
92 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NOVEL GRAPH PROCESSOR ARCHITECTURE

Novel Graph Processor
Architecture
William S. Song, Jeremy Kepner, Vitaliy Gleyzer,

Huy T. Nguyen, and Joshua I. Kramer

Many problems in computation and data
analysis can be framed by graphs and solved
with graph algorithms. A graph, which is
defined as a set of vertices connected by

edges, as shown on the left in Figure 1, adapts well to pre-
senting data and relationships. Graphs take two forms:
a directed graph has edges with orientation as shown in
Figure 1, and an undirected graph has edges with no ori-
entation. Graph algorithms perform operations on graphs
to yield desired information. In general, graphs can also be
represented as full standard and sparse matrices as shown
in Figure 1 [1, 2]. The graph G (V, E) with vertices V and
edges E can be represented with the sparse matrix A where
the matrix element Aij represents the edge between the
vertex i and vertex j. In this example, Aij is set to 1 when
there is an edge from vertex i to vertex j. If there is no edge
between vertices i and j, then Aij would be zero and thus
would have no entry in the sparse matrix. In this example,
the sparse matrix has reduced the required data points
representing the graph from 16 to 7.

Increasingly, commercial and government appli-
cations are making use of graph algorithms [3]. These
applications address a wide variety of tasks—finding the
shortest or fastest routes on maps, routing robots, ana-
lyzing DNA, corporate scheduling, transaction process-
ing, and analyzing social networks—as well as network
optimizations for communication, transportation, water
supply, electricity, and traffic.

Some of the graph algorithm applications involve ana-
lyzing very large databases. These large databases could
contain consumer purchasing patterns, financial transac-
tions, social networking patterns, financial market infor-

Graph algorithms are increasingly used in
applications that exploit large databases.
However, conventional processor
architectures are hard-pressed to handle
the throughput and memory requirements
of graph computation. Lincoln Laboratory’s
graph-processor architecture represents a
fundamental rethinking of architectures. It
utilizes innovations that include high-bandwidth
three-dimensional (3D) communication links,
a sparse matrix-based graph instruction set,
accelerator-based architecture, a systolic
sorter, randomized communications, a
cacheless memory system, and 3D packaging.

»

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 93

WILLIAM S. SONG, JEREMY KEPNER, VITALIY GLEYZER, HUY T. NGUYEN, AND JOSHUA I. KRAMER

in red is a sparse matrix multiply kernel running on iden-
tical processors. As one can see, the graph computation
throughput is approximately 1000 times lower; this result
is consistent with typical application codes.

Recently, multiple processor cores have become avail-
able on a single processor die. Multicore processors can
speed up graph computation somewhat, but are still limited
by conventional architectures that are optimized essentially
for dense matrix processing using cache-based memory.

Parallel processors have often been used to speed up
large conventional computing tasks. A parallel processor
generally consists of conventional multicore processors
that are connected through a communication network so
that different portions of the computations can be done
on different processors. For many scientific computing
applications, these processors provide significant speedup
over a single processor.

However, large graph processing tasks often run inef-
ficiently on conventional parallel processors. The speedup
often levels off after only a small number of processors
are utilized (Figure 3) because the computing patterns
for graph algorithms require much more communica-
tion between processor nodes than conventional, highly
localized processing requires. The limited communication
bandwidth of conventional parallel processors generally
cannot keep pace with the demands of graph algorithms.

In the past, numerous attempts have been made to
speed up graph computations by optimizing processor
architecture. Parallel processors such as Cray XMT and
Thinking Machine’s Connection Machine are example
attempts to speed up large graph processing with spe-

mation, Internet data, test data, biological data, cyber
communication, or intelligence, surveillance, and recon-
naissance (ISR) sensor data. For example, an analyst might
be interested in spotting a cyber attack, locating a terrorist
cell, or identifying a market niche. Some graphs may con-
tain billions of vertices and edges requiring petabytes of
memory for storage. For these large database applications,
computation efficiency often falls off dramatically. Because
conventional cache-based processor architectures are gen-
erally not well matched to the flow of the graph computa-
tion, it is impossible for computation hardware to keep up
with computation throughput requirements. For example,
most modern processors utilize cache-based memory in
order to take advantage of highly localized memory access
patterns. However, memory access patterns associated with
graph processing are often random in nature and can result
in high cache miss rates. In addition, graph algorithms
require significant overhead computation for dealing with
the indices of vertices and edges of graphs.

For benchmarking graph computation, we often use
sparse matrix operations for estimating graph algorithm
performance because sparse matrix arithmetic operations
have computational flow and throughput very similar to
the flow and throughput of graph processing. Once the
graphs have been converted to the sparse matrix format,
the sparse matrix operations can be used to implement
most graph algorithms. Figure 2 shows an example of the
computational throughput differences between conven-
tional processing and graph processing [4]. Shown in
blue is a conventional matrix multiply kernel running on
PowerPC and Intel Zeon processors. In contrast, shown

FIGURE 1. A sparse matrix representation of a graph reduces the amount of computation power necessary by
representing the graph with a minimum (sparse) number of data points.

