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Many current and emerging Department 
of Defense (DoD) challenges require the 
analysis of very large datasets containing 
millions, billions, or even trillions of enti-

ties. While the sheer number of entities presents a sig-
nificant challenge by itself, the analysis task is further 
complicated by the fact that the activities, objects, or indi-
viduals of interest are commonly tightly embedded within 
large, noisy background data, have few or no individual 
distinguishing characteristics, and are changing rapidly.

One way to address the challenge of identifying subtle 
events in large datasets is to consider not only individual 
entities and their attributes but also relationships between 
them. Considering relationships naturally leads to the anal-
ysis of graphs and networks. Simply, a graph is a mathemat-
ical representation of a set of entities (vertices) and their 
relationships (edges between those vertices). In this issue 
and other literature, the terms graph and network are often 
used interchangeably. One way to distinguish between 
those terms is to use the word graph when referring to the 
formal mathematical structure and the word network when 
referring to the specific instantiation. For example, a set of 
computers and the communications between them form 
a network. This network can be represented by a graph 
whose vertices represent the computers and whose edges 
represent the communication between computers.

Graph analysis techniques can be used in a broad 
range of applications in which graphs and networks 
arise naturally (Figure 1). In the cyber security domain, 
graphs representing computer networks, such as the ones 
described in the previous paragraph and Figure 1a, can be 
analyzed to identify cyber threats. For intelligence, sur-

New application needs, combined with the 
rapidly increasing sizes of datasets, are driving 
the development of a new field at the intersection 
of computer science, mathematics, signal 
processing, and the social sciences. Lincoln 
Laboratory has been pioneering research to 
address the challenges of using graphs and 
networks to exploit these vast databases. This 
issue of the Lincoln Laboratory Journal focuses 
on some of this innovative work.
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•	 Few truthed datasets of relevant scales exist that allow 
for rigorous evaluation of detection techniques on 
graph data. The definitions of backgrounds (noise and 
normal patterns) and foregrounds (target and anoma-
lous patterns) are still being formalized.

•	 Relationships of interest to many applications are 
highly dynamic. Dealing with large-scale dynamic 
graphs is an emerging research area.

•	 Often, many graphs can be constructed from a given 
dataset. Determining what graph representation will 
be the most effective for a particular task is highly 
non-trivial.

•	 It is desirable to be able to quickly construct multiple 
different graphs from the same dataset or from mul-
tiple datasets. However, storage, representation, and 
data-access techniques are often hard-coded, making 
this a difficult, error-prone, and timely task.

•	 While many graph algorithms have computational 
complexity on the order of the number of entities 
squared, the efficiency of those algorithms often yields 
performance on the order of 1/100 to 1/1000% of peak 
performance of a processing platform. Many factors 
contribute to this inefficiency, for example, sparsity of 
data and poor data locality of operations.

As demonstrated by the articles in this special issue of 
the Lincoln Laboratory Journal, Lincoln Laboratory has 
been pioneering research to address many of the aforemen-

veillance, and reconnaissance (ISR) objectives, vehicle 
networks derived from sensor data can be analyzed as 
graphs, as illustrated in Figure 1c. Analysis of social net-
works derived from multiple data sources can facilitate 
the identification of groups, organizational structure, or 
incipient trends and activities. In biology, the analysis of 
graphs representing networks of protein interactions can 
lead to the design of medications that target biochemical 
pathways of interest. Graphs can also be exploited for the 
analysis of datasets in which the network of interest is 
not as well defined. For example, a set of documents may 
not seem as naturally suited to graph analysis as a com-
puter or social network; however, patterns and trends in 
the documents can be identified by analyzing a graph of 
relationships between documents that mention the same 
topics, locations, or individuals.

While leveraging relationships enables significant 
capabilities and allows for detection of activities that 
would not be detectable through the analysis of entities 
alone, the analysis of graphs presents a number of techni-
cal challenges:
•	 Detection theory for graphs is a new area and, for 

most scenarios, well-defined performance bounds do 
not exist. Specifically, for most network datasets, there 
is no rigorous way to specify what type of patterns will 
stand out (i.e., be detectable) and what type of pat-
terns will be subsumed in the noise.

