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Tactical communication networks 
generally operate in highly congested and 
contested environments. Traditionally, tac-
tical communication radios and devices are 

statically configured to operate within a preallocated por-
tions of the electromagnetic (EM) radio-frequency (RF) 
spectrum prior to deployment. This approach requires 
minimal coordination among the radios and reduces 
interference by other devices; however, it limits the 
radios’ ability to take advantage of other unused spectrum 
resources and to avoid unintentional jamming by friendly 
forces or intentional jamming by adversaries. The capa-
bility of radios to dynamically search for, learn, and access 
available spectrum resources can greatly improve network 
performance in a congested environment. 

Independently from communication radios, friendly 
electronic warfare (EW) devices have to continuously 
search for and suppress adversaries’ communications and 
jamming elements while avoiding unintentional jamming 
of friendly radios. The ability of friendly jamming devices 
to dynamically sense, learn, and observe spectral activi-
ties can lead to more effective jamming strategies and can 
help minimize self-jamming of friendly radios, especially 
during missions in which both assets have to coexist. 
Thus, it is imperative that future communication radios 
and EW devices be able to dynamically sense, classify, and 
coordinate access to the EM spectrum for more improved 
performance under congestion and more robust opera-
tions under contention (Figure 1). 

Before expanding upon strategies for spectrum shar-
ing in the tactical domain, we would like to highlight ongo-
ing spectrum-sharing efforts in the commercial sector. 

A cognitive-based strategy for transmission 
channel access addresses the need for an 
approach that is spectrally agile and efficient 
under scarce resources and that is resilient 
to adversarial threats. The strategy’s five key 
components—sensing, learning, optimizing, 
transmitting, and jamming—are combined to 
model a tactical communications network, and 
game-theoretic algorithms and a performance 
metric are employed in a hypothetical blue-
force versus red-force competition for spectrum 
resources. 

»
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FIGURE 1. Tactical operational scenario in which both 
friendly (blue) and adversary (red) networks operate. Both 
networks compete for open spectrum resources.

Motivated by the growing demand in wireless devices and 
services and by the shortage of spectrum, the Federal Com-
munications Commission proposed and ratified new poli-
cies for dynamic spectrum access (DSA) that allow devices 
dubbed as secondary users to opportunistically share cer-
tain frequency bands with the primary users authorized 
by licensed service providers as long as the interference 
caused by the former is limited to an acceptable level [1]. 
The departure from the static assignment of frequency 
to a dynamic sharing can provide many benefits, such as 
higher data rates for wireless services, increased use of 
underutilized bands, and congestion relief in overcrowded 
bands. The DSA policy can be implemented with a set of 
cognitive algorithms (observe the environment, learn from 
past and present conditions, develop appropriate strate-
gies, take actions based on those strategies) embedded in 
the secondary users’ communication devices. By sensing 
the environment, the radio devices can learn the behavior 
of various users and adaptively change the radio’s channel 
access on the basis of traffic needs and transmission pat-
terns. Two promising applications for DSA in the civilian 
domain are wireless local-area networks (WLANs) and 
infrastructure-based cellular systems.

The extension of DSA to tactical radios and EW devices 
operating in environments in which little infrastructure or 
adversaries’ electronic attacks exist is challenging because 
of the lack of sensing and the lack of intercommunication 
among EW radios, and requires significant enhancements 
to protocols and algorithms. Lincoln Laboratory’s research 
into extending DSA is cast as a blue-force versus red-force 
scenario in which the red force represents an adversary. The 
blue-force communication radios and blue-force jamming 
devices dynamically compete with red-force communica-
tion radios and jammers on a set of open spectrum channels 
as depicted in Figure 2. The blue-force network’s objective 
is to adopt a channel access strategy to jointly achieve
•	 high-data-rate communication among blue-force 

radios,
•	 suppression of adversaries’ attempts to communi-

cate, and 
•	 resilience of blue-force communicating radios when 

subjected to attack from red-force jamming.
 
System Architecture
Because legacy tactical communication radios have no 
sensing capabilities to make environmental observa-

FIGURE 2. A set of blue-force communication radios and 
jammers compete with their red-force counterparts for a 
set of open spectrum channels. Spectrum resources are 
modeled as a set of frequency channels and time slots. 
Each time-frequency block represents a transmission (or 
jamming) opportunity for the respective networks. The 
blue-force nodes may cooperate in exchanging sensing infor-
mation and coordinate their intent to transmit or jam.
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makes coherent, network-wide decisions. On the other 
hand, a distributed control model allows each node to 
decide its own action. 

Communication Model
The spectrum for open access is partitioned in time and 
frequency. There are N nonoverlapping channels located 
at the center frequency fi (MHz) with bandwidth Bi (Hz) 
for i = 1, ... , N. A transmission opportunity is represented 
by a tuple < fi , Bi , t , T >, which designates a time-fre-
quency slot at channel i and time t with time duration T 
(msec) as depicted in Figure 4. A simple sensing mecha-
nism may operate like a carrier sense multiple access 
(CSMA) scheme in which comm nodes first sense before 
transmitting in a slot of opportunity. A more sophisticated 
sensing mechanism can lead to finer characterization of 
the spectral usage as described later.

tions, their ability to switch to different spectrum chan-
nels when the current ones are jammed or congested 
is limited. To address this limitation, we propose to 
include a sensing component in the radio architecture. 
A sophisticated sensing mechanism that can observe 
channel activities should be able to determine and clas-
sify the users’ characteristics. Using the classification of 
the spectrum occupants constructed by the sensor func-
tion, a learning and strategy mechanism can predict the 
potential rewards and risks for utilizing certain chan-
nels. The rewards and risks associated with accessing 
channels will influence a scheduler’s decision to access 
or not access channels per users’ needs. Users may wish 
to transmit data or suppress ( jam) the channel when 
adversaries transmit. The major components of a blue-
force communication node are illustrated in Figure 3. 
(Communications entities will hereafter be referred to 
as comm nodes.) The red-force network may or may not 
be equipped with the same capabilities. 

To develop an approach for the blue-force system, 
it is helpful to introduce the notion of a competing cog-
nitive tactical network (CCTN) in which a network of 
comm nodes and jammers attempts to dominate access 
to an open spectrum against a hostile opponent (possi-
bly another CCTN). We pose two compatible but distinct 
views for our CCTN problems, state-agnostic and state-
aware, and examine both comparatively. The proposed 
analytical framework for competing networks can lever-
age their capability to jam their opponent by jointly coor-
dinating with communication activities of their own. 