To jth vertex

Fr
om

 it
h

ve
rt

ex

1 3 42

1
3

4
2

11

11

11

1

To jth vertex

Fr
om

 it
h

ve
rt

ex

1 3 42

1
3

4
2

11

11

11

1

00

00

0 0

000

Graph

EdgeVertex

Conventional
standard full matrix

Sparse matrix
configuration

1

43

2

94 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NOVEL GRAPH PROCESSOR ARCHITECTURE

ing unit (CPU). The processor nodes utilize new, efficient
message-routing algorithms that are statistically opti-
mized for communicating very small packets of data such
as sparse matrix elements or partial products. The proces-
sor hardware design is also optimized for very-high-band-
width three-dimensional (3D) communications. Detailed
analysis and simulations have demonstrated an orders-
of-magnitude increase in computational throughput and
power efficiency for running complex graph algorithms
on large distributed databases.

Parallel Graph Processor Architecture Based on a
Sparse Matrix Algebra Instruction Set
Assume that the graph has been converted into sparse
matrix format before being inputted into the processor.
The sparse matrix opervations are then used to implement
the graph algorithms. There are a number of advantages in
implementing the graph algorithms as sparse matrix oper-
ations. One advantage is that the number of lines of code is
significantly reduced in comparison to the amount of code
required by traditional software that directly implements
graph algorithms using conventional instruction sets.
However, while this advantage can increase software devel-
opment efficiency, it does not necessarily result in higher
computational throughput in conventional processors.

Perhaps a more important advantage of embedding
graph algorithms in sparse matrix operations is that it is
much easier to design a parallel processor that computes

FIGURE 3. Graph processing computational throughput
in networked multiprocessors levels off at the use of a rela-
tively small number of processors.

1 10 100 1000

108

1010

109

106

107

IBM p5 570*
3.2 GHz Intel Xeon

Custom HPC2
*Fixed problem size

G
ra

ph
 o

pe
ra

tio
ns

/s

Processors

Be� = 1 GB/s

Be� = 0.1 GB/s

COTS cluster
model

System

FIGURE 2. A comparison of computational throughput dif-
ferences between conventional and graph processing shows
that in conventional processors computational efficiency is
significantly lower for graph processing compared to con-
ventional processing.

FL
O

P/
s

Number of elements/edges per row/vertex

Matrix 1.5 GHz PowerPC

Graph 1.5 GHz PowerPC

Matrix 3.2 GHz Intel Xeon

Graph 3.2 GHz Intel Xeon

108

1010

109

105

106

107

102 104 1010106 108

cialized parallel architectures. However, inherent dif-
ficulties associated with graph processing, including
distributed memory access, indices-related computa-
tion, and interprocessor communications, have limited
the performance gains.

Lincoln Laboratory has been developing a promis-
ing new processor architecture that may deliver orders of
magnitude higher computational throughput and power
efficiency over the best commercial alternatives for large
graph problems.

Graph Processor
The Laboratory’s new graph processor architecture rep-
resents a fundamental rethinking of the computer archi-
tecture for optimizing graph processing. The instruction
set is unique in that it is based on and optimized for
sparse matrix operations. In addition, the instruction set
is designed to operate on sparse matrix data distributed
over multiple processors. The individual processor node—
an architecture that is a great departure from the con-
ventional von Neumann architecture—has local cacheless
memory. All data computations, indices-related computa-
tions, and memory operations are handled by specialized
accelerator modules rather than by the central process-

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 95

WILLIAM S. SONG, JEREMY KEPNER, VITALIY GLEYZER, HUY T. NGUYEN, AND JOSHUA I. KRAMER

sparse matrix operations rather than general graph algo-
rithms. The instruction set can be vastly simplified because
implementing sparse matrix–based graph algorithms
requires surprisingly few base instructions. Another rea-
son sparse matrix operations facilitate the designing of a
processor architecture is that it is much easier to visual-
ize the parallel computation and data movement of sparse
matrix operations running on parallel processors than it is
on conventional machines. This advantage enables devel-
opers to come up with highly efficient architectures and
hardware designs with much less effort.

Lincoln Laboratory’s new graph processor is a highly
specialized parallel processor optimized for distributed
sparse matrix operations. The processor is targeted for
implementing graph algorithms (converted to sparse
matrix format) for analyzing large databases. Because
large matrices do not fit into a single processor’s mem-
ory and require more throughput than the single proces-
sor can provide, the approach is to distribute the large
matrices over many processor nodes. Figure 4 shows the
high-level architecture of the parallel processor. It con-
sists of an array of specialized sparse matrix processors
called node processors. The node processors are attached
to the global communication network, and they are also
attached to the global control processor through the
global control bus.

