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Billions of lines of computer code direct 
the flow of information that drives the 
world’s activities. This vast amount of code 
powers software programs that instruct 

systems to perform tasks as commonplace as word pro-
cessing and as specialized as analyzing DNA sequence 
data. However, lurking within this benign software 
are critical vulnerabilities that cyber criminals exploit 
to steal or corrupt information. In addition, as new 
software versions, capabilities, and operating systems 
are introduced to the marketplace, older software code 
often becomes incompatible with new technology, ren-
dering the software either ineffective or completely 
unusable. Although the U.S. government and busi-
nesses annually spend millions of dollars to recover 
from attacks that inject malicious software, or malware, 
into their computer systems and to keep their software 
operational, more effective analysis capabilities are 
still needed to enable rapid, successful diagnosis and 
resolution of software problems. Lincoln Laboratory 
researchers have created an open-source tool, the 
Platform for Architecture-Neutral Dynamic Analysis 
(PANDA), for analysts to use to quickly develop instru-
mentation that helps answer complex questions about 
software and that informs appropriate responses to 
malware intrusions. 

Many problems brought on by faulty or malicious 
software code can be diagnosed through a 
reverse engineering technique known as dynamic 
analysis, in which analysts study software as it 
executes. Researchers at Lincoln Laboratory 
developed the Platform for Architecture-Neutral 
Dynamic Analysis to facilitate analyses that lead 
to profound insight into how software behaves. 
This tool was recognized with a 2015 R&D 100 
Award for being one of the year’s 100 most 
innovative technologies.

»
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Reverse Engineering
PANDA facilitates an analysis technique known as 
reverse engineering (RE), i.e., the process of analyzing 
a program’s code to discover its undocumented internal 
principles. By closely inspecting the binary code that runs 
a piece of software, an analyst can study how the program 
has been constructed to perform its operations. Reverse 
engineering is frequently employed to enable legacy code 
to continue functioning, to identify vulnerabilities in 
software, and to understand the true purpose and actions 
of a software program.

It is common for legacy code to stop working as the 
software ecosystem surrounding it evolves. When that 
failure happens, and when corporate support for the old 
program has also long terminated, RE is the most cost-
effective avenue to revive the functionality of the software. 
Using RE, analysts can discover the inputs and outputs 
to, and the dependencies and requirements of, a software 
program so that they can then develop appropriate fixes that 
allow the old code to run in a more modern environment.

Accurately identifying vulnerabilities is usually 
impossible without detailed RE knowledge. Analysts 
might be able to observe that a software bug exists, but 
being able to determine if it is exploitable, and therefore 
a critical vulnerability, is a much more difficult problem. 
Part of the solution to this problem is the determination 
of which specific parts of the program are questionable; 
often, source code is not available to help make this deter-
mination. Thus, without either performing RE or making 
use of the RE efforts of others, it is difficult to discriminate 
between unimportant bugs and serious vulnerabilities.

Vetting software to determine if it does what it is 
purported to do and nothing else is an important, compli-
cated task. When the code is believed to be malware, this 
determination is usually obvious. However, we believe 
there is an increasingly fine distinction between malware 
and misbehaving code. Consider a program written by a 
legitimate, large U.S. company, and imagine that its code 
performs a host of unintended malicious actions, such 
as accessing personal information or modifying system 
settings. None of this behavior is indicated in the doc-
umentation or advertising literature, nor is it clearly 
essential for the primary purpose of the software. How 
is this code functionally distinct from malware? This 
scenario is not simply a thought experiment: in 2005, 
Mark Russinovich, the cofounder of Winternals Software, 

discovered that audio CDs produced by Sony BMG Music 
Entertainment were installing a rootkit onto millions of 
computers [1]. The Sony rootkit recorded information 
about users’ computers to send back to Sony and hid every 
file on users’ systems with a certain prefix; worse, Sony’s 
uninstaller allowed any webpage to download and execute 
arbitrary code [2].