Past research approaches have been limited to an 
antijamming defense strategy for minimizing adversarial 
attacks, as studied, for example, by Wang et al. [2]. We 
have devised a Bayesian setting to explore and exploit a 
multichannel spectrum for the CCTN nodes to achieve 
optimal strategies for taking appropriate actions (com-
municate or jam), and we have empirically validated this 
setting’s superior performance over existing methods. 
The CCTN assumes little or no fixed infrastructural sup-
port. A mobile ad hoc network (MANET) would be the 
most convincing network model; therefore, the network-
wide cooperation and strategic use of jamming against 
the opponents are essential components in designing 
a winning media-access scheme. A competing network 
can adopt a centralized control model in which the node 
actions are coordinated through a singular entity that 

FIGURE 3. Major components of a competing cognitive 
tactical node. The blue-force nodes (comm or jammer) are 
equipped with sensing capability (e.g., energy detector, 
matched-filter detector, cyclostationary detector, etc.), as 
well as machine learning–based classification techniques to 
characterize the channel occupancy status. Using the chan-
nel status, a learning mechanism can infer the potential 
reward and risk of using a particular channel. Subsequently, 
a comm (or jammer) node adopts a strategy that can offer 
the best reward in the long run. The options for control and 
dissemination of information within the blue-force compo-
nents will be addressed later in this article.
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FIGURE 4. Transmission opportunity < fi , Bi , t , T > 
(shaded region).

schemes using multiuser detection (MUD) can improve 
performance [4].

The sensing mechanism employed in the blue-force 
side of the CCTN assumes the ability of the radios and the 
jamming devices to be able to distinguish among its own 
transmissions and those of the red force. The detail of this 
mechanism is beyond the scope of this article. The logical 
flowchart of the sensing mechanism is illustrated in Figure 
5. The combined detection algorithm is described as fol-
lows. First, spectral samples are processed by the energy 
detector to determine if a signal is present. If the energy 
is below a given threshold, which is adaptively determined 
by a method of moments estimator (MOME), the channel 
is considered empty and thus available for use [5]. Con-
versely, if there is sufficient energy above the threshold 
value in the band, a matched filter then demodulates the 
signal using the known parameters of the blue-force comm 
and jammer to determine if either of these signals is pres-
ent. If a blue-force comm signal is detected, the CDMA 
multiuser detector checks for each known blue-force comm 
code and distinguishes which user is transmitting. The 
remaining scenario—that is, power was received above 
the noise threshold but is not a known friendly signal—
assumes the existence of a red-force signal. 

One should note that Figure 5 describes only the 
logical flow that was discussed, not the ideal imple-
mentation. All of the described methods operate on 
the original time-domain samples of the received signal 
and, thus, can be computed in parallel. The possibility 
of detectors producing conflicting results is handled 

In order to coordinate a coherent spectrum access and 
jamming strategy network-wide, we assume that the nodes 
(both comm and jammers) exchange necessary information 
via control messages. The channels used to exchange con-
trol messages are called control channels, and data chan-
nels are used to transport regular data packets. The DSA 
approach in Wang et al. [2] is followed; in this approach, 
control or data channels are dynamically determined and 
allocated. When a network finds all of its control channels 
blocked (e.g., because of jamming) at time t, the spectrum 
access at time t + 1 will be uncoordinated.

Sensing Model
One of the key prerequisites of a cognitive-based sys-
tem is the ability to sense its surrounding environment 
and differentiate among the various users. Conventional 
detection methods include energy detection, matched-
filter detection, and cyclostationary detection, as shown 
in Figure 5. Sensing and discriminating among blue-force 
signals are made easier because their signal coding is 
known. Conversely, the red-force signals are more difficult 
to sense because of their unknown signatures. Detection 
and classification of multiple users occupying the same 
frequency channel can be very challenging, especially 
because of the unknown nature of the adversary’s trans-
mission signatures. The blue-force network, however, can 
have multiple users occupying a single channel, provided 
that they are segregated in the so-called coding space. For 
example, in a code-division multiple-access (CDMA) set-
ting, several users generally spread their energy over a 
wider bandwidth, using pseudosequences to simultane-
ously transmit on a channel. 

One method of detecting these "coding space" users 
is to use a matched filter that corresponds to the known 
spreading codes. Techniques based on synchronous 
CDMA allow for the use of orthogonal codes; users can 
completely neglect the presence of one another. Unfor-
tunately, these signals do not have good correlation 
properties with noise and require perfect synchroni-
zation with the transmitter. To reduce the complexity 
of this design, we only consider asynchronous CDMA. 
Spreading sequences with good correlation proper-
ties can maintain orthogonality among different users, 
allowing them to be detected asynchronously [3]. The 
greater the number of users, the lower the effective sig-
nal-to-noise ratio (SNR) becomes. More sophisticated 

Frequency

N
 c

ha
nn

el
s

fi

T

Bi

Timet

... ...



20 LINCOLN LABORATORY JOURNAL  n  VOLUME 20, NUMBER 2, 2014

competing cognitive tactical netWorks

by the introduction of tertiary states (as opposed to 
binary), in which the sensor reports a signal as being 
strong, weak, or completely absent. One can forward 
this information to a cognitive algorithm to provide 
greater resolution of the current state and express a 
discrete level of uncertainty in the current decision. 
This logic is described in Table 1.

The performance and sensitivity of a sensing scheme 
can be determined through the receiver operating char-
acteristic (ROC) curve. The ROC curve for the blue-
force network is difficult to derive analytically. Figure 6 
shows empirical ROC curves of simulated data at various 
SNRs. The calculations were performed with the imple-
mentation of the sensing decision tree and its constitu-
ent detection algorithms in MATLAB. The ROC values 
are instrumental in developing cognitive-based channel 
access strategies. The values of the ROC curves are further 
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the channel is active, the sensing mechanism proceeds to distinguish between a blue-force jam signal and a blue-
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FIGURE 6. A sample receiver operating characteristic 
(ROC) curve for the blue-force sensing mechanism. The 
desired location on a ROC curve is upper-left (100% detec-
tion with no false alarms).
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used by the learning and strategy functions of the CCTN 
to take appropriate actions.
 
Channel Access Models 
There are three types of channel access models. Conven-
tional multiple-access radio systems are based on a static 
channel access model. For example, frequency-division 
multiple access (FDMA) is a static channel access scheme 
to assign a particular frequency band to each node. We 
consider a similar static channel access model in which 
each radio node is configured to a fixed channel that 
remains the same throughout. Note that static channel 
access is a noncognitive channel access. 

Another class of multiple-access systems considers 
random-channel access such as ALOHA [6]. In a random-
channel access model, a node decides on a different chan-
nel each time it starts to transmit; the node draws from the 
spectrum composed of N total channels. Random-channel 
access, however, is still considered a noncognitive chan-
nel access scheme because randomization is done in the 
absence of sensing and cognition. 

Lastly, we consider a cognitive channel access model. 
In particular, we take state-agnostic and state-aware 
approaches for CCTN. Our state-agnostic approach is 
modeled after the “multiarmed bandit” (MAB) scheme 
for sequential resource-allocation problems [7], and our 
state-aware approach is based on Markov games [8]. 

The state-agnostic approach is solely driven by channel 
sensing and learning from sequentially inferring channel 
rewards and does not keep track of the system state. The 
state-aware approach explicitly defines a set of discrete 
system states and provides a plausible means to compute 
them via reinforcement Q-learning [9], a popular algo-
rithm in contemporary machine learning. A Markov deci-
sion process (MDP) underlies the state-aware CCTN. 

Table 2 summarizes the interactive criteria that have 
been evaluated for this article. As the development of cog-
nitive strategies is the main technical objective, we run our 
Q-learning and MAB-based strategies with the blue-force 
network against noncognitive static and random strate-
gies with the red-force network. Next, we run one cognitive 
strategy against the other by running Q-learning with the 
blue-force network and MAB with the red-force network. 

