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Many problems in computation and data 
analysis can be framed by graphs and solved 
with graph algorithms. A graph, which is 
defined as a set of vertices connected by 

edges, as shown on the left in Figure 1, adapts well to pre-
senting data and relationships. Graphs take two forms: 
a directed graph has edges with orientation as shown in 
Figure 1, and an undirected graph has edges with no ori-
entation. Graph algorithms perform operations on graphs 
to yield desired information. In general, graphs can also be 
represented as full standard and sparse matrices as shown 
in Figure 1 [1, 2]. The graph G (V, E) with vertices V and 
edges E can be represented with the sparse matrix A where 
the matrix element Aij represents the edge between the 
vertex i and vertex j. In this example, Aij is set to 1 when 
there is an edge from vertex i to vertex j. If there is no edge 
between vertices i and j, then Aij would be zero and thus 
would have no entry in the sparse matrix. In this example, 
the sparse matrix has reduced the required data points 
representing the graph from 16 to 7.

Increasingly, commercial and government appli-
cations are making use of graph algorithms [3]. These 
applications address a wide variety of tasks—finding the 
shortest or fastest routes on maps, routing robots, ana-
lyzing DNA, corporate scheduling, transaction process-
ing, and analyzing social networks—as well as network 
optimizations for communication, transportation, water 
supply, electricity, and traffic.

Some of the graph algorithm applications involve ana-
lyzing very large databases. These large databases could 
contain consumer purchasing patterns, financial transac-
tions, social networking patterns, financial market infor-

Graph algorithms are increasingly used in 
applications that exploit large databases. 
However, conventional processor 
architectures are hard-pressed to handle 
the throughput and memory requirements 
of graph computation. Lincoln Laboratory’s 
graph-processor architecture represents a 
fundamental rethinking of architectures. It 
utilizes innovations that include high-bandwidth 
three-dimensional (3D) communication links, 
a sparse matrix-based graph instruction set, 
accelerator-based architecture, a systolic 
sorter, randomized communications, a 
cacheless memory system, and 3D packaging.  
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in red is a sparse matrix multiply kernel running on iden-
tical processors. As one can see, the graph computation 
throughput is approximately 1000 times lower; this result 
is consistent with typical application codes.

Recently, multiple processor cores have become avail-
able on a single processor die. Multicore processors can 
speed up graph computation somewhat, but are still limited 
by conventional architectures that are optimized essentially 
for dense matrix processing using cache-based memory.

Parallel processors have often been used to speed up 
large conventional computing tasks. A parallel processor 
generally consists of conventional multicore processors 
that are connected through a communication network so 
that different portions of the computations can be done 
on different processors. For many scientific computing 
applications, these processors provide significant speedup 
over a single processor. 

However, large graph processing tasks often run inef-
ficiently on conventional parallel processors. The speedup 
often levels off after only a small number of processors 
are utilized (Figure 3) because the computing patterns 
for graph algorithms require much more communica-
tion between processor nodes than conventional, highly 
localized processing requires. The limited communication 
bandwidth of conventional parallel processors generally 
cannot keep pace with the demands of graph algorithms. 

In the past, numerous attempts have been made to 
speed up graph computations by optimizing processor 
architecture. Parallel processors such as Cray XMT and 
Thinking Machine’s Connection Machine are example 
attempts to speed up large graph processing with spe-

mation, Internet data, test data, biological data, cyber 
communication, or intelligence, surveillance, and recon-
naissance (ISR) sensor data. For example, an analyst might 
be interested in spotting a cyber attack, locating a terrorist 
cell, or identifying a market niche. Some graphs may con-
tain billions of vertices and edges requiring petabytes of 
memory for storage. For these large database applications, 
computation efficiency often falls off dramatically. Because 
conventional cache-based processor architectures are gen-
erally not well matched to the flow of the graph computa-
tion, it is impossible for computation hardware to keep up 
with computation throughput requirements. For example, 
most modern processors utilize cache-based memory in 
order to take advantage of highly localized memory access 
patterns. However, memory access patterns associated with 
graph processing are often random in nature and can result 
in high cache miss rates. In addition, graph algorithms 
require significant overhead computation for dealing with 
the indices of vertices and edges of graphs.