Reverse Engineering Through Dynamic Analysis
One approach to RE is static analysis. In this approach, 
analysts use tools such as disassemblers and decompilers 
to translate binary code into a form more easily read. 
Humans painstakingly navigate these representations, 
adding extensive annotations to ultimately reassemble 
a picture of how code and data operate at various levels 
of abstraction. Dynamic analysis is another approach to 
RE. In a dynamic analysis, while software executes on the 
system, analysts observe its behavior. 

PANDA is fundamentally a dynamic analysis tool 
that can help analysts gain deep insight into software code 
by observing the code’s behaviors across all levels of the 
operating system. Figure 1 provides a high-level overview 
of PANDA, and its use is depicted in Figure 2. First, an 
analyst captures a recording of some whole-system execu-
tion that he or she wishes to understand thoroughly. Then, 
the analyst writes analysis code in the form of plugins, 
which are modules that add specific capabilities to the 
software. Plugins collect data and consult or control other 
plugins. They are typically written quickly and iteratively, 
running a replay of the previously gathered recording 
over and over to construct a deeper understanding of 
the important aspects of system execution. For example, 
an initial plugin might just get a rough outline of what 
processes execute on the system and when key operating 
system events happen during the replay. A second analysis 
pass over the replay might focus in on the activity of a 
particular program or a portion of the replay. Further iter-
ations over the replay might be more complex and allow 
analysts to selectively label interesting data and track 
those data as they flow around the system; this process is 
metaphorically similar to a positron emission tomography 
(PET) scan [3], which provides diagnostic scans of organs 
and tissues by tracing a radioactive substance as it travels 
through the body. We have found that this workflow pow-
erfully enhances RE, as it enables analysts to iteratively 
build knowledge about dynamic software executions. 



92 LINCOLN LABORATORY JOURNAL  n  VOLUME 22, NUMBER 1, 2016

REPEATABLE REVERSE ENGINEERING WITH THE PLATFORM FOR ARCHITECTURE-NEUTRAL DYNAMIC ANALYSIS

PANDA System
PANDA is largely based upon the open-source whole-
system emulator known as QEMU (Quick Emulator). 
QEMU is a robust platform that uses binary translation 
to support multiple processor architectures. Utilizing 
QEMU allows us to emulate an entire Windows or Linux 
desktop, an Android phone, and other embedded systems. 

PANDA has four key features: the ability to record 
and replay entire software executions, an extensible 
plugin architecture, the ability to extend software analyses 
across multiple processor architectures, and the ability to 
emulate Android systems.

Record and Replay
PANDA’ s record and replay feature is conceptually simple. 
At the beginning of recording, we take a snapshot of the 
machine state, which includes the contents of registers 

and memory. Then, we record to a log all sources of non-
deterministic data entering the system, which primarily 
includes the sources of input and output, such as network 
traffic and hard-drive data, but also includes other low-
level sources that we have identified in the system. When 
any of these inputs comes into the system, we also record 
the information needed for us to determine when to 
replay the input.

PANDA’ s replay function, which has been tested exten-
sively on two processor architectures (32- and 64-bit x86 
and ARM), is quite stable and effective. It can record boot 
for a variety of operating systems; this action is challenging 
because of the complexity of the boot operation. PANDA 
recordings are also fairly compact in size even though our 
record log must capture the contents of all inputs into the 
system. Table 1 gives the record log sizes for a number of 
workflows. The modest size of these files makes them ideal 