Jamming Model 
Xu et al. [10] describe a sound taxonomy of red-force jam-
ming. A static jammer continuously dissipates power into 
a channel selected for transmitting arbitrary waveforms. A 
deceptive jammer can instead send junk bits encapsulated 
in a legitimate packet format to conceal its intent to disrupt 
comm nodes. A random jammer alternates between jam-
ming and remaining quiet for random time intervals. The 
randomization can also take place over channel selection, and 
the jammer can randomly choose a channel to jam. A reactive 

Table 1. Truth Table for Resolving Conflicts Between Detection 
 Algorithms (“1” Indicates a Positive Detection)

EnERgy 
dETECTOR (MTM*)

MATChEd FiLTER
(BLUE COMM)

MATChEd FiLTER
(BLUE jAM)

dECiSiOn

0 0 0 Empty

0 0 1 Weak blue jam

0 1 0 Weak blue comm

0 1 1 Weak blue comm and jam

1 0 0 Red

1 0 1 Strong blue jam

1 1 0 Strong blue comm

1 1 1 Strong blue comm and jam

* MTM stands for multitaper method
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jammer listens to a channel, stays quiet when the channel is 
idle, and starts transmitting upon sensing an activity. 

Cognition and intelligence allow a more effective 
jamming strategy. We use the term strategic jamming 
to extend the statistical jamming described in Pajic and 
Mangharam [11]. A strategic jammer operates on knowl-
edge obtained from past jamming action and outcomes, 
as well as any observed (non-random) media access pat-
terns. Strategic jamming can operate for long periods 
without being detected, causing significantly more dam-
age than existing jamming methods.

Network Control Model
The network control model dictates how CCTN node 
actions at each time slot are determined. Our research 
considers two different control models: centralized and 
distributed. Under the centralized control model, a sole 
decision maker (agent) computes actions for all comm 
nodes and jammers that want to act on channels for a 
given time slot. The central decision maker employs a 
strategy (e.g., Q-learning, MAB) to compute the actions. 
Under the distributed control model, each CCTN node 
determines its own action. The lack of centralized deci-
sion making can cause conflicting node actions within 
the same network. Despite this disadvantage, distributed 
control is popular in tactical MANETs because it is more 

robust. The networking performance of distributed con-
trol can be improved by imposing an extra best-effort 
protocol to resolve conflicting actions of the nodes.

Figure 7a illustrates the CCTN with a central decision 
maker computing the network-wide strategy and dissemi-
nating all node actions. It is assumed for the centralized 
control that the decision maker should be able to collect 
sensing results from each node and the exact outcome of 
every action in order to make sound decisions over time.

Figure 7b illustrates distributed decision making. 
Here, each node makes its own decision on the basis of the 
best information that is collected on its node. In contrast, 
the centralized control model requires tight intranetwork 

Table 2. Channel Access Models 
and Evaluation Plan

BLUE FORCE

REd FORCE

Q-LEARning MAB

Static Yes Yes

Random Yes Yes

MAB Yes

FIGURE 7. CCTn control model. in (a), the blue-force network on the left coordinates its node actions through a central deci-
sion maker. in (b), each node in the blue-force network on the left computes its own action in a distributed manner. in both fig-
ures, the red-force network on the right is assumed to be an arbitrary control mechanism.
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rewards. S, A, and R evolve over time, thus are viewed as 
functions of time. We use lowercase versions of these let-
ters with superscripted t for their realization in time, e.g., 
st ∈ S means the CCTN state at time t. The blue-force and 
red-force network actions at t are aB = {aB, comm , aB, jam }t tt

and aR = {aR, comm , aR, jam }t tt containing both comm and jam-
ming actions, the size-C vectors aB, comm

t and aR, comm
t , and 

the size-J aB, jam
t and aR, jam

t . An ith element in aB, comm
t

designates the channel number that the ith blue-force 
comm node tries to transmit at t. Similarly, a jth element 
in aB, jam

t is the channel that the jth blue-force jammer tries 
to jam at t. The objective of CCTN is to win in the compe-
tition of dominating the spectrum access, which can be 
achieved by transporting blue-force data bits or jamming 
red-force data bits. The strategy of the game is defined by 
π  : S → PD (S ), which denotes the probability distribution 
over the action set. The blue-force network’s objective is 
equivalent to finding the optimum strategy p* by identify-
ing the maximum value of the total reward 

 
 

Eπ * = argmax 
π Σ γ t[ ]R(st, aB, aR)t t

t = 0

∞

,
 

where E  is the weighted reward over time, and g is the 
discount factor for future rewards. The range of values for 
the discount factor, 0< g <1, allows the decision maker 
to exploit the resources now or explore more over time 
for better payoffs.

communication to collect information and disseminate 
the strategy. After taking its action, a node under distrib-
uted control observes the outcome, computes the success 
(reward), and maintains statistics that can be shared with 
others in the network. 

Mathematical Formulation of CCTN
The mathematical formulation of the blue-force and red-
force CCTNs can be developed in two compatible, yet dif-
ferent, frameworks: a state-aware model that explicitly 
defines and tracks the CCTN states and a state-agnostic 
model that operates CCTN without any state knowledge. 
The state-aware CCTN assumes an underlying MDP, 
whereas the state-agnostic counterpart is purely driven 
by channel sensing and sequential reward sampling.

State-Aware Q-Learning Strategy
In the Q-learning approach (a model-free reinforcement 
learning technique), the dynamics of the CCTN are cast 
in a stochastic game framework [8], which extends the 
MDP [12] by incorporating an agent (as the game’s pol-
icy maker) who interacts with an environment possibly 
containing other agents. Under the centralized control 
model, CCTN considers one agent per network that com-
putes strategies for all nodes in the network, whereas 
there are multiple agents (i.e., each node) under the 
distributed control model. Let tuple GCCTN = 〈 S, AB , AR, 

R, T 〉 describe the blue-force versus red-force channel 
access game in the CCTNs and their interaction, where 
S denotes the set of states—how many and which comm 
and jammed channels are active—and AB = { AB , comm, 
AB, jam} and AR = { AR, comm, AR, jam} are the action sets for 
blue-force and red-force networks. The reward function 

A{B, R}, {comm, jam}R : S × ∏ → R  maps CCTN node actions 
to a reward value at a given state. The state transition 

A{B, R}, {comm, jam}T : S × ∏ → PD (S ) is the probability dis-
tribution over S. Figure 8 shows a sample MDP state dia-
gram, actions, and transition probabilities.