Although the generic high-level architecture in Fig-
ure 4 appears quite similar to that of a conventional mul-
tiprocessor system, how it is implemented is significantly
different from how a conventional parallel architecture
is implemented. One of the main differences is that the
processor’s instruction set is based on sparse matrix alge-
bra operations [2] rather than on conventional instruc-
tion sets. Important instruction kernels include sparse
matrix multiply, addition, subtraction, and division oper-
ations shown in Table 1. Individual element-level opera-
tors within these matrix operations, such as multiply and
accumulate operators in the matrix-multiply operation,
often need to be replaced with other arithmetic or logical
operators, such as maximum, minimum, AND, OR, XOR,
etc., in order to implement general graph algorithms.
Numerous graph algorithms have already been converted
to sparse matrix algorithms [2, 4].

The other main differentiating feature of the new
architecture is the high-bandwidth, low-power commu-
nication network that is tailored for communicating small

messages. A typical message contains one matrix element
or one partial product, which consists of the data value,
row index, and column index. In contrast, a conventional
communication network tries to maximize the message
sizes in order to minimize the overhead associated with
moving the data. A newly developed statistical routing
algorithm with small message sizes greatly improves the
communication-bandwidth availability for graph process-
ing. In addition, the bandwidth of the network hardware
itself is very large compared to the bandwidth of conven-
tional parallel processors; this large bandwidth is needed
to handle the demands of graph processing.

FIGURE 4. The illustration of the high-level architecture
for Lincoln Laboratory’s parallel graph processor shows the
connection between the specialized sparse matrix proces-
sors (node processors) and the global components.

Global
control

processor

Global communication network
(optimized for small communication messages)

Global control bus

Node
processor

I/O

Node
processor

Node
processor

OPERATION

Table 1: Sparse Matrix Algebra-Based
Processor Instruction Set

COMMENTS

C = A +.* B

C = A .± B
C = A .* B
C = A ./ B

Dot operations are performed
within local memory.

B = op(k, A)
Operation with matrix and constant. This
operation can also be used to redistribute
matrix and sum columns or rows.

Matrix multiply operation is the throughput
driver for many important benchmark
graph algorithms. Processor architecture
is highly optimized for this operation.

96 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NOVEL GRAPH PROCESSOR ARCHITECTURE

Accelerator-Based Node Processor Architecture
The architecture of the Laboratory’s individual node
processor is also a great departure from conventional
cache-based von Neumann machines, which perform
all computations in the CPU. This new architecture
consists of a number of specialized modules, including
matrix reader, matrix writer, sorter, arithmetic logic
unit (ALU), and communication modules, as shown
in Figure 5 [4, 5]. The CPU is mainly used to provide
the control and timing for the sparse matrix instruc-
tions. Most of the computation, communication, and
memory operations are performed by the specialized
modules that are designed to optimally perform the
given tasks. There is no cache because the cache misses
tend to slow down graph processing. In general, mul-
tiple modules are utilized simultaneously in perform-
ing sparse matrix computations.

The architecture based on the specialized accelerator
module provides much higher computational throughput
than the conventional von Neumann processor architec-
ture by enabling highly parallel pipelined computations.
In a conventional processor, the microprocessor is used to
compute all the processing tasks, such as memory access,
communication-related processing, arithmetic and logi-
cal operations, and control. These processing tasks are
often done serially and take many clock cycles to perform,
lowering the overall computational throughput. In the
new architecture, these tasks are performed in parallel by
separate specialized accelerator modules. These accelera-
tor modules are designed for fast throughput using highly
customized architectures. Ideally, they would be designed
to keep up with the fastest data rate possible, which is pro-
cessing one matrix element or one partial product within a
single clock cycle in effective throughput. Further speedup
may be gained by having multiple parallel versions of these

modules to process multiple matrix elements or partial
products per clock cycle.

The matrix reader and writer modules are designed to
efficiently read and write the matrix data from the mem-
ory. The example formats include compressed sparse row
(CSR), compressed sparse column (CSC), and coordinate
(also called tuple) format (Figure 6). In the CSR format,
the element data and column index are stored as pairs in
an array format. An additional array stores the row start
address for each column so that these pointers can be used
to look up the memory locations in which the rows are
stored. In the CSC format, the element data and row index
are stored as pairs in an array format. An additional CSC
array stores the column start address for each row. The
coordinate format stores matrix element–related data,
including element data, row index, and column index
together in array format. The coordinate format is also
convenient in storing randomly ordered matrix elements
or partial products. The matrix reader and writer modules
are designed so that all the overhead operations—such as
formatting matrix element data and indices for writing,
generating pointer arrays for CSC and CSR for writing,
and generating matrix element indices for reading—are
performed automatically without requiring additional
instructions. In this way, complexity associated with sparse
matrix read and write operations is minimized, and mem-
ory interface operations are accelerated significantly.