QEMU whole-system emulator

Lightweight, complete record/replay LLVM program analysis integration

Diverse operating system and processor support

stringsearch bigrams scissors dynamic 
taint 

analysis

useafterfreeSoftware 
analyst

FIGURE 1. This high-level overview of PANDA shows its key features. PANDA has the ability to efficiently record and replay 
whole-system executions; the ability to support diverse operating systems, such as Windows, Linux, and Android; and a 
modular software design in which each analysis can be implemented as a plugin and the plugins can be used in conjunction 
with one another. Plugins can execute a number of diverse tasks according to how they are programmed by the analyst. For 
example, they can track information about which processes are executing, enable dynamic searching of data in the system, 
perform automated web-traffic decryption for certain algorithms, and perform detailed exploit analysis.
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for sharing and thus for enabling repeatable experiments. 
One of this article’s authors has set up a website from 
which any of these and a number of other replay files can 
be downloaded and analyzed independently.1

Because PANDA allows full repeatability of replays, 
it is incredibly useful for dynamic analysis. Traditionally, 
manual dynamic analysis involves running a program 
inside a debugger and using the debugger to periodi-
cally inspect the program state. However, debuggers 
largely cannot execute backwards, so in order to inspect 
an earlier program state, an analyst must restart the 
program from scratch. This restart not only adds time 
to the analysis process but also changes many dynamic 
aspects of the program. With PANDA replays, dynamic 
information is the same each time, so information about 
the state of memory can be built up piece by piece, 
greatly accelerating RE.

Plugin Architecture
PANDA plugins take the form of shared libraries that can 
be loaded at any time during an analysis. The plugins are 
event-driven; that is, they perform tasks in response to 
events in the system that are specified by analysts’ instruc-
tions. The analysts perform system instrumentation by 
using interfaces that have been made available in PANDA.

Many plugins depend on some common function-
ality. To avoid duplicating functionality throughout 
plugins while keeping the core of PANDA simple, we have 
implemented a mechanism for plugin-plugin interaction 
to allow individual plugins to expose a public interface 
that other plugins can utilize. The plugin-plugin inter-
action allows code reuse and reduces the duplication of 
specialized code that is used for complex analyses.

Architecture-Neutral Analysis
A number of dynamic analyses that happen at the system 
instruction level are invaluable for RE. For instance, in 
taint analysis, data in the system are labeled (tainted) and 
then tracked to enable a detailed understanding of the 
true information-flow patterns around, in, and out of a 
system. This analysis can be thought of as a PET scan 
for a computer [3]. In order to properly track labels, 
one must perform an additional complex analysis along-
side every system instruction. Some of the complexity 

1 http://www.rrshare.org

of these additional analyses is due to the differences in 
processor architectures of systems. For example, desktop 
architectures (such as x86) are more complex than pow-
er-constrained architectures (such as ARM).

PANDA avoids the difficulties associated with sup-
porting multiple processor architectures by performing 
analyses in a generic intermediate representation that 
is not specific to a particular processor architecture. We 
perform dynamic binary translation, which is the process 
of translating the code under analysis to the intermediate 
representation, to enable the generic analyses. Dynamic 
binary translation is the underlying technology that 
makes some of our novel analyses possible.

Table 1. Record Log for Various 
Replays

REPLAY INSTRUCTIONS 
(BILLIONS)

LOG SIZE 
(MB)

Operating 
system boot 9.3 533.0 

Spotify playing 
a song snippet 12.0 229.0 

Malware 
recording 9.1 43.0 

User browsing 
to a website 8.6 9.4

Record system 
execution of 

interest

Write/reuse 
analysis 
plugins

Execute 
instrumented 

replay

Obtain software 
analysis and 

understanding

Software analyst

FIGURE 2. In the replay-based reverse engineering (RE) 
workflow, PANDA can record and replay whole-system exe-
cutions. This capability is the foundation of PANDA’s use 
in RE. To use PANDA, the analyst captures a recording and 
then iteratively uses or builds data analyses to incrementally 
build RE knowledge.
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Android Support
An emulator similar to PANDA is included in Google’s 
Android software development kit and contains the nec-
essary emulated hardware to produce a realistic Android 
environment. In order to provide Android support to 
PANDA, we ported the features necessary to emulate 
devices that are unique to Android phones. Significant 
additional work was required to fully support modern 
Android emulation: integrating telephony, camera, 
and Android debug bridge support; integrating secure 
digital (SD) memory card support; translating inputs for 
graphical interfaces; supporting common formats for the 
storage devices; arranging to support PANDA’ s record 
and replay mechanism; and employing various other bug 
fixes, including one for a graphics bug.