Consider that the spectrum under competition is par-
titioned in N channels, each of which can be described by a 
Markov chain. The action sets break down to include both 
the comm and jammer actions. Each CCTN has C comm 
nodes and J jammers. Ideally, we would want the condi-
tion 2 × (C + J) << N, where N designates channelization 
of the spectrum. This condition would allow the cognitive 
strategies to diversify their actions for higher potential 

FIGURE 8. An example of a Markov decision process 
(MdP). The large blue circles represent the MdP states, and 
the smaller yellow circles represent the actions.
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If there are L discrete states for each channel, we 
must track LN states for CCTN. Unfortunately, this track-
ing results in O(LN), an exponentially complex class with 
respect to the number of channels. We instead choose a 
terser state representation s =〈 IC , ID , JC , JD 〉 , where IC 
denotes the number of blue-force control channels col-
lided, ID the number of data channels collided, JC the 
number of control channels jammed, and JD the number 
of data channels jammed. Given the current state and the 
action sets of blue-force and red-force nodes, the next 
state of CCTN is computable. The actions of the opponent 
are inferred from channel measurements and sensing. For 
a complete mathematical description of the MDP param-
eters and transition probabilities and related details, see 
the article by Gwon et al. [13].

For illustrative purposes, we present an example in 
which each blue-force and red-force network has C = 2 
comm nodes and J = 2 jammers, and there are N = 10 
channels in the spectrum. Suppose the channels are 
numbered 1 through 10. The blue-force node actions at 
t are aB = {aB, comm , aB, jam }t tt , where aB, comm

t and aB, jam
t  are 

vectors of sizes C and J; similarly for the red-force node 
actions, aR = {aR, comm , aR, jam }t tt . Let aB, comm

t = [7,3]; this 
means that blue-force comm node 1 transmits in channel 
7, and blue-force comm node 2 in channel 3. Let aB, jam

t

= [1,5]; that is, blue-force jammer 1 jams channel 1, and 
blue-force jammer 2 jams channel 5. For the red-force 
network, let aR, comm

t =[3,5] and aR, jam
t =[10,9]. Also, the 

blue-force network uses channel 2 for control, and the 
red-force control channel is channel 1. These node actions 
and control channel usages form the bitmap shown in 
Figure 9; a 1 indicates transmit, jam, or markup as con-
trol channel. Both blue-force jammers are successful here, 
jamming the red-force control and comm data transmis-
sions in channels 1 and 5, respectively. Blue- and red-force 
comm data transmissions collide in channel 3, and the 
blue force has a successful data transmission in channel 7. 
Thus, the red force has no success in either of its comm 
data channels. Red-force jammers end up unsuccessful, 
jamming empty channels 9 and 10. This example results 
in state st =〈 IC = 0, ID = 1, JC = 1, JD = 1〉.

JAMMING AND ANTIJAMMING STRATEGIES

The coexistence of the two opposing kinds of signals 
(i.e., comm and jammer) in blue- and red-force networks 
decomposes CCTN into two subgames, namely antijam-
ming and jamming games. Figure 10 illustrates the anti-
jamming-jamming relationship among the nodes. In the 
antijamming game, the blue-force comm nodes strive to 
maximize their throughput primarily by avoiding hos-
tile jamming from the red-force jammers. Additionally, 
imperfect coordination within the blue-force network that 
causes a blue-force jammer to jam its own comm node 
(i.e., misjamming) should be avoided. Collision avoidance 
among comm nodes is another objective of the antijam-
ming game. In the jamming game, the blue-force jammers 

FIGURE 9. CCTn action-state computation example. The yellow band represents a case where the blue-force 
jammer successfully jams the red-force control channel. The light blue band represents a case where both blue-
force and red-force comms collide. The dark blue band represents the case where the blue-force jammer success-
fully jams the red-force comm transmission on channel 5. Finally, the red band represents a case where red-force 
jammers unsuccessfully jam channels 9 and 10.

Channel number 1 2 3 4 5 6 7 8 9 10
0 1 0 0 0 0 0 0 0 0 Blue-force control
0 0 1 0 0 0 1 0 0 0 Blue-force comm
1 0 0 0 1 0 0 0 0 0 Blue-force jamming
1 0 0 0 0 0 0 0 0 0 Red-force control
0 0 1 0 1 0 0 0 0 0 Red-force comm
0 0 0 0 0 0 0 0 1 1 Red-force jamming

Blue-force and
red-force comms
collide 

Red-force jamming
on channels 9 and 10
unsuccessful

Blue-force
jamming success
on red-force comm

Blue-force
comm success

Blue-force jamming success
on red-force control channel
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try to minimize the red-force data throughput by choosing 
the best channels to jam. A blue-force jammer can target 
a data channel frequently accessed by the red-force comm 
nodes or alternatively aims for a red-force control channel, 
thus resulting in a small immediate reward but a poten-
tially larger value in the future by blocking red-force data 
traffic. Misjamming avoidance is also an objective for the 
jamming game. For the blue-force network, the primary 
means to avoid misjamming is to coordinate the actions 
of its own jammers. This case is different from that of the 
antijamming game in which the avoidance is done by coor-
dinating the actions of the blue-force comm nodes.

The quality of the actions chosen by the deci-
sion maker is described by the Q function, which 
is a realization of the Bellman equations [14].1 A 
minimax-Q assumes a zero-sum game that implies 
Q  B(s 

t, aB, aR)t t  = – 
Q  (s 

t, aB, aR)t tQ  R(s 
t, aB, aR)t t = . This zero-

sum action holds tightly for the CCTN jamming sub-
game in which the jammer’s gain is precisely the comm 
throughput loss of the opponent. In order to solve the 
antijamming and jamming subgames jointly, we propose 
a slight modification to the original minimax-Q algo-
rithm in Littman [15]. First, we divide the strategy of the 
blue force’s network pB into its antijamming and jam-
ming substrategies, pB1 and pB2. Then, we add an extra 
minimax operator to the function V(st ), describing the 
value of the particular system state.

Q  (st, aB, aR)t t  = r (st, aB, aR)t t  + ∑
st+1

st, aB , aR
t tp (s t+1 | ) V(s t+1)γ

 = V(s t) Q  (st, aB, aR)t t  (aB)t π
B∑

aB
t

max maxmin min
π

B1(AB
 , comm) π

B2(AB
 , jam)aR, jam

t aR, comm
t

Two extensions of the Q-learning other than mini-
max-Q strategy are Nash-Q and friend-or-foe Q (FFQ), 
which can solve a general-sum game in addition to zero-
sum games with an improved convergence in the latter 
case. Nash-Q makes an important distinction to minimax-
Q by requiring one extra term π  (aR)〉 t

R , which is an estimate 

FIGURE 10. jamming and antijamming relationship. The 
circles represent all possible node types in the blue force–red 
force CCTn game. The solid lines represent the antijam-
ming game relationship between nodes in opposing forces 
and nodes within the same force. For example, the solid line 
between blue comm and red jammer describes the blue-force 
comm action to avoid the red jammer. The diagonal solid line 
describes the blue-force comm action to avoid colliding with 
the red comm. Similarly, the vertical solid line describes the 
blue-force comm action to avoid being misjammed by the 
blue jammer. The solid curved line describes the blue comm 
actions to avoid colliding with another blue comm (e.g., 
intranetwork coordination and cooperation). The dashed 
lines represent the jamming game relationships. The dashed 
horizontal line describes blue jammer action to disrupt red 
comm activities. The dashed diagonal line describes blue 
jammer action to avoid its jamming energy resources on the 
channel that has already been jammed by the red jammer. 
Finally, the dashed curved line describes the blue jammers’ 
actions to avoid their jamming energy resources on the same 
channel that has already been jammed by a blue jammer.

of the strategy of the opponent’s agent. For CCTN, the 
blue-force agent needs to learn π R1

〉 and π
R2

〉 , the antijam-
ming and jamming substrategies of the red-force network. 
For a general-sum game, the blue-force agent should com-
pute Q B and Q R separately while observing its reward 
rB

t  = rB (st, aB, aR)t t  and estimating the red force’s reward rR
t

(see the article by Gwon et al. [13] for complete details).