The ALU module is designed to operate on the
stream of sparse matrix elements or partial products
instead of operating with a register file as in conven-
tional processor architectures. The streaming method
eliminates register load operations and increases the
computational throughput. It generally performs des-
ignated arithmetic or logical operations on the data
stream, depending on the indices. For example, the ALU

FIGURE 5. The new node processor architecture uses specialized modules to speed up sparse matrix pro-
cessing. (ALU stands for arithmetic logic unit.)

Bus/Communication

Matrix
reader

Inter-
processor

communication
ControlMemoryALUSorterMatrix

writer

To communication
network

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 97

WILLIAM S. SONG, JEREMY KEPNER, VITALIY GLEYZER, HUY T. NGUYEN, AND JOSHUA I. KRAMER

module may accumulate successive matrix elements
only if the element indices match exactly. Because these
matrix operations perform computations only when the
indices match, this feature is useful for sparse-matrix
add and multiply operations.

The communications module handles the commu-
nication between processor nodes. It takes the matrix
element or partial product and makes a communication
message that includes the matrix element in coordinate
format and a header that contains the destination proces-
sor address. The header may also contain error detection
and correction bits and other relevant information, such
as the priority of the message. The communication mes-
sages are then sent to the global communication network
and are forwarded to the destination nodes. The commu-
nications module also decodes the received messages, per-
forms error correction, and outputs the matrix element or
partial product into the node in coordinate format.

The memory for the node processor can be imple-
mented with various types of memory including static
random-access memory (SRAM), dynamic RAM, and
synchronous DRAM. Nonvolatile memory such as Flash
memory may be used for long-term storage and for
instances when the storage requirement is high. There
is no cache in the memory system since cache miss rates
tend to be very high in graph processing.

The node controller module is responsible for set-
ting up and coordinating the sparse matrix operations.
Before a sparse matrix operation, the controller module
loads the control variables into the control registers and
control memory of the accelerator modules by using the
local control bus. The control variables include types of
sparse matrix operations to be performed, matrix memory
storage locations, matrix distribution mapping, and other
relevant information. The controller module also performs
timing and control. The node controller module can be
implemented with a conventional general-purpose micro-
processor. This particular microprocessor may also have a
cache since the processing is mostly conventional process-
ing. The node controller can also perform other process-
ing tasks that are not well supported by the accelerator
modules, such as creating an identity matrix and checking
to see if a matrix is empty across all processor nodes. The
controller module is tied to the global control bus, which is
used to load the data and programs to and from the nodes,
and to perform the global computation process control.

Systolic Merge Sorter
The systolic merge sorter module is used for sorting
the matrix element indices for storage and for finding
matching element indices during matrix operations. It
is one of the most critical modules in graph processing

FIGURE 6. Three formats for sparse matrix storage are shown for the 4 × 4 sparse matrix example
in the figure.

4342

32 34

2321

12

4 x 4 Sparse matrix
example

Coordinate format
storage (row based)

Data value

Column index

Row index

Compressed sparse
row (CSR) storage

Data value

Row start
address

Column
index

Compressed sparse
column (CSC) storage

Data value

Column start
address

Row index

323 422 1

434232 342321 12

434232 34232112

322 4312

3 42 431 2
343 4 22 1

6421

7521

434232 34232112

98 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NOVEL GRAPH PROCESSOR ARCHITECTURE

because more than 95% of computational throughput
can be associated with the sorting of indices. The sparse
matrix and graph operations consist mainly of figuring
out which element or partial product should be operated
on. In contrast, relatively few actual element-level opera-
tions get performed. In order to meet the computational
throughput requirement, the systolic k-way merge sorter
architecture [4] was developed to provide significantly
higher throughput than the conventional merge sorters.

The conventional merge sorter sorts long sequences
of numbers by using a recursive “divide and conquer”
approach. It divides the sequence into two sequences
that have equal, or as equal as possible, lengths. The two
shorter sequences are then sorted independently and
merged to produce the sorted result. The sorting of two
shorter sequences can also be divided into even shorter
sequences and sorted recursively by using the same merge
sort algorithm. This process is recursively repeated until

the divided sequence length reaches 1. Figure 7 illustrates
an example of the 2-way merge sorting in which 16 items
are sorted in four steps. The merge sort algorithm requires
order of nlog2n processor cycles and order of 2n locations
in memory, where n is the length of the sequence. The
merge sort algorithm can be readily implemented with a
conventional general-purpose processor or a digital signal
processor working with random-access memory.