Plugin Details
To date, more than 40 robust analysis plugins that can be 
applied to RE have been developed for PANDA by Lincoln 
Laboratory researchers, collaborators at a number of uni-
versities, and the open-source community at large. These 
plugins are available in our github repository at https://
github.com/moyix/panda. The following novel plugins 
have proven particularly useful in RE.

Tappan Zee (North) Bridge
Reverse engineering tasks often hinge on finding out what 
piece of code either implements some high-level function-
ality or handles some particular data. In large programs, 
these discoveries can be quite difficult. When the data 
are a fixed string embedded in the program, analysts are 
usually able to easily determine the function of a piece 
of data, but when the data are dynamic, analysts must 
laboriously trace the flow of data from some known input 
source through a chain of intermediate functions to the 
location where it is finally used. Moreover, when the data 
sought are some intermediate values not directly derived 
from the input, even this approach may fail.

In previous work [4], we developed a system, 
Tappan Zee (North) Bridge (TZB), for locating points 
at which we can interpose on memory accesses in a 
system to monitor events during system execution. We 
have since discovered that TZB is also immensely useful 
for RE. The central concept behind TZB is that memory 
accesses can illuminate the internal details of a system. 
As a program runs, functions called from different 

contexts read and write input, output, and intermediate 
results to memory. By appropriately separating out these 
memory accesses according to program and calling 
context (Figure 3), we obtain coherent streams of data 
that can then be searched and analyzed for information 
of interest. These streams of data accessed at a particular 
point in a program are called tap points because they are 
places in the code where one might “tap” to get useful 
information from a system.

In the simplest case, we may wish to find out what part 
of a program handles a certain bit of data, such as a string 
we type into a program, or what function causes a partic-
ular string to be printed to the console or shown in the user 
interface. For such tasks, searching all tap points for some 
fixed strings will give us a set of functions that were seen to 
read or write data matching our search string. To accom-
plish this type of search, we created the stringsearch 
plugin, which tracks all memory accesses made in the 
system; splits them up according to the calling context, 
program counter, and address space; and then searches 
the resulting streams for a list of keywords.

Sometimes, we may not know the exact format of the 
data, but we may know some statistical features of it. For 
example, if we are searching for a digital rights manage-
ment (DRM) decryption function, we know from previous 
work by Wang et al. [5] that the inputs to such functions 
have high byte entropy and are statistically random 
(according to a test such as Pearson’s chi-squared test), but 
their outputs are not random. We recently used Pearson’s 
test to locate the DRM decryption function within Spotify 
and showed that this function could be used to extract 
unencrypted audio files [6].

To support this latter type of search, PANDA can use 
appropriately named unigrams and bigrams plugins to 
collect unigram and bigram (one- or two-unit sequences in a 
string) statistics about each tap point. These functions collect 
unigram and bigram histograms for data read or written at 
each tap point during an execution. Once these histograms 
are gathered, an analyst can write scripts to compute statis-
tical features, such as byte entropy, chi-squared values, or a 
distance measure (such as Kullback–Leibler divergence) to 
a previously observed distribution.

The ability to search through tap points for data of 
interest can allow a reverse engineer to quickly zero in on 
the parts of a program of greatest interest or to extract 
normally unobservable data from a program as it runs. 
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The TZB system depends crucially on PANDA’ s record 
and replay functionality: on a live execution, the amount 
of compute resources needed to identify and halt on every 
memory access and inspect its contents would cause the 
operating system to become prohibitively slow and impos-
sible to analyze. In a replayed execution under PANDA, 
plugins can have arbitrary performance overhead without 
perturbing the events in the replay.