Antijamming game
Jamming game

Blue
comm

Blue
jammer

Red
comm

Red
jammer

1. The Q function can be described as the quantitative reward as a result of the actions taken. The Bellman equations opti-
mize the Q function, which is associated with the values of the MdP states, the V function. Evaluating the Q function requires 
the transition probabilities of the MdP, which are difficult to compute for large systems. A more practical approach would 
be to evaluate the Q function iteratively starting with some initial conditions. The values of the Q function are later used 
to derive values for V. This interrelation implies optimal actions chosen by the players, using the Bellman optimization in 
Q  (s, a) = R (s, a) + ∑

s
p (s' | s, a) V(s')

'
 and Q  (s, a') =  V(s) a'max .
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State-Agnostic Multiarmed Bandit Strategy
In the state-agnostic framework, actions are based on 
current sensing and past action results. Thompson [16] 
introduced the multiarmed bandit (MAB) approach to 
address the problem of action–result research issues. 
This section presents the MAB formulation for CCTN 
with the goal of accumulating optimal rewards from 
unknown parameters of the channel-node interactions 
that need to be learned sequentially. Each CCTN network 
has C comm nodes and J jammers. The blue-force and 
red-force node actions at time t are aB = {aB, comm , aB, jam }t tt

and aR = {aR, comm , aR, jam }t tt , containing both comm and 
jamming actions, the size-C vectors aB, comm

t and aR, comm
t , 

and the size-J vectors aB, jam
t and aR, jam

t . An ith element in 
aB, comm

t designates the channel number that the ith blue-
force comm node tries to access at time t. Similarly, a jth 
element in aB, jam

t is the channel number that the jth blue-
force jammer tries to jam at time t. Let Wt be a size-N vec-
tor that describes the outcome of the blue- and red-force 
node actions used to determine the rewards:

 
aB

t aR
t Ωt→×

It is more convenient to compute a reward from 
each channel (than from each node), and we use rB , k

t

to designate the instantaneous reward for the blue force 
resulting from channel k at time t. The total reward at 
time t is the sum over all N channels: rB , k

tRB
t = ∑N

k=1 . The 
blue-force network strategy, σ

B
t , is a function over time. 

It takes necessary information, such as sensing results 
and past action-outcome/reward statistics, as input and 
determines the blue-force node actions. Under the cen-
tralized decision making,

 
aB  ,tσ

B
t

→xB
j{ }  ,

t

j=1
aB , j Ω 

j{ }
t-1

j=1

where xB  
t is the blue-force sensing results up to time t. 

The first term in the second braces is all past actions up 
to t – 1 for all nodes; the second term is all past outcomes 
up to t – 1, which implicitly contain information on red-
force actions. The centralized decision maker applies the 
strategy σ

B
t  over all nodes and produces the action aB

t . 
Under the distributed decision making, each node in 

the network computes its own action. For node i in the 
blue-force network (whether it is a comm node or jammer),

 
aB , i ,

tσ
B,i
t

→xB , i  
t    , aB ,j Ω 

j{ }
t-1

j=1xB 
j  ,

where xB , i  
t is the sensing information only available to 

node i at time t, and σ B , i  
t  is the strategy of node i ’s own. 

At time t, node i does not yet have all sensing results 
except its own xB , i  

t . For the distributed case, node strate-
gies can differ, and there is no guarantee that conflicting 
actions of the nodes in the same network, such as collision 
and misjamming, are resolved.

The MAB strategy is best explained with a gambler 
facing N slot machines (arms). The gambler’s objective is 
to find a strategy that maximizes Rt = ∑t

j=1r j , the cumula-
tive reward over a finite time horizon. Lai and Robbins 
[17] introduced the concept of regret for strategy measur-
ing the distance from optimality 

 Γ t = tμ * − E [ ]Rσ
t ,

where m* is the hypothetical maximum reward (i.e., the 
“gold standard”) if a gambler’s action resulted in the best 
possible outcome each time, and E [ ]Rσ

t  is the expectation 
of the actual reward achieved with s. The expression G 

t 
is mathematically convenient, and maximizing the expec-
tation of Rt turns out to be equivalent to minimizing G 

t. 
Lai and Robbins [17] further derived the mathematical 
qualification for an optimal strategy:

 
,lim sup E [ ]Tk

t

t→∞
≤ log t

DKL ( pk || p*)

where Tk
t

is the total number of playing arms k, sup(.) 
is the least-upper bound, and DKL (.||.) is the Kullback-
Leibler divergence [18] measuring the dissimilarity 
between the probability distribution pk and p*, the kth 
arm’s reward and the maximum reward achieved by 
choosing only the best possible arm each time. The above 
equation provides the least-upper bound for the number 
of times should an optimal arm—which could be different 
each time—be played asymptotically. 

The mapping of the MAB model to CCTN channel 
access is as follows. An arm corresponds to a channel 
in the spectrum under competition. The comm nodes 
and jammers are the players that the networks allocate 
to play (i.e., transmit or jam) the channels. Since each 
network has multiple nodes, our problem is classified 
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as multiplayer MAB, which is different from the classic 
single-player MAB formulated by Lai and Robbins [17]. 
In addition, two system variations depend on whether a 
centralized control entity or each player makes the play 
decisions. The CCTN with a central decision maker (e.g., 
base station or master node) computes the network-wide 
strategy and disseminates all node actions. For the cen-
tralized multiplayer MAB, it is critical that the decision 
maker be able to collect sensing results from each player 
and the exact outcome of every play in order to make 
sound decisions over time. For the distributed decision-
making model, each node makes its own play decision on 
the basis of the best-effort information collected. Con-
trast this scenario to the centralized multiplayer MAB 
that requires tight intranetwork communication to col-
lect information and disseminate the strategy. After 
each play, the node observes the outcome, computes its 
reward, and maintains its play statistics, all of which can 
be shared with others in the network 

The MAB formulation for CCTN models the prob-
lem of sequentially sampling the total network reward 
from the N channel population rewards r1

t , rN
t,r2

t , ...
over time. The rewards are manifested by the mixed 
player actions from the same and opposing networks that 
dynamically affect the outcome each time. Differentiated 
from the classic MAB problems, the player action in 
CCTN comprises an action (transmit) and its anti-action 
( jam). The anti-action does not draw the reward directly 
from a channel but can deprive that generated by a comm 
node. Formally, we search for an optimal strategy, σ opt

t , 
that minimizes the regret Γ 

t :

 
σ

opt
t = argmin Γ 

t  = min{ E [ ]Rσ
t }E[ ]r

(i)
j

σ σ
– 

i=1 j=1

tM

∑ ∑

For the regret expression, we use r(i)
t , an ordered 

sequence of the N instantaneous channel rewards at 
time t such that ≥ ≥ ...r(1)

t r(N)
tr(2)

t ≥ . There are M = C + J 
total number of nodes in the blue network; the summing 
of the M < N highest rewarding channels reflects the 
optimal allocation of players. 