For benchmarking graph computation, we often use 
sparse matrix operations for estimating graph algorithm 
performance because sparse matrix arithmetic operations 
have computational flow and throughput very similar to 
the flow and throughput of graph processing. Once the 
graphs have been converted to the sparse matrix format, 
the sparse matrix operations can be used to implement 
most graph algorithms. Figure 2 shows an example of the 
computational throughput differences between conven-
tional processing and graph processing [4]. Shown in 
blue is a conventional matrix multiply kernel running on 
PowerPC and Intel Zeon processors. In contrast, shown 

FIGURE 1. A sparse matrix representation of a graph reduces the amount of computation power necessary by 
representing the graph with a minimum (sparse) number of data points. 
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ing unit (CPU). The processor nodes utilize new, efficient 
message-routing algorithms that are statistically opti-
mized for communicating very small packets of data such 
as sparse matrix elements or partial products. The proces-
sor hardware design is also optimized for very-high-band-
width three-dimensional (3D) communications. Detailed 
analysis and simulations have demonstrated an orders-
of-magnitude increase in computational throughput and 
power efficiency for running complex graph algorithms 
on large distributed databases.

Parallel Graph Processor Architecture Based on a 
Sparse Matrix Algebra Instruction Set
Assume that the graph has been converted into sparse 
matrix format before being inputted into the processor. 
The sparse matrix opervations are then used to implement 
the graph algorithms. There are a number of advantages in 
implementing the graph algorithms as sparse matrix oper-
ations. One advantage is that the number of lines of code is 
significantly reduced in comparison to the amount of code 
required by traditional software that directly implements 
graph algorithms using conventional instruction sets. 
However, while this advantage can increase software devel-
opment efficiency, it does not necessarily result in higher 
computational throughput in conventional processors. 

Perhaps a more important advantage of embedding 
graph algorithms in sparse matrix operations is that it is 
much easier to design a parallel processor that computes 

FIGURE 3. Graph processing computational throughput 
in networked multiprocessors levels off at the use of a rela-
tively small number of processors.
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FIGURE 2. A comparison of computational throughput dif-
ferences between conventional and graph processing shows 
that in conventional processors computational efficiency is 
significantly lower for graph processing compared to con-
ventional processing. 
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cialized parallel architectures. However, inherent dif-
ficulties associated with graph processing, including 
distributed memory access, indices-related computa-
tion, and interprocessor communications, have limited 
the performance gains.

Lincoln Laboratory has been developing a promis-
ing new processor architecture that may deliver orders of 
magnitude higher computational throughput and power 
efficiency over the best commercial alternatives for large 
graph problems. 

Graph Processor
The Laboratory’s new graph processor architecture rep-
resents a fundamental rethinking of the computer archi-
tecture for optimizing graph processing. The instruction 
set is unique in that it is based on and optimized for 
sparse matrix operations. In addition, the instruction set 
is designed to operate on sparse matrix data distributed 
over multiple processors. The individual processor node—
an architecture that is a great departure from the con-
ventional von Neumann architecture—has local cacheless 
memory. All data computations, indices-related computa-
tions, and memory operations are handled by specialized 
accelerator modules rather than by the central process-
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sparse matrix operations rather than general graph algo-
rithms. The instruction set can be vastly simplified because 
implementing sparse matrix–based graph algorithms 
requires surprisingly few base instructions. Another rea-
son sparse matrix operations facilitate the designing of a 
processor architecture is that it is much easier to visual-
ize the parallel computation and data movement of sparse 
matrix operations running on parallel processors than it is 
on conventional machines. This advantage enables devel-
opers to come up with highly efficient architectures and 
hardware designs with much less effort.