Scissors
One of PANDA’s biggest contributions to RE is its ability 
to do offline analysis, that is, to collect a recording of a 
system’s execution at normal speed and then replay that 
execution with heavyweight analyses running, potentially 
over a long period of time. Still, many analyses are too 
computationally intensive to be tractable over replays that 
have potentially billions of instructions. To address this 
issue, we created the scissors plugin, which enables 
the user to excise smaller portions of replays and then 
analyze just the shortened portion. Combined with the 
ability of components such as TZB to rapidly locate 
sections of interest in the replay, the scissors plugin 
allows analysts to focus their attention on key events 
during execution and ignore everything else.

Taint Analysis
As previously mentioned, taint analysis is the process of 
tagging data in the system with labels and then tracking 
those labels to enable a detailed understanding of the 
true information-flow patterns around, into, and out of a 
system. We have implemented dynamic taint analysis as 
a PANDA plugin that permits precise labeling of data in 
a number of ways, such as labeling file contents, network 
data, raw memory, and CPU registers. These labels 
are then tracked automatically and stored in a shadow 
memory that associates tainted memory, registers, and 
input/output buffers with label sets. 

Unlike other existing taint analysis systems, our 
system is independent of the underlying processor archi-
tecture and has been used to analyze replays based on the 
x86, x86-64, and ARM processor architectures. We can 
also easily extend our taint analysis system to all of the 
architectures that our system emulator supports. 

Our system includes query mechanisms that allow an 
analyst to ask if data are tainted at some replay point and to 
examine the set of associated taint labels. These mechanisms 
permit the analyst to ask very detailed questions about the 
software they are analyzing: If I mark incoming network 
traffic as tainted, where does it flow through the system? Is 

(a)

(b)

00a3bdgoogle.comr2ab.tmpa2bc

strcpy

memcpy

google.comr2ab.tmp

00a3bda2bc

(c)
strcpy←open_url

memcpy

google.com

strcpy←open_file r2ab.tmp

00a3bda2bc

FIGURE 3. Memory accesses are made by a program with varying amounts of context: (a) presented as a single stream of 
information from the CPU to memory, (b) split up according to program, and (c) split up according to program, location within 
the program, and calling context.
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any of this traffic interacting with vulnerable code that could 
potentially be exploited by an adversary? If I mark sensitive 
files as tainted, are they ever unknowingly exfiltrated? How 
much control does a potential adversary have over untrusted 
data at various points in the execution of a program?

Many of the specifics of how this subsystem was 
designed and implemented have been described in 
our previous work [7]. Here we describe some salient 
features of PANDA that enable analysts to observe 
software in detail:
• Whole-system support—PANDA’ s taint analysis tracks 

labels even if they flow between different processes and 
privilege levels.

• Input/output support—Because our shadow memory 
includes the hard drive, network card, and associated 
input/output buffers, an analyst can precisely intro-
spect into how data propagate through the system 
at a low level and can properly track how data move 
through these devices.

• Replay-based taint analysis—Our taint analysis plugin 
uses a record and replay system to turn an intractable 
online analysis into a tractable offline analysis. For 
many platforms, such as Android, even pure emula-
tor-based execution is barely fast enough to prevent 
operating system and networking timeouts during taint 
analyses, which are typically computationally intensive. 

• Detail and fidelity—Taint analysis in PANDA focuses 
primarily on the detail that can be obtained from the 
analysis. For instance, a file can be labeled such that 
every byte in the file gets a different label. Further, 
computation is modeled with high fidelity by tracking 
detailed metadata with each byte of memory, allowing 
an analyst to measure how much the tainted data have 
changed since they were originally labeled.

• Interface—Taint labeling and querying can be either 
driven by events (through callbacks registered with 
the taint plugin) or invoked by a call to the interface 
exposed by the plugin. This choice of approaches 
provides flexibility to the analyst.

