally ported to an objec-

tive platform for field tests and deployment.

ABOUT THE AUTHORS

Huy Nguyen is a staff member of the
Embedded Digital Systems Group. He has
been involved with designing low-power
high-performance signal processors for
15 years. He earned a bachelor’s degree
from the University of Delaware and a doc-
toral degree from the Georgia Institute of
Technology, both in electrical engineering.
Prior to pursuing his doctorate, he worked
on real-time radar software at G.T.R.I. He
joined Lincoln Laboratory in 1998.

Michael Vai is the assistant leader of the
Embedded Digital Systems Group. He has
worked in the area of high-performance
embedded computing for over 20 years and
has published extensively on the topics of
very-large-scale integration, ASICs, FPGAs,
design methodology, and embedded sys-
tems. He earned his bachelor’s degree from
the National Taiwan University, Taipei, Tai-
wan, and his master’s and doctoral degrees

from Michigan State University, all in electrical engineering. Prior
to joining Lincoln Laboratory in 1999, he was on the faculty of
Northeastern University.