Lincoln Laboratory’s new graph processor is a highly 
specialized parallel processor optimized for distributed 
sparse matrix operations. The processor is targeted for 
implementing graph algorithms (converted to sparse 
matrix format) for analyzing large databases. Because 
large matrices do not fit into a single processor’s mem-
ory and require more throughput than the single proces-
sor can provide, the approach is to distribute the large 
matrices over many processor nodes. Figure 4 shows the 
high-level architecture of the parallel processor. It con-
sists of an array of specialized sparse matrix processors 
called node processors. The node processors are attached 
to the global communication network, and they are also 
attached to the global control processor through the 
global control bus.

Although the generic high-level architecture in Fig-
ure 4 appears quite similar to that of a conventional mul-
tiprocessor system, how it is implemented is significantly 
different from how a conventional parallel architecture 
is implemented. One of the main differences is that the 
processor’s instruction set is based on sparse matrix alge-
bra operations [2] rather than on conventional instruc-
tion sets. Important instruction kernels include sparse 
matrix multiply, addition, subtraction, and division oper-
ations shown in Table 1. Individual element-level opera-
tors within these matrix operations, such as multiply and 
accumulate operators in the matrix-multiply operation, 
often need to be replaced with other arithmetic or logical 
operators, such as maximum, minimum, AND, OR, XOR, 
etc., in order to implement general graph algorithms. 
Numerous graph algorithms have already been converted 
to sparse matrix algorithms [2, 4].

The other main differentiating feature of the new 
architecture is the high-bandwidth, low-power commu-
nication network that is tailored for communicating small 

messages. A typical message contains one matrix element 
or one partial product, which consists of the data value, 
row index, and column index. In contrast, a conventional 
communication network tries to maximize the message 
sizes in order to minimize the overhead associated with 
moving the data. A newly developed statistical routing 
algorithm with small message sizes greatly improves the 
communication-bandwidth availability for graph process-
ing. In addition, the bandwidth of the network hardware 
itself is very large compared to the bandwidth of conven-
tional parallel processors; this large bandwidth is needed 
to handle the demands of graph processing.

FIGURE 4. The illustration of the high-level architecture 
for Lincoln Laboratory’s parallel graph processor shows the 
connection between the specialized sparse matrix proces-
sors (node processors) and the global components.
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Table 1: Sparse Matrix Algebra-Based 
Processor Instruction Set

COMMENTS

C = A +.* B

C = A .± B
C = A .* B
C = A ./ B

Dot operations are performed 
within local memory.

B = op(k, A)
Operation with matrix and constant. This 
operation can also be used to redistribute 
matrix and sum columns or rows.

Matrix multiply operation is the throughput 
driver for many important benchmark 
graph algorithms. Processor architecture 
is highly optimized for this operation.
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Accelerator-Based Node Processor Architecture
The architecture of the Laboratory’s individual node 
processor is also a great departure from conventional 
cache-based von Neumann machines, which perform 
all computations in the CPU. This new architecture 
consists of a number of specialized modules, including 
matrix reader, matrix writer, sorter, arithmetic logic 
unit (ALU), and communication modules, as shown 
in Figure 5 [4, 5]. The CPU is mainly used to provide 
the control and timing for the sparse matrix instruc-
tions. Most of the computation, communication, and 
memory operations are performed by the specialized 
modules that are designed to optimally perform the 
given tasks. There is no cache because the cache misses 
tend to slow down graph processing. In general, mul-
tiple modules are utilized simultaneously in perform-
ing sparse matrix computations. 

The architecture based on the specialized accelerator 
module provides much higher computational throughput 
than the conventional von Neumann processor architec-
ture by enabling highly parallel pipelined computations. 
In a conventional processor, the microprocessor is used to 
compute all the processing tasks, such as memory access, 
communication-related processing, arithmetic and logi-
cal operations, and control. These processing tasks are 
often done serially and take many clock cycles to perform, 
lowering the overall computational throughput. In the 
new architecture, these tasks are performed in parallel by 
separate specialized accelerator modules. These accelera-
tor modules are designed for fast throughput using highly 
customized architectures. Ideally, they would be designed 
to keep up with the fastest data rate possible, which is pro-
cessing one matrix element or one partial product within a 
single clock cycle in effective throughput. Further speedup 
may be gained by having multiple parallel versions of these 

modules to process multiple matrix elements or partial 
products per clock cycle.