Reward Model
A reward metric is used to evaluate the performance of 
the CCTN. When a CCTN comm node achieves a suc-
cessful transmission of a packet containing B bits of data, 

it receives a reward of B. The definition of a successful 
transmission follows the rule of thumb from classical 
wireless networking that there should be only one comm 
node transmission for the transmit opportunity. If there 
were two or more simultaneous comm transmissions 
(from either the same or a different network), a collision 
occurs, and no comm node gets a reward. With packet 
capture, however, the possibility of a successful reception 
in the presence of multiple transmissions can increase 
substantially. This packet capture can further enhance 
the reward performance. 

Jammers by themselves do not create any reward. 
They receive a reward by suppressing an opposing comm 
node’s otherwise successful transmission. For example, 
a blue-force jammer earns a reward B by jamming the 
slot in which a sole red-force comm node tries to trans-
mit B bits. If there were no jamming, the red-force comm 
node would have earned B. Also, a blue-force jammer can 
jam a blue-force comm mistakenly (e.g., caused by faulty 
intranetwork coordination), an occurrence we call mis-
jamming (incurring no reward). Table 3 summarizes the 
outcome at a slot of transmission opportunity.

To better understand simulated results presented in 
the following section, we present an illustrative example 
for an optimal blue-force strategy against the static red-
force network with C = 4 and J = 2 in Figure 11. In this 
example, red-force comm nodes are fixed at channels 1, 
2, 3, 4, and its 2 jammers at channels 5 and 6, leaving the 
rest of channels 7, 8, 9, 10 free of red-force actions. Each 
comm node has a transmit probability of 0.5 whereas 
jammers jam with a probability of 1. Through learn-
ing by sensing all channels over time, an optimal blue-
force strategy should place its two jammers somewhere 
between channel 1 and 4. Because the comm transmit 
probability at any given slot is 0.5 for all red-force and 
blue-force comm nodes, the maximum average reward 
earned by the blue-force jammers should be [ ]RB,jamE  ≈ 

0.5 × 2 = 1. The blue-force comm nodes at channels 7, 8, 
9, and 10 should earn [ ]RB,commE  ≈ 0.5 × 4 = 2 (because 
of the comm transmit probability of 0.5, the blue-force 
comm reward at each time slot comes from two chan-
nels on the average). In summary, the total reward for 
blue-force network in this example is approximately 3, 
which is normalized to 3/N = 3/10 = 0.3 (per channel) 
and, similarly for red-force network, the average total 
reward is 1/10 = 0.1.
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Performance Evaluation
For the numerical assessment of the proposed CCTN, we 
consider both the transient and steady-state results for 
state-agnostic and state-aware cognitive algorithms. In 
each experiment, we apply a cognitive algorithm to the 
blue-force network and a noncognitive algorithm in the 
form of static or random allocations to the red-force net-
work. Both centralized and distributed spectrum access 
decisions are considered. Then, we compare the perfor-
mance of each network in terms of total average reward 
accrued over the simulation time. 

Simulation Parameter Configuration
Table 4 describes the CCTN simulation parameters and 
their corresponding values. In the case of static channel 
access, comm nodes and jammer nodes are assigned to 
their respective channels in a fixed manner for the dura-
tion of the simulation. A comm node may wish to transmit 

on its channel with probability PTX or not transmit with 
probability (1 – PTX). Similarly, a jammer may wish to jam 
its respective channel with probability PJ or refrain from 
jamming with probability (1 – PJ). In the case of random 
channel access, comm nodes and jammer nodes select a 
channel uniformly with probability 1⁄N and then proceed 
transmitting or jamming as in the static case.

Transient Analysis
Transient analysis allows us to observe the convergence 
behavior of the cognitive algorithms. In the first experi-
ment, several simulation runs are conducted. In each 
run, the blue-force network employs one of the two 
cognitive algorithms (e.g., Q-Learning or MAB) while 
the red-force network adopts static or random channel 
access. The transmit probabilities and jamming prob-
abilities are assumed to take values of one for all nodes 
PTX = 1 and PJ = 1. In Figure 12, we plot the cumulative 

Table 3. Reward Model for Single-Channel Scenario
BLUE-FORCE ACTiOn REd-FORCE ACTiOn OUTCOME REWARd

Comm Jam Comm Jam Blue Red

Transmit – – – Blue-force transmit success 1 0

– Jam Transmit – Blue-force jamming success 1 0

Transmit – Transmit – Blue-force/Red-force 
comm collide 0 0

– Jam – Jam Blue-force/Red-force 
jam collide 0 0

Transmit Jam – – Blue-force misjams 
Blue-force comm 0 0

Transmit – – Jam Red-force jam success 0 1

...

FIGURE 11. When red-force actions 
are stationary, the blue force can 
optimize its strategy with prior 
knowledge through learning by sens-
ing all channels over time.

Blue comm Blue jam

Red comm Red jam

Ch1 Ch10Ch9Ch8Ch7Ch6Ch5Ch4Ch2 Ch3

[ ]RB,jamE = 1 [ ]RB,commE = 2[ ]RR,jamE = 0[ ]RR,commE = 1
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FIGURE 12. Transient behavior of blue-force Q-learning and multiarmed bandit (MAB) strategies versus red-force static 
(left) and random (right) strategies.
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average rewards for the blue-force network operating 
Q-learning–based methods (minimax-Q, Nash-Q, FFQ) 
and MAB against the red-force network’s static and 
random strategies over time. Under the chosen simula-
tion parameters, the Q-learning and MAB algorithms 
converge to a steady-state distribution of the blue-force 
actions within 1000 iterations. Under such convergence, 
the blue-force average cumulative reward metric seems 
to approach an asymptotically optimal value. We observe 
that the minimax criterion results in a more aggressive 
strategy than Nash-Q: (1) minimax-Q converges to a 
steady-state cumulative average reward value faster; 
and (2) it outperforms Nash-Q by achieving slightly 
higher rewards over time. Static strategy has almost no 
chance against the learning algorithms as its steady-
state average cumulative reward approaches zero. On 
the contrary, learning seems harder against the random 
strategy, particularly because of this strategy’s effective-
ness in jamming. Also, it is important to note that the 
state-aware algorithms are asymptotically faster than 
those of the state-agnostic MAB scheme. 