The k-way merge sorter can perform the sorting task
faster than a 2-way merge sorter when k is larger than 2.
The k-way merge sorting is identical to 2-way merge sort-
ing, except k sequences are merged in each step as shown
in Figure 8 with a 4-way merge sort example. Order
nlogkn memory cycles require order of 2n locations in
memory to sort a sequence of length n. This is log2k times
faster than the 2-way merge sort process. For example,
when k = 32, the k-way merge sorter has five times greater
sorter throughput than the 2-way merge sorter.

FIGURE 7. In this conventional 2-way merge sort, 16 items are sorted in four steps.

996 875 6 1222 432 411

96 8722 4195 6 1232 41

99 68 75 612 2243 2 411

9 9 68 75 612 2243 2 411

9 968 75 612 2243 2 411

Merge
sort

Merge
sort

Merge
sort

Merge
sort

FIGURE 8. In the 4-way merge sort, the 16 items are sorted in half the steps of the sort in Figure 7.

996 875 6 1222 432 411

9 9 68 75 612 2243 2 411

9 968 75 612 2243 2 411

Merge
sort

Merge
sort

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 99

WILLIAM S. SONG, JEREMY KEPNER, VITALIY GLEYZER, HUY T. NGUYEN, AND JOSHUA I. KRAMER

The main difficulty with implementing a k-way merge
sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value
among k entries during each step of the merge sorting pro-
cess. Ideally, the smallest value of k should be computed
within one processor clock cycle for the maximum sorter
throughput. The systolic merge sorter array shown in Fig-
ure 9 and Figure 10 can achieve such maximum sorter
throughput during merge sorting of k presorted lists. Fig-
ure 9 shows an example of a 7-way merge sorter array. The
array consists of three cells with the cell operations shown
in Figure 10. Each cell has two registers. The top regis-
ter RS (for smaller) contains the smaller of the two values
and the bottom register RB (for bigger) contains the larger
value. Each clock cycle, the cell passes the smaller value
to the left if it is smaller than the larger value on the left.
For example, the middle cell in Figure 9 at time 0 decides
to pass the value 3 to the left because 3 is smaller than
7, which is the larger value on the left cell. As the result,
the value 3 ends up in the left cell at time 1. Similarly, the
larger value is passed to the right if it is bigger than the
smaller value on the right adjacent cell. For example, the
left cell in Figure 9 at time 0 decides to pass the value 7 to
the right because 7 is larger than 3, which is the smaller
value on the right adjacent cell. As the result, the value
7 ends up in the middle cell at time 1. In the continuous

FIGURE 9. The illustration shows the systolic 7-way merge
sorter array in operation.

3

4

5

9

8

7 6

1

12

3 5

8 7

6

1 12

3

5

8

76

129

Input

Time 0

Output

Time 2

Time 1

∞

FIGURE 10. The systolic merge sorter array cell operation depends on the relationships between
internal variables (R) and external inputs (I).

RS

RB Bigger value register

Smaller value register

Register values are updated
depending on comparator results.

Efficient systolic sorter node
register update process

Condition New RS New RB

IL RBIR

IL RBIR
RS

IL RB IR
RS

IL
RB

IR

RS

IL
RB

IR
RS

IL

RB

IR

RS

IL
RB

IR
RS

IL

RB

IR

RS

IL
RB

IR

RS

IRRS

IL
RB

IRRS
IL IRRS

≤ <

≤

≤

≤≤

≤

≤≤

≤≤≤

<<

<

<

<

<

<

,
,
,

,

IL

RB

RS

IR

IL RS RB
IR

Comparators and logicMultiplexer network

RS

RB

100 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NOVEL GRAPH PROCESSOR ARCHITECTURE

communication between cells feasible. Because of these
implementation advantages as well as inherently higher
throughput of the k -way merge sort over a 2-way merge
sort, the custom systolic sorter module can provide up to
two orders of magnitude higher sorter throughput than
prevailing microprocessor-based sorting.

3D Communication Network and Randomized
Message Routing
The new graph processor architecture is a parallel proces-
sor interconnected in a 3D toroidal configuration using
very high bandwidth links [5], as shown in Figure 11. The
3D toroid provides much higher communication perfor-
mance than a two-dimensional (2D) toroid because of
higher bisection bandwidth. Bisection bandwidth repre-
sents the worst-case communication bandwidth between
two parts of a network partitioned to contain an equal
number of nodes. Bisection bandwidth is often used to
gauge the communication performance of the processor
network for communication-intensive tasks.

In order to minimize communication link lengths,
the 2D toroidal cluster is placed on a circuit board, and
multiple circuit boards are stacked on top of each other to
form the 3D toroid. The links between the circuit boards
are enabled by an array of electromagnetic coupling con-
nectors [6] that can communicate at high data rates with-
out requiring physical conductor connections.