The matrix reader and writer modules are designed to 
efficiently read and write the matrix data from the mem-
ory. The example formats include compressed sparse row 
(CSR), compressed sparse column (CSC), and coordinate 
(also called tuple) format (Figure 6). In the CSR format, 
the element data and column index are stored as pairs in 
an array format. An additional array stores the row start 
address for each column so that these pointers can be used 
to look up the memory locations in which the rows are 
stored. In the CSC format, the element data and row index 
are stored as pairs in an array format. An additional CSC 
array stores the column start address for each row. The 
coordinate format stores matrix element–related data, 
including element data, row index, and column index 
together in array format. The coordinate format is also 
convenient in storing randomly ordered matrix elements 
or partial products. The matrix reader and writer modules 
are designed so that all the overhead operations—such as 
formatting matrix element data and indices for writing, 
generating pointer arrays for CSC and CSR for writing, 
and generating matrix element indices for reading—are 
performed automatically without requiring additional 
instructions. In this way, complexity associated with sparse 
matrix read and write operations is minimized, and mem-
ory interface operations are accelerated significantly.

The ALU module is designed to operate on the 
stream of sparse matrix elements or partial products 
instead of operating with a register file as in conven-
tional processor architectures. The streaming method 
eliminates register load operations and increases the 
computational throughput. It generally performs des-
ignated arithmetic or logical operations on the data 
stream, depending on the indices. For example, the ALU 

FIGURE 5. The new node processor architecture uses specialized modules to speed up sparse matrix pro-
cessing. (ALU stands for arithmetic logic unit.)
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module may accumulate successive matrix elements 
only if the element indices match exactly. Because these 
matrix operations perform computations only when the 
indices match, this feature is useful for sparse-matrix 
add and multiply operations.

The communications module handles the commu-
nication between processor nodes. It takes the matrix 
element or partial product and makes a communication 
message that includes the matrix element in coordinate 
format and a header that contains the destination proces-
sor address. The header may also contain error detection 
and correction bits and other relevant information, such 
as the priority of the message. The communication mes-
sages are then sent to the global communication network 
and are forwarded to the destination nodes. The commu-
nications module also decodes the received messages, per-
forms error correction, and outputs the matrix element or 
partial product into the node in coordinate format. 

The memory for the node processor can be imple-
mented with various types of memory including static 
random-access memory (SRAM), dynamic RAM, and 
synchronous DRAM. Nonvolatile memory such as Flash 
memory may be used for long-term storage and for 
instances when the storage requirement is high. There 
is no cache in the memory system since cache miss rates 
tend to be very high in graph processing.

The node controller module is responsible for set-
ting up and coordinating the sparse matrix operations. 
Before a sparse matrix operation, the controller module 
loads the control variables into the control registers and 
control memory of the accelerator modules by using the 
local control bus. The control variables include types of 
sparse matrix operations to be performed, matrix memory 
storage locations, matrix distribution mapping, and other 
relevant information. The controller module also performs 
timing and control. The node controller module can be 
implemented with a conventional general-purpose micro-
processor. This particular microprocessor may also have a 
cache since the processing is mostly conventional process-
ing. The node controller can also perform other process-
ing tasks that are not well supported by the accelerator 
modules, such as creating an identity matrix and checking 
to see if a matrix is empty across all processor nodes. The 
controller module is tied to the global control bus, which is 
used to load the data and programs to and from the nodes, 
and to perform the global computation process control.

Systolic Merge Sorter
The systolic merge sorter module is used for sorting 
the matrix element indices for storage and for finding 
matching element indices during matrix operations. It 
is one of the most critical modules in graph processing 

FIGURE 6. Three formats for sparse matrix storage are shown for the 4 × 4 sparse matrix example 
in the figure.
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because more than 95% of computational throughput 
can be associated with the sorting of indices. The sparse 
matrix and graph operations consist mainly of figuring 
out which element or partial product should be operated 
on. In contrast, relatively few actual element-level opera-
tions get performed. In order to meet the computational 
throughput requirement, the systolic k-way merge sorter 
architecture [4] was developed to provide significantly 
higher throughput than the conventional merge sorters.