Table 4. CCTN Simulation Parameters 
and Values

PARAMETER 
TyPE

PARAMETER 
VALUE

Number of blue-force comm 
nodes, CBF

2

Number of blue-force jammer 
nodes, JBF

2

Number of red-force comm 
nodes, CRF

2

Number of red-force jammer 
nodes, JRF

2

Number of channels, N 10

Probability of comm transmis-
sion, PTX 

0 ≤ PTX ≤ 1

Probability of selecting a channel 
(random access only)

1/N

Simulation time 2000 slots
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Steady-State Analysis
In the steady-state regime, the blue-force cumula-
tive reward is compared with the red-force cumulative 
reward as a function of the number of comm nodes. In 
this experiment, the number of jammers per network is 
kept constant, but the number of comm nodes per net-
work is varied. Also, the transmit probability per node 
is kept at PTX = 1⁄2. Figure 13a illustrates an increase in 
the average cumulative reward obtained per network as 
a function of comm nodes. As expected, our proposed 
MAB cognitive algorithm outperforms Lai and Rob-
bins’ MAB algorithms, as indicated in panel (a) for the 
centralized control case in the blue network. The ran-
dom strategy used by the red-force network performs 
better than the static strategy, but underperforms the 
blue-force network’s MAB strategy as depicted in panel 
(a). Figure 13b depicts the same strategy matchups 
between the blue and red networks, however, under the 
distributed control in the blue network. Similarly, we can 
observe that the blue-force performance is superior to 
the red-force performance. However, this performance 
is slightly degraded due to the imperfect coordination of 
the distributed control model. 

The steady-state results for the blue-force cumula-
tive reward when Q-learning strategies are employed 
outperforms the red-force network’s static strategy as 

FIGURE 13. Steady-state behavior of blue-force MAB strategies versus red-force static and random strategies in (a) centralized 
control and (b) distributed control for the blue network. Each point in these plots is obtained after running 1000 time slots. The 
unit of the y-axis is the average reward per channel for each network. For example, the blue network average reward is 30% while 
the red network is around 10% at C = 4 comm nodes in the left panel of subfigure (a). This result can be intuitively observed by 
the red-force static strategy, which occupies two channels 50% of the time, resulting in a 10% reward of the 10-channel system. 
On the other hand, the blue network’s reward consists of jamming the 2 channels occupied by the red comm nodes at 50% of the 
time, and its 4 comm nodes occupying unjammed channels at 50% of the time, incurring a 30% reward of the 10-channel system.
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indicated in the left panels of Figure 14a and b. As in 
the previous case, the transmit probability per node is 
kept at the value of PTX = 1⁄2. The cognitive algorithms’ 
learning ability diminishes when the red force’s strategy 
is random, as illustrated in the right panels in Figure 
15a and b. The cognitive algorithms always perform bet-
ter than the noncognitive algorithms when the number 
of channels is much larger than the total number of 
comm and jammer nodes in the network, N >> C + J. 
The intuition behind this case is that cognitive strate-
gies are more effective when the decision makers have 
sufficiently larger action space. 

In the final experiment, the blue-force network is set 
up with minimax-Q learning and the red-force network 
with the state-agnostic MAB strategy. Using N = 10, 
C = 4, and J = 2, we varied the comm transmit and jam-
ming probabilities equally for the two CCTNs and tested 
the two cognitive algorithms under both the centralized 
and distributed control scenarios (Figure 15). The sur-
face plots allow us to observe each network’s perfor-
mance as a function of both comm transmit probability 
and jammer jamming probability, PTX and PJ. 

The performance of the blue-force strategy is on par 
with that of the red-force strategies since both networks 
can learn about each other’s strategy. This observation 
motivates the need to further research more effective and 
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FIGURE 15. Steady-state behavior of the blue-force Q-learning strategy versus the red-force multi-armed bandit (MAB) 
strategy for (a) centralized control and (b) distributed control scenarios. The upper panel in subfigure (a) illustrates the aver-
age reward performance for the minimax-Q strategy on the blue force, whereas the lower panel depicts the red force’s MAB 
strategy. The performances of both networks seem comparable because their respective cognitive strategies in the steady-
state achieve similar learning. however, as depicted in Figure 12, the transient behaviors of these two strategies differ in con-
vergence property. The faster convergence gain of the Q-learning strategies is accompanied with a higher computational cost 
of keeping track of CCTn system states. The performances of both blue and red networks equally degrade by the imperfect 
coordination resulting from distributed control, as illustrated in subfigure (b).

FIGURE 14. Steady-state behavior of the blue-force Q-learning strategy versus red-force static and random strategies in (a) 
centralized control and (b) distributed control for the blue network. Each point in these plots is obtained after running 1000 time 
slots. The nash-Q is more sensitive to learning the opponent’s exact action. This sensitivity may have caused small perturba-
tions in nash-Q performance compared to minimax-Q as indicated in subfigure (a). Friend-or-foe Q-learning (FFQ) is more suit-
able for a distributed control setting and outperforms noncognitive red-force strategies consistently, as shown in subfigure (b).
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agile cognitive strategies that can be implemented in real 
or near-real time, and can scale to large networks.

Performance Prediction Test Bed
For test and evaluation purposes, we have developed 
models of the CCTN functions and their corresponding 
algorithms in the discrete-event operations network simu-
lation environment. This modeling environment offers an 
integrated view of the CCTN algorithms and allows us to 
observe the dynamics of various algorithms and their inter-
actions under mobility and realistic channel conditions in 
real time. Furthermore, architectural design studies and 
algorithmic trade-offs can be easily accomplished. Finally, 
various user applications, such as real-time video and voice 
data, can be incorporated and tested in this environment, 
allowing researchers and engineers to quantitatively and 
qualitatively evaluate their respective algorithms. Figure 16 
is a snapshot of a scenario in which both a blue-force net-

work and a red-force network are operating. The embedded 
instrumentations in the models provide real-time perfor-
mance statistics for sensing. Channel access rewards (e.g., 
data throughput for each network) are shown on the right 
side of the network visualizer of the modeling environment.

In summary, we have provided two cognitive 
approaches to strategize the joint comm and jamming 
actions for a CCTN, namely the state-aware reinforce-
ment Q-learning and the state-agnostic MAB.  Prelimi-
nary evaluations of the proposed cognitive algorithms 
indicate that they outperform the rudimentary schemes 
such as static and random channel access. The cogni-
tive strategies perform better against the static channel 
access compared to  the random channel access because 
the nodes randomly explore channels for higher rewards 
in the latter case. More analysis is needed to derive upper 
bounds for the blue force cognitive strategies’ reward 
performance against random scheme as a function of the 

FIGURE 16. A network view in the operations network environment shows both blue- and red-force networks in CCTn.The 
graphs on the screen image are reproduced on the right. The bar chart on the lower right represents the channel signal intensity 
from one blue node's perspective. For example, two channels (channel 0 and 1) are occupied by the blue comm nodes at this 
instance of simulation. Channel 1 is used by the red comm but it is currently being jammed by one of the blue jammers (see tall 
light blue bar). One of the red jammers is jamming channel 2 which was previously occupied by the blue comm. however, the 
blue comm had sensed it and cognitively switched to channel 3. The upper chart represents the throughput performance for the 
blue network. Both sent and received traffic curves coincide as expected. The middle chart illustrates the throughput perfor-
mance of the red network. The red curve represents traffic sent and the gray curve represents the traffic received, which in this 
case is close to zero because the channel currently being used by the red comm is being jammed by the blue jammer. 
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number of channels. This should allow us to apply theo-
retical performance bounds to choose practical system 
design parameters. Furthermore, we have demonstrated 
that the reward performance of CCTN is superior when 
node actions are decided in a centralized control manner 
compared to a distributed control scheme.