Custom-designed, high-speed input/output circuit-
ries provide high-bit-rate, low-power communication for
2D links within the board and for 3D links between the
boards. Multiple links share the delay lock loop (DLL)
circuitry, as shown in Figure 12, because the DLL is the
highest power consumption circuitry for the communica-

3D processor
chassis

Stacked processor
boards

Coupling
connector

3D parallel
processor

Cold
plate

Processor IC
Heat removal
layer

Routing layer

Coupling
connectors

Insulator

Coupler

TX/RX

TX/RX

FIGURE 11. The illustration shows the structure of a 3D graph processor with electromagnetic coupling communica-
tions between processor boards. TX and RX are the transmitter and receiver.

operation mode, the smallest value in the array is always at
the register RS of the left-most cell. As a new input is pre-
sented to the array, the smaller values between the input
and the RS of the left-most cell are outputted from the
array in the very next clock cycle. At the same time, smaller
values in the array march toward the left, and larger values
march toward the right with each clock cycle. Because the
array always outputs the smallest of the k values in the
very next clock cycle, the k-way merge sort process can
be carried out at the maximum possible throughput rate.

The systolic array works as follows. Before time 0,
the array is preloaded with six values. Such loading can be
achieved by preloading the registers with -∞ or a very small
value. As six input values are loaded before time 0 from
the left, the -∞’s are outputted to the left. At the same time,
larger values march toward the right and smaller values
march toward the left, guaranteeing that the smallest value
in the array will always be at the RS register of the left-most
cell (correspondingly, the largest value in the array will be
at the RB register of the right-most cell). Toward the end
of the k-way merge sort process when no more inputs are
available, the systolic array can be emptied in sorted order
by injecting ∞’s or very large values as inputs.

The systolic array implementation of the k-way
merge sorter has numerous implementation advantages
over conventional processor architectures. Because all the
sorter cells are identical, developers can spend significant
effort in optimizing the cell for high speed, low power
consumption, and low circuit area, and can replicate the
design to achieve very high performance with relatively
little overall design effort. In addition, all the communica-
tion happens between neighboring cells, eliminating long
communication paths, making high-speed, low-power

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 101

WILLIAM S. SONG, JEREMY KEPNER, VITALIY GLEYZER, HUY T. NGUYEN, AND JOSHUA I. KRAMER

tion links. Because all communication paths are relatively
short with well-controlled lengths and impedances, such
sharing is possible while maintaining the high bit rate.
Each node processor is designed to be capable of a com-
munication rate of more than one trillion bits per second
to keep up with the communication demands of graph
algorithms. The test chips have been designed to verify
performance and power efficiency.

The 3D toroidal communication network is designed
as a packet-routing network optimized to support small
packet sizes that are as small as a single sparse matrix ele-
ment. The network scheduling and protocol are designed
so that successive communication packets from a node
would have randomized destinations in order to minimize
network congestion [6]. This design is a great contrast
to typical conventional multiprocessor message-routing
schemes that are based on the much larger message sizes
and globally arbitrated routing that are used in order to
minimize the message-routing overhead. However, large
message-based communications are often difficult to route
and can have a relatively high message contention rate
caused by the long time periods during which the involved
communication links are tied up. The small message sizes,
along with randomized destination routing, minimize mes-
sage contentions and improve the overall network commu-
nication throughput. Figure 13 shows the 512-node (8 × 8
× 8) 3D toroidal network simulation based on random-
ized destination communication versus unique destina-
tion communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of the conventional routing that is based on
large message sizes. The randomized destination routing
achieved approximately six times higher data rate and net-
work utilization efficiency in the simulation using an iden-
tical network. The relative difference between the network
utilization efficiencies is the important parameter because
the absolute network utilization efficiency depends on
exact communication links and routing algorithms.

Simulation and Performance Projection
A detailed simulation of the architecture was performed
to verify the design and to estimate the performance. Bit-
level accurate simulation models were used to simulate
the entire 1024-node processor running the graph algo-
rithm kernels. The performance projection was achieved

by extrapolating the existing computation circuits to the
target fabrication processes at 45 nm to 65 nm. The new
custom communication circuitry was developed to pro-
vide 3D interconnection based on coupling connectors.
Figure 14 shows the computational throughput projec-
tions versus number of processor nodes, assuming that
the database size scales with the number of processors.
We projected that the processor would provide sev-
eral orders of magnitude higher graph computational
throughput compared to the commercial alternatives. For
the planned initial prototype with 1024 processor nodes,
the projection for computation throughput is approxi-
mately three orders of magnitude higher than the best
commercial alternatives.