Case Studies
The following three RE use cases for PANDA illustrate 
the system’s capabilities. In the first example, we revived 
an old version of the game StarCraft for which the CD 
key had been lost; with PANDA’ s plugins, we were able to 
rapidly locate the key verification code and harness it to 

produce keys on demand. In the second, PANDA’ s whole-
system replay function enabled us to perform an in-depth 
diagnosis of a Windows Internet Explorer vulnerability to 
characterize this vulnerability as a use-after-free bug (i.e., 
an attempt to access previously deallocated memory). In 
the third, an Android chat client suspected of censoring 
messages was quickly determined to be doing so via a 
censorship blacklist that was readily extracted. Note that, 
while we used some of the plugins that were mentioned 
earlier in this article, we did not apply all of them to our 
use cases; rather, we allowed the task at hand to drive the 
choice of plugins to employ.

Reviving Legacy Code
StarCraft is a science fiction video game released in 1998 
by Blizzard Entertainment. Each of the game’s discs 
comes with a unique CD key that identifies the copy and 
permits both installation and online play. Originally, 
CD keys were 13 numbers, but Blizzard revised later 
copies of the game to use keys consisting of 26 alphanu-
meric characters. The original 13-number format was 
very simple to reverse engineer; however, if you legally 
purchased a newer copy of the game and lost your 
26-character CD key, you would be unable to install and 
play the game.

We used PANDA to find and rapidly reverse 
engineer the 26-character CD key validation algorithm 
for StarCraft. First, we collected a recording of the 
StarCraft installer rejecting a random sequence of letters 
and numbers. We then provided both this incorrect key 
sequence and the text of the rejection dialog as searches to 
PANDA’s TZB, which promptly found both in the replay. 
This discovery focused our attention on about 200,000 
instructions out of the 60 million in the complete replay 
(a 300-fold reduction). We then used the scissors 
plugin to extract just this operative segment containing 
the validation algorithm.

Through manual static analysis of the code in the 
remaining replay segment, we ascertained that the 
installer decrypts the CD key and checks the high-order 
bits of the resulting 120-bit integer against a fixed value. 
This “magic number” is not immediately apparent in 
the code’s disassembly, but a simple PANDA plugin was 
rapidly written that printed the magic number out when 
it was read from memory through the use of a concept 
similar to the stringsearch plugin. Our analysis 
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showed that the fixed value was 23. Manual RE from 
there easily revealed the complete key-computation algo-
rithm. Some additional mathematical analysis indicated 
a very low key density: only 1 in 27,000 of the possible CD 
keys are actually valid.

We then used the Hex-Rays decompiler to 
recreate source code of interest identified by the 
stringsearch  plugin. The extracted code was har-
nessed as a decoder in a small program that was fed 
random keys to determine which ones were valid. Overall, 
this RE effort was very successful. PANDA allowed us to 
reduce the replay to a size at which a complicated analysis 
was immediately tractable with the scissors  plugin, 
rapidly locate the code of interest for key validation with 
the stringsearch  plugin, and ultimately to play our 
StarCraft game again by using a validated CD key gener-
ated by our extracted test harness.

Deep Vulnerability Diagnosis
Software vulnerabilities often have deep causes, with the 
underlying bug occurring well before a potential crash or 
exploit. One classic example is the use-after-free bug that 
exploits a program’s retention of information referencing 
invalid, deallocated memory. When a program accesses 
this invalid memory, the program may crash because its 
data structures have been corrupted; however, the crash 
itself will give no hint about its underlying cause—e.g., 
where the bug was created, when the memory was freed, 
or even if the bug involved a use-after-free exploit.