FIGURE 1. Examples of graphs from various applications. (a) is a graph constructed from computer network traffic data. 
Analysis of computer networks enables detection of anomalous cyber events and suspicious activity. (b) is a co-author graph 
constructed from a publications database. Analysis of such networks enables detection of emerging research trends or col-
laboration groups. Finally, (c) is a vehicle track network constructed from data collected by an imaging sensor. Vehicle track 
networks enable patterns-of-life analysis.

(a) (b) (c)



6 LINCOLN LABORATORY JOURNAL  n  VOLUME 20, NUMBER 1, 2013

CONFRONTING THE CHALLENGES OF GRAPHS AND NETWORKS

tioned challenges. Together, the technical challenges and 
the application relevance of graph analysis are precisely 
the reasons that make this an area both well suited to and 
fascinating for a research agenda of a national laboratory.

Definitions
All articles in this issue describe algorithms, representa-
tions, and processing techniques for graphs and networks. 
In this section, basic definitions of a few common graph 
terms are highlighted. These definitions appear in many 
computer science textbooks, for example, the text by Cor-
men, Leiserson, and Rivest [1].

A graph (G) is simply a set of vertices (V) and edges 
(E). An example graph is presented in Figure 2a. A graph 
can also be represented as an adjacency matrix A (Figure 

2b), in which entry A (i , j ) is nonzero if an edge exists 
between vertex i and vertex j. The graph in Figure 2 is a 
simple graph. A simple graph is undirected (that is, its 
edges have no orientation) and unweighted (its edges have 
no attributes associated with them). A few basic graphs 
and their matrix equivalents are presented in Table 1.

Overview of Graph Research
Researchers, particularly mathematicians, have been inter-
ested in graphs for hundreds of years. In 1735, Leonhard 
Euler published what is considered to be the first graph 
theory paper on the seven bridges of Königsberg problem. 
This problem asked if the seven bridges spanning the Pre-
ger River in the city of Königsberg could be traversed in a 
single round-trip without retracing any of the route [2]. 

(a) (b)
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FIGURE 2. A simple graph (a) and its matrix equivalent (b). The eight vertices (circles) in the graph each have a cor-
responding row and column in the matrix. Similarly, each edge (line) connecting vertex i and vertex j in the graph cor-
responds to a non-zero entry at index ( i, j ) and index ( j, i ) in the matrix.

Table 1. Basic Graph Types and Related Matrices
GRAPH G EQUIVALENT MATRIX A

 is simple and unweighted A( i , j ) = 0 or 1
 is weighted A( i , j ) = weight 
 is simple and undirected A is symmetric, A( i , j ) = A( j , i )
 is directed A could be symmetric

A( i , j ) does not imply A( j , i )
 is multipath A is multidimensional
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Euler represented the network of land masses connected 
by bridges as a graph and proved that it was not possible 
to create such a route. Since then, graphs have been used 
to interpret and exploit data in diverse fields. The timeline 
in Figure 3 highlights a number of famous dataset analyses 
and illustrates the growth both in the size of datasets and 
the complexity of their representative graphs. 

The 2000s, particularly the last five to seven years, 
have ushered in a new chapter in the history of graph the-
ory (Modern Era in Figure 3). The timeline shows that the 
scales of datasets have evolved significantly and the modern 
graph era has witnessed graphs with more than a million 
vertices. Many problems in classical graph theory, such as 
the seven bridges of Königsberg problem, can often be ana-
lyzed by hand and thus are well suited to the study and opti-
mization of combinatorial and traditional graph traversal 
algorithms. However, as the graphs become larger, the need 
arises for new techniques capable of processing datasets on 
the order of millions, billions, and beyond entities. 