The power-efficiency projection obtained with the
same method is shown in Figure 15. The power efficiency
was also projected to be several orders of magnitude
higher. For the prototype with 1024 processor nodes,
the projected power efficiency is up to four or five orders
of magnitude higher than the best commercial alterna-
tives. In many cases, the power efficiency is even more
important than the computational throughput because

Clock Clock

Clock Clock

DLL

DLL DLL

DLL

N:1

1:NN:1

1:N

N:1

1:NN:1

1:N

TX

TX RX

RX

TX

TX RX

RX

2D communications link

3D communications link

FIGURE 12. In the 2D and 3D parallel high-speed commu-
nication link circuitry, multiple links share the delay lock loop
(DLL) circuitry.

102 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NOVEL GRAPH PROCESSOR ARCHITECTURE

FIGURE 13. This illustration of the 3D graph
processor with electromagnetic coupling com-
munications between processor boards shows
the contrast between a randomized destination
and a unique destination in a simulation using a
512-node 3D toroidal network. In the randomized
destination case, 87% full network efficiency is
achieved. In the unique destination case, only 15%
full network efficiency is achieved.

FIGURE 14.The computational throughput performance
projections were made based on simulations. The 3D graph
processor achieved orders of magnitude better computation
performance than the commercial systems.

1 10 100 1000

108

1010

109

106

107

Sp
ar

se
 m

at
rix

 o
r

gr
ap

h
op

er
at

io
ns

/s
/W

Processors

COTS cluster
model

3D graph processor
System

IBM p5 570*
3.2 GHz Intel Xeon

Custom HPC2
*Fixed problem size

1.5 GHz PowerPC

B
e� = 1 GB/s

B
e� = 0.1 GB/s

FIGURE 15. Power efficiency projections versus number
of parallel processors were made based on simulations. The
power-efficiency difference compared to commercial pro-
cessors is expected to be even larger than the computational
throughput difference as the number of processors grows
because the computational throughput does not level off as
in commercial processors.

1 10 100 1000

108

1010

109

106

107

System

IBM p5 570*
3.2 GHz Intel Xeon

Custom HPC2

*Fixed problem size

G
ra

ph
 o

pe
ra

tio
ns

/s

Processors

Be� = 1 GB/s

Be� = 0.1 GB/s

COTS cluster
model

3D graph
processor

Future Directions
Graph processing is of great interest to the cyber, Depart-
ment of Defense (DoD), and intelligence communities.
However, conventional computers are notoriously slow
when running graph algorithms. This poor performance is
mainly due to the inherent mismatches between the graph
processing flows and conventional processor architectures.
Graph algorithms can run faster in parallel processors,
but performance gains quickly level off after a relatively
small number of compute nodes because of the enormous
interprocessor communication bandwidth requirements
driven by the data flow patterns. Therefore, the sizes of

the computational throughput of large database process-
ing centers often tends to be limited by the availability of
power and heat dissipation that can be provided.

The speedup of graph computation over multiple
processors depends closely on how well the computa-
tional load is balanced between the processors. Advanced
process mapping algorithms have been developed to opti-
mize allocation of sparse matrix data and computations to
achieve robust balancing of processing load and memory
usage. A sparse matrix compiler could also be developed
to enable a simplified user interface with MATLAB-like
matrix high-level instructions.

3D toroidal
grid network Randomized

destination
packet sequence

Unique destination
for all packets
from one source

 VOLUME 20, NUMBER 1, 2013 n LINCOLN LABORATORY JOURNAL 103

WILLIAM S. SONG, JEREMY KEPNER, VITALIY GLEYZER, HUY T. NGUYEN, AND JOSHUA I. KRAMER

the problems to which graph algorithms could be applied
have been severely limited, and many DoD and intelli-
gence needs have gone unmet by conventional processors.
To address these challenges, Lincoln Laboratory devel-
oped an entirely new 3D graph processor architecture—a
significant departure from the variations of the von Neu-
mann architecture that have dominated the computing
world since the inception of the architecture.

Our detailed performance projections based on
simulations point to orders of magnitude improvements
in computational throughput and power efficiency over
the best commercial alternatives. On the basis of these
improvements, there will likely be numerous system
insertion opportunities in the future for cyber and intelli-
gence applications as well as for providing post-detection
knowledge extraction and decision support processing in
various ISR sensor platforms.

In addition, we are currently working to extend
the instruction set to include instructions that are opti-
mized for text-based data processing. Such enhance-
ment is expected to significantly improve the analysis of
“semantic” databases. We are also currently investigating
the development and integration of a high-bit-rate, low-
power optical communication network into the architec-
ture. Such communication network technology would
help the 3D graph processor architecture grow from
thousands of nodes up to millions of nodes and beyond
to handle very large databases in the future.