The conventional merge sorter sorts long sequences 
of numbers by using a recursive “divide and conquer” 
approach. It divides the sequence into two sequences 
that have equal, or as equal as possible, lengths. The two 
shorter sequences are then sorted independently and 
merged to produce the sorted result. The sorting of two 
shorter sequences can also be divided into even shorter 
sequences and sorted recursively by using the same merge 
sort algorithm. This process is recursively repeated until 

the divided sequence length reaches 1. Figure 7 illustrates 
an example of the 2-way merge sorting in which 16 items 
are sorted in four steps. The merge sort algorithm requires 
order of nlog2n processor cycles and order of 2n locations 
in memory, where n is the length of the sequence. The 
merge sort algorithm can be readily implemented with a 
conventional general-purpose processor or a digital signal 
processor working with random-access memory.

The k-way merge sorter can perform the sorting task 
faster than a 2-way merge sorter when k is larger than 2. 
The k-way merge sorting is identical to 2-way merge sort-
ing, except k sequences are merged in each step as shown 
in Figure 8 with a 4-way merge sort example. Order 
nlogkn memory cycles require order of 2n locations in 
memory to sort a sequence of length n. This is log2k times 
faster than the 2-way merge sort process. For example, 
when k = 32, the k-way merge sorter has five times greater 
sorter throughput than the 2-way merge sorter.

FIGURE 7. In this conventional 2-way merge sort, 16 items are sorted in four steps.
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FIGURE 8. In the 4-way merge sort, the 16 items are sorted in half the steps of the sort in Figure 7.
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The main difficulty with implementing a k-way merge 
sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value 
among k entries during each step of the merge sorting pro-
cess. Ideally, the smallest value of k should be computed 
within one processor clock cycle for the maximum sorter 
throughput. The systolic merge sorter array shown in Fig-
ure 9 and Figure 10 can achieve such maximum sorter 
throughput during merge sorting of k presorted lists. Fig-
ure 9 shows an example of a 7-way merge sorter array. The 
array consists of three cells with the cell operations shown 
in Figure 10. Each cell has two registers. The top regis-
ter RS (for smaller) contains the smaller of the two values 
and the bottom register RB (for bigger) contains the larger 
value. Each clock cycle, the cell passes the smaller value 
to the left if it is smaller than the larger value on the left. 
For example, the middle cell in Figure 9 at time 0 decides 
to pass the value 3 to the left because 3 is smaller than 
7, which is the larger value on the left cell. As the result, 
the value 3 ends up in the left cell at time 1. Similarly, the 
larger value is passed to the right if it is bigger than the 
smaller value on the right adjacent cell. For example, the 
left cell in Figure 9 at time 0 decides to pass the value 7 to 
the right because 7 is larger than 3, which is the smaller 
value on the right adjacent cell. As the result, the value 
7 ends up in the middle cell at time 1. In the continuous 

FIGURE 9. The illustration shows the systolic 7-way merge 
sorter array in operation.
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communication between cells feasible. Because of these 
implementation advantages as well as inherently higher 
throughput of the k -way merge sort over a 2-way merge 
sort, the custom systolic sorter module can provide up to 
two orders of magnitude higher sorter throughput than 
prevailing microprocessor-based sorting.

3D Communication Network and Randomized  
Message Routing
The new graph processor architecture is a parallel proces-
sor interconnected in a 3D toroidal configuration using 
very high bandwidth links [5], as shown in Figure 11. The 
3D toroid provides much higher communication perfor-
mance than a two-dimensional (2D) toroid because of 
higher bisection bandwidth. Bisection bandwidth repre-
sents the worst-case communication bandwidth between 
two parts of a network partitioned to contain an equal 
number of nodes. Bisection bandwidth is often used to 
gauge the communication performance of the processor 
network for communication-intensive tasks.