In the context of such enormous datasets, traditional 
techniques, such as those based on path computations 
and search, are no longer tractable. Furthermore, the 
applications of interest have been changing as well—
from defining the shortest paths between two cities and 
identifying maximum flows on networks to the detec-
tion of anomalies, patterns, and trends, often in rapidly 
changing environments. Finally, while in the past, matrix-
based techniques, such as presented in [3], have provided 
insight into some numerical properties of graphs (such 
as spectrum characteristics), they have just recently 
emerged as powerful tools for application-driven tasks 
such as community detection [4] and signal processing 
for graph-based data [5].

These new application needs, combined with the 
current and emerging scales of datasets, are driving the 
development of a new field that is at the intersection of 
computer science, mathematics, signal processing, and, 
often, social, behavioral, and biological sciences.
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FIGURE 3. A timeline demonstrating the recent explosion in scale of graph datasets that has distinguished the “Modern 
Era” (2000 to present) of graph analysis from the “Classical Era” (pre-2000). The date each dataset was first analyzed 
is marked on the timeline at the top of the figure, and the number of vertices in the graph is marked along the line at the 
bottom. The number of vertices (V) and edges (E) in each dataset are noted within the chart. 



8 LINCOLN LABORATORY JOURNAL  n  VOLUME 20, NUMBER 1, 2013

CONFRONTING THE CHALLENGES OF GRAPHS AND NETWORKS

Table 2. Summary of Articles in Journal 20(1)
AUTHORS ARTICLE FOCUS AREA KEY CONTRIBUTIONS

Miller, Bliss, Wolfe, & 
Beard

Signal processing  
framework for  
graph-based data

General framework for detection of signals in graph-
based data 

Detection algorithm with linear computational  
complexity 

Performance results on both simulated and real data 
(social network, vehicle tracks)

Yee, Philips, Condon, 
Jones, Kao, Smith, 
Anderson, & Waugh

Algorithms for cued  
network discovery

Novel threat propagation algorithm 

Demonstration of algorithm on both simulation (graph  
generators and vehicle track simulator) and real data 
(e-mail corpus)

Smith, Senne, Philips, 
Kao, & Bernstein

Performance bounds for 
cued network detection

Novel Bayesian detection framework

Neyman-Pearson-like optimality analysis 

Generative model for covert networks

Campbell, Dagli, & 
Weinstein

Social network analysis End-to-end approach to social network analysis 

Comparison of community detection techniques  
and role prediction

Analysis of community dynamics in context of reality 
mining dataset

Kepner, Ricke, &  
Hutchison

Associative array and  
graph analytics  
framework

Parallel algebraic interface to triple stores to enable  
rapid prototyping of graph analytics 

Ease of use and performance results on DNA  
sequence comparison dataset

Song, Kepner, Gleyzer, 
Nguyen, & Kramer

Efficient, scalable graph 
processing architecture

Architectural innovations co-designed with graph  
algorithms 

Simulated performance results demonstrating four 
orders of magnitude improvement over current  
alternatives

Cho & Snavely Imagery analysis and 3D 
scene reconstruction

Framework for 3D scene reconstruction 

Application of graph-based techniques to  
imagery exploitation 

Demonstration of techniques on various  
imagery datasets
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In This Issue
The articles in this issue cover a range of technologies 
that are making significant progress in addressing the 
technical challenges inherent in large graphs and net-
works. Individual articles highlight these technologies as 
employed in specific applications. Table 2 summarizes the 
key contributions of articles in this issue.

More work remains to be done. Datasets are only get-
ting larger and more diverse. New application domains 
require increasingly complex processing under highly 
dynamic conditions. Sensor and information processing 
platforms are becoming smaller and increasingly more 
size, weight, and power constrained. System-level solu-
tions coupling together all of the individual technologies, 
from processing architectures to algorithmic frameworks, 
will ensure our nation’s competitiveness and agility in 
the face of various emerging threats, whether these are 
threats to cyber security, to critical infrastructure such 
as the electrical grid, to satellite communications, or to 
any military or civilian domain that may be vulnerable to 
malicious intrusions. n
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