Acknowledgments
We would like to acknowledge the late Dennis Healy at
the Defense Advanced Research Projects Agency Micro-
systems Technology Office (DARPA MTO), who made
this work possible. We would also like to acknowledge
the following research team members: Robert A. Bond,
Nadya T. Bliss, Albert H. Horst, James R. Mann, Sanjeev
Mohindra, Julie Mullen, Larry L. Retherford, and Eric I.
Robinson. n

References
1. J. Kepner and J. Gilbert, Graph Algorithms in the Language

of Linear Algebra. Philadelphia: SIAM Press, 2011.
2. S.H. Roosta, Parallel Processing and Parallel Algorithms,

Theory and Computation. New York: Springer-Verlag, 2000.
3. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Intro-

duction to Algorithms. Cambridge, Mass.: The MIT Press, 2001.

Jeremy Kepner is a senior staff member
in the Computing and Analytics Group. He
earned a bachelor’s degree with distinction
in astrophysics from Pomona College. After
receiving a Department of Energy Com-
putational Science Graduate Fellowship in
1994, he obtained his doctoral degree from
the Department of Astrophysics at Prince-

ton University in 1998 and then joined MIT. His research is focused
on the development of advanced libraries for the application of
massively parallel computing to a variety of data-intensive signal
processing problems. He has published two books and numer-
ous articles on this research. He is also the co-inventor of parallel
Matlab, Parallel Vector Tile Optimizing Library (PVTOL), Dynamic
Distributed Dimensional Data Model (D4M), and the Massachu-
setts Green High Performance Computing Center (MGHPCC).

William S. Song is a senior staff mem-
ber in the Embedded and Open Systems
Group. Since his arrival at Lincoln Labo-
ratory in 1990, he has been working on
high-performance sensor and VLSI signal
processor technologies for adaptive sen-
sor array applications. He has developed
numerous advanced signal processing

algorithms, architectures, real-time embedded processors, and
sensor array systems. He holds 11 U.S. patents and has 4 oth-
ers pending, has submitted 23 invention disclosures, and has
authored or co-authored 26 journal and conference publications.
He received a 2005 MIT Lincoln Laboratory Technical Excellence
Award and is an IEEE Senior Member. He received bachelor’s,
master’s, and doctoral degrees from the Massachusetts Institute of
Technology in 1982, 1984, and 1989, respectively.

4. W.S. Song, J. Kepner, H.T. Nguyen, J.I. Kramer, V. Gleyzer,
J.R. Mann, A.H. Horst, L.L. Retherford, R.A. Bond, N.T.
Bliss, E.I. Robinson, S. Mohindra, and J. Mullen, “3-D Graph
Processor,” Workshop on High Performance Embedded Com-
puting, September 2010, available at http://www.ll.mit.edu/
HPEC/agendas/proc10/agenda.html.

5. W.S. Song, “Processor for Large Graph Algorithm Compu-
tations and Matrix Operations,” U.S. Patent pending, no.
13153490, June 6, 2011.

6. W. S. Song, “Systolic Merge Sorter,” U.S. Patent no. 8,190,943,
May 29, 2012.

7. W.S. Song, “Multiprocessor Communication Networks,” U.S.
Patent pending, no. 12703938, February 11, 2010.

8 W.S. Song, “Electromagnetic Coupling Connector for Three-
Dimensional Electronic Circuits,” U.S. Patent no. 6,891,447,
May 10, 2005.

About the Authors

104 LINCOLN LABORATORY JOURNAL n VOLUME 20, NUMBER 1, 2013

NOVEL GRAPH PROCESSOR ARCHITECTURE

Huy T. Nguyen is a staff member in the
Embedded and Open Systems Group.
He has been involved with architecting
and leading the development of several
high-performance power-efficient signal
processor systems, specialized accelera-
tors for nontraditional signal processing.
He has published 20 papers, co-authored

two book chapters, and consulted on high-performance computing
technologies. He received his bachelor’s degree at the University
of Delaware in 1989 and joined Lincoln Laboratory in 1998 after
earning his doctoral degree from the Georgia Institute of Tech-
nology in the area of low-power, very-large-scale integration for
digital signal processing applications. Prior to pursuing his doctor-
ate, he worked on real-time radar software at the Georgia Tech
Research Institute.

Joshua I. Kramer is a technical staff
member in the Cyber Systems and Tech-
nology Group. He has worked on low-
power, high-performance circuit design
and embedded computing architecture
since joining Lincoln Laboratory in 2007.
His current research interests are in anti-
tamper, secure, and trusted computing

architectures, and hardware accelerated cryptography. He holds
a doctorate in electrical engineering and a bachelor’s degree in
computer engineering from the University of Delaware.

Vitaliy Gleyzer has been a staff member
in the Embedded and Open Systems
Group at Lincoln Laboratory for four
years. Prior to joining the Laboratory, he
received his master’s degree in electrical
and computer engineering from Carnegie
Mellon University, with a research con-
centration on network architecture and

network modeling. His current work and research interests are
primarily focused on high-performance computing systems and
embedded systems engineering.