In order to minimize communication link lengths, 
the 2D toroidal cluster is placed on a circuit board, and 
multiple circuit boards are stacked on top of each other to 
form the 3D toroid. The links between the circuit boards 
are enabled by an array of electromagnetic coupling con-
nectors [6] that can communicate at high data rates with-
out requiring physical conductor connections. 

Custom-designed, high-speed input/output circuit-
ries provide high-bit-rate, low-power communication for 
2D links within the board and for 3D links between the 
boards. Multiple links share the delay lock loop (DLL) 
circuitry, as shown in Figure 12, because the DLL is the 
highest power consumption circuitry for the communica-
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Stacked processor
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Coupling
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3D parallel
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Cold
plate

Processor IC
Heat removal
layer

Routing layer

Coupling
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Insulator
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FIGURE 11. The illustration shows the structure of a 3D graph processor with electromagnetic coupling communica-
tions between processor boards. TX and RX are the transmitter and receiver.

operation mode, the smallest value in the array is always at 
the register RS of the left-most cell. As a new input is pre-
sented to the array, the smaller values between the input 
and the RS of the left-most cell are outputted from the 
array in the very next clock cycle. At the same time, smaller 
values in the array march toward the left, and larger values 
march toward the right with each clock cycle. Because the 
array always outputs the smallest of the k values in the 
very next clock cycle, the k-way merge sort process can 
be carried out at the maximum possible throughput rate.

The systolic array works as follows. Before time 0, 
the array is preloaded with six values. Such loading can be 
achieved by preloading the registers with -∞ or a very small 
value. As six input values are loaded before time 0 from 
the left, the -∞’s are outputted to the left. At the same time, 
larger values march toward the right and smaller values 
march toward the left, guaranteeing that the smallest value 
in the array will always be at the RS register of the left-most 
cell (correspondingly, the largest value in the array will be 
at the RB register of the right-most cell). Toward the end 
of the k-way merge sort process when no more inputs are 
available, the systolic array can be emptied in sorted order 
by injecting ∞’s or very large values as inputs.

The systolic array implementation of the k-way 
merge sorter has numerous implementation advantages 
over conventional processor architectures. Because all the 
sorter cells are identical, developers can spend significant 
effort in optimizing the cell for high speed, low power 
consumption, and low circuit area, and can replicate the 
design to achieve very high performance with relatively 
little overall design effort. In addition, all the communica-
tion happens between neighboring cells, eliminating long 
communication paths, making high-speed, low-power 
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tion links. Because all communication paths are relatively 
short with well-controlled lengths and impedances, such 
sharing is possible while maintaining the high bit rate. 
Each node processor is designed to be capable of a com-
munication rate of more than one trillion bits per second 
to keep up with the communication demands of graph 
algorithms. The test chips have been designed to verify 
performance and power efficiency.

The 3D toroidal communication network is designed 
as a packet-routing network optimized to support small 
packet sizes that are as small as a single sparse matrix ele-
ment. The network scheduling and protocol are designed 
so that successive communication packets from a node 
would have randomized destinations in order to minimize 
network congestion [6]. This design is a great contrast 
to typical conventional multiprocessor message-routing 
schemes that are based on the much larger message sizes 
and globally arbitrated routing that are used in order to 
minimize the message-routing overhead. However, large 
message-based communications are often difficult to route 
and can have a relatively high message contention rate 
caused by the long time periods during which the involved 
communication links are tied up. The small message sizes, 
along with randomized destination routing, minimize mes-
sage contentions and improve the overall network commu-
nication throughput. Figure 13 shows the 512-node (8 × 8 
× 8) 3D toroidal network simulation based on random-
ized destination communication versus unique destina-
tion communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of the conventional routing that is based on 
large message sizes. The randomized destination routing 
achieved approximately six times higher data rate and net-
work utilization efficiency in the simulation using an iden-
tical network. The relative difference between the network 
utilization efficiencies is the important parameter because 
the absolute network utilization efficiency depends on 
exact communication links and routing algorithms.