Future Work 
Competing Cognitive Tactical Networks operate in hostile 
environments and strive for dominant access to an open 
spectrum. Our notion of CCTN emphasizes the optimal 
data throughput for comm nodes in a friendly coalition 
and maximal suppression of hostile comm and jamming 
entities. A discrete-event simulation environment in which 
the CCTN functions and algorithms are modeled allows 
us to better understand and optimize the relevant design 
parameters and conduct different experiments.

Our immediate future work includes (1) algorithmic 
improvements to scale the number of nodes in a network 
efficiently, adding more friendly and enemy networks 
to the current two-network model, and (2) rigorous 
analysis on the accidental use of incorrect information 
(resulting from sensing errors) in learning, failover, and 
system component design, such as cognitive sensing and 
jamming detection at the physical and media access con-
trol (MAC) layers for current and future tactical com-
munications protocols. We also envision enhancing our 
computational framework through more robust linear 
programming methodologies and parallelization.
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This section describes algorithmic approaches to deter-
mine CCTN actions.

State-Agnostic Algorithm
We propose a new MAB algorithm based on extreme-value 
theory [19], conjugate priors, and Thompson sampling.

1. Distribution of maximum reward sequence: Let 
r1

t , rN
t,r2

t , ...Y  t = max { }, where r(i)
t represents the reward 

from channel i at time t. Since the sequence Y
1
t, Y

N
t,Y

2
t , ...

consists only of the maximum channel reward each time, 
it must have achieved the distribution p* in the diver-
gence test,

 E[ ]Tk

tlim sup ≤ log t / DKL (pk || p*)t → ∞ .

Furthermore, the sequence should result in an upper 
bound of the optimal mean reward m*. Therefore, all that is 
needed is a strategy s to empirically follow the distribution 
of Y t. But how is it distributed? Fisher and Tippet [20] and 
Gnedenko [21] proved the existence of limiting distribu-
tions for block maxima (or minima) of random variables. 
Their findings became the foundation of extreme-value 
theory used widely in financial economics. Let X1, X2 , ... , 
Xn be a sequence of independent and identically distrib-
uted random variables and Mn = max{X1, X2 , ... , Xn}. If real 
number pairs (an ,bn ) exist such that an , bn > 0 and

 
lim n → ∞ P = F (x) ,(Mn − bn

an
)≤ x

where F(.) is a nondegenerate distribution function, then 
the limiting distribution F(.) belongs to only the Frechet, 
Gumbel, or Weibull family of probability distribution 
functions.

2. Conjugate priors: In Bayesian inference, the poste-
rior is updated by the observed likelihood given the prior 
distribution:

 

p (θ |r) ∞ p (r|θ ) × p (θ ) ,{ { {

posterior priorlikelihood

where q is a set of parameters that have to be estimated. 
For example, q could be related to the mean reward for a 
channel. When the probabilistic model for the likelihood 

is known, we can set the prior and posterior distributions 
conveniently of the same family of functions. This is known 
as conjugate prior. Since the reward distribution in this 
context is extreme valued, the likelihood choices for our 
search are left to Frechet, Gumbel, or Weibull distributions.

3. The algorithm: In summary, our algorithm below 
performs Thompson sampling that follows an extreme-
valued likelihood and updates the posterior distribu-
tion based on its conjugate prior. However, we need to 
decide on which extreme-value distribution is suitable 
for CCTN. Since both Frechet and Gumbel distributions 
model unbounded random variables, we adopt a Weibull 
likelihood with the inverse gamma conjugate prior, rea-
soning that the maximum reward value for CCTN net-
works should be finite. A Weibull distribution has finite 
endpoints. Its conjugate prior, the inverse gamma distri-
bution, has two hyperparameters a, b > 0. Our algorithm 
draws the scale parameter q from the inverse gamma prior 

 
p (θ |a, b) = ba-1e-b/θ

Γ(a − 1)θ a
for θ  > 0 ,

where a and b are the sample mean and variance of the 
reward of a channel. (Note that here G is the gamma func-
tion.) The Weibull random variable generated by q drawn 
from the prior state estimates the expected reward for the 
channel. After observing the actual reward, the posterior 
update follows. For more details of the CCTN state-agnostic 
algorithm, see Gwon, Dastangoo, and Kung’s article [22].

Algorithm 1 CCTN State-Agnostic Algorithm (MAB)

Require: ai , bi = 0 ∀i

 1: while t < 1

 2:  Access each channel until ai , bi ≠ 0 ∀i, where ai  and  

   bi are sample reward mean and variance

 3: end

 4: while t ≥ 1

 5:  Draw θi ~ inv-gamma(ai , bi)

 6:  Estimate r̂i = weibull(θi,βi) ∀i for given 0.5 ≤ βi  ≤ 1

 7:  Access channel i* = arg maxi r̂i

 8:  Observe actual       to update {      ,       }

 9:  Update ai* = ai* +        , bi* = bi* + ∑ (    )

 10: end

T t 
i*Rt 
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T t 
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β
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State-Aware Algorithm
In reinforcement learning, there are two approaches 
to finding optimal strategies for CCTN. The first is 
the model-based approach in which a strategy maker, 
termed agent, explicitly learns the Markovian model 
(e.g., transition probabilities) that underlies the sys-
tem as described in the previous section. The second 
approach is model free, and the agent tries to directly 
formulate a strategy by learning from evaluative mea-
sures of each action at a given state. Algorithm 2 is 
based on Q-learning, a kind of temporal-difference 
learning method.

We have implemented minimax-Q, Nash-Q, and 
FFQ learning algorithms in MATLAB, using the linprog 
function from MathWorks’ Optimization Toolbox. We 
need to maintain the Q table, which is a three-dimen-
sional array that can be looked up by using state, blue-
force, and red-force action vectors. At the end of each 
time slot, we compute the next state from the sensing 
result of each channel. Recall that state computation is 
done by counting IC, ID, JC, and JD parameters described 
earlier. The action vector space is discrete, and we have 
pregenerated and indexed all possible action vectors for 
the blue and red forces. A strategy p is a two-dimen-
sional array indexed by state and action vector (either 
blue or red force). The V table for the value function is 
indexed only by state. For a more detailed description 
and in-depth analysis of the state-aware algorithm, see 
the authors’ paper [13].

Algorithm 2 CCTN Stateful Algorithm

Require: Q(s, aB , aR) = 1, V (s) = 1, π (s, aB) =       ∀ state s ∈ S,  

  BF action aB  ∈ A, RF action aR ∈ A; learning rate α < 1  

  with decay λ ≤ 1 (α, λ nonnegative)

 1: while t ≥ 1

 2:  Draw      ~ π(st) and execute

 3:  Observe 

 4:  Estimate       given observed reward

 5:  Compute st + 1

 6:  Q(st,      ,     ) = (1 – α)Q(st,     ,      ) + α(     + γV (st+1))

 7:  linprog: π(st,.) = arg max
π
 minaR 

∑aB
 π(st,aB)Q(st,aB, aR)

 8:  Update V(st) = minaR 
∑aB

 π(st,aB)Q(st,aB, aR) 

 9:  Update α = λ × α

 10: end
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