Simulation and Performance Projection
A detailed simulation of the architecture was performed 
to verify the design and to estimate the performance. Bit-
level accurate simulation models were used to simulate 
the entire 1024-node processor running the graph algo-
rithm kernels. The performance projection was achieved 

by extrapolating the existing computation circuits to the 
target fabrication processes at 45 nm to 65 nm. The new 
custom communication circuitry was developed to pro-
vide 3D interconnection based on coupling connectors. 
Figure 14 shows the computational throughput projec-
tions versus number of processor nodes, assuming that 
the database size scales with the number of processors. 
We projected that the processor would provide sev-
eral orders of magnitude higher graph computational 
throughput compared to the commercial alternatives. For 
the planned initial prototype with 1024 processor nodes, 
the projection for computation throughput is approxi-
mately three orders of magnitude higher than the best 
commercial alternatives.

The power-efficiency projection obtained with the 
same method is shown in Figure 15. The power efficiency 
was also projected to be several orders of magnitude 
higher. For the prototype with 1024 processor nodes, 
the projected power efficiency is up to four or five orders 
of magnitude higher than the best commercial alterna-
tives. In many cases, the power efficiency is even more 
important than the computational throughput because 
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FIGURE 12. In the 2D and 3D parallel high-speed commu-
nication link circuitry, multiple links share the delay lock loop 
(DLL) circuitry. 
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FIGURE 13. This illustration of the 3D graph 
processor with electromagnetic coupling com-
munications between processor boards shows 
the contrast between a randomized destination 
and a unique destination in a simulation using a 
512-node 3D toroidal network. In the randomized 
destination case, 87% full network efficiency is 
achieved. In the unique destination case, only 15% 
full network efficiency is achieved. 

FIGURE 14.The computational throughput performance 
projections were made based on simulations. The 3D graph 
processor achieved orders of magnitude better computation 
performance than the commercial systems.  
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Future Directions
Graph processing is of great interest to the cyber, Depart-
ment of Defense (DoD), and intelligence communities. 
However, conventional computers are notoriously slow 
when running graph algorithms. This poor performance is 
mainly due to the inherent mismatches between the graph 
processing flows and conventional processor architectures. 
Graph algorithms can run faster in parallel processors, 
but performance gains quickly level off after a relatively 
small number of compute nodes because of the enormous 
interprocessor communication bandwidth requirements 
driven by the data flow patterns. Therefore, the sizes of 

the computational throughput of large database process-
ing centers often tends to be limited by the availability of 
power and heat dissipation that can be provided.

The speedup of graph computation over multiple 
processors depends closely on how well the computa-
tional load is balanced between the processors. Advanced 
process mapping algorithms have been developed to opti-
mize allocation of sparse matrix data and computations to 
achieve robust balancing of processing load and memory 
usage. A sparse matrix compiler could also be developed 
to enable a simplified user interface with MATLAB-like 
matrix high-level instructions.

3D toroidal 
grid network Randomized 

destination
packet sequence

Unique destination
for all packets
from one source
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the problems to which graph algorithms could be applied 
have been severely limited, and many DoD and intelli-
gence needs have gone unmet by conventional processors. 
To address these challenges, Lincoln Laboratory devel-
oped an entirely new 3D graph processor architecture—a 
significant departure from the variations of the von Neu-
mann architecture that have dominated the computing 
world since the inception of the architecture. 

Our detailed performance projections based on 
simulations point to orders of magnitude improvements 
in computational throughput and power efficiency over 
the best commercial alternatives. On the basis of these 
improvements, there will likely be numerous system 
insertion opportunities in the future for cyber and intelli-
gence applications as well as for providing post-detection 
knowledge extraction and decision support processing in 
various ISR sensor platforms.

In addition, we are currently working to extend 
the instruction set to include instructions that are opti-
mized for text-based data processing. Such enhance-
ment is expected to significantly improve the analysis of 
“semantic” databases. We are also currently investigating 
the development and integration of a high-bit-rate, low-
power optical communication network into the architec-
ture. Such communication network technology would 
help the 3D graph processor architecture grow from 
thousands of nodes up to millions of nodes and beyond 
to handle very large databases in the future.
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