As an experiment to test the effectiveness of PANDA 
in finding deep vulnerabilities, we had a team member 
prepare a replay containing a known triggered vulnera-
bility. This replay was then given out with no information 
other than the fact of an application’s crash and the 
standard Windows error message, “Application has 
stopped working.” First, we used the replaymovie 
plugin to make a series of captures from the screen and 
to then stitch them together into a video of replay exe-
cution. This video indicated that the failing process was 
Internet Explorer and that the vulnerability was trig-
gered by loading a malicious website. We then used TZB 
to search for “<HTML” and “has stopped working”; this 
search gave us temporal bounds in the replay for the bug’s 
location. The scissors plugin enabled us to reduce the 
size of the replay and conduct more heavyweight analyses. 
Using TZB again, we extracted all further output at the 

<HTML tap point, which was exactly the full webpage 
that triggered the bug. The webpage indicated that the 
vulnerability was probably a use-after-free bug.

We then wrote a custom PANDA plugin called 
useafterfree  to detect use-after-free memory cor-
ruption situations. This plugin was written for a Windows 
operating system, but it could easily be adapted for other 
systems. It tracks calls to Windows’ low-level memory allo-
cation functions, and it maintains shadow lists of valid and 
invalid memory. When a pointer to invalid memory is used, 
a use-after-free has occurred and the plugin detects it.

In this case study that highlights the iterative 
approach analysts often take while performing RE tasks 
with PANDA, the repeatability of PANDA replays was a 
key advantage. Writing custom plugins to target a specific 
replay is easier than writing plugins that generalize over a 
broad set of situations. 

Uncovering Censorship Blacklists
We cannot always trust that the software we use is acting in 
our interests. For example, it is not uncommon for instant 
messaging clients to actively censor the conversations 
of their users [8, 9]. Such censorship can either be per-
formed on server-side operations or be accomplished by 
a client-side blacklist that is periodically updated. In the 
former case, PANDA can be of no help because there is no 
code available to run and examine in vivo; however, in the 
latter, PANDA can extract a list of censored words from 
the client. To test PANDA’ s ability to uncover such a list, 
we examined the free LINE messenger client for Android. 
Analysts from the Citizen Lab at the University of Toronto’s 
Munk School of Global Affairs had previously investigated 
LINE to determine that it censors certain users [10].

For our analysis, we created a recording in which 
we launched the LINE messenger and sent an instant 
message to another user. The sent message did not include 
any content we thought might be censored. Simply by 
sending the instant message, we supposed that LINE 
would still have to load its list of censored words and 
check our message against it, thus leaving the list open to 
extraction by PANDA.

To find the encrypted wordlist, we employed the TZB 
plugin, supplying some guesses as to words that might 
be subject to censorship and then searching all memory 
reads and writes made by LINE for these words. This 
process gave us a set of tap points that contained the 
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sensitive words. As we suspected, the words we sought 
were indeed included in LINE’s list of censored words. By 
the end of our analysis, we discovered 536 specific words 
that LINE was censoring in a completely automated 
fashion. PANDA expedited our LINE analysis far beyond 
the level of time and effort we would have expended had 
we used a more manual approach.

Future Directions
We have been actively using PANDA for the past three 
years to quickly reverse engineer large, real-world 
software systems without the availability of source code. 
In most case studies during this time, we have found 
PANDA to be invaluable for speeding up RE, either by 
entirely obviating the need for manual analysis or by pre-
cisely directing human attention to the critical portions 
of a large code base.

In the near term, we are planning to enhance 
several key aspects of PANDA: performance, architec-
ture support, and analysis capabilities. Performance can 
potentially be improved in our recording infrastructure 
and in many of our plugin implementations. PANDA is 
processor architecture–neutral in principle, but a number 
of features have not yet been ported to all supported pro-
cessor architectures. For deep operating system analysis 
capabilities, we plan to create new plugins that encapsu-
late the domain-specific knowledge necessary to retrieve 
useful information about various operating systems.

In the long term, we wish to make this a tool that can 
be used by anyone to reverse engineer complex systems. 
We have released PANDA as an open-source tool to the 
cyber security community, and we have transitioned 
PANDA technology to several other programs within 
Lincoln Laboratory’s Cyber System Assessments Group 
and to their respective sponsors within the Department 
of Defense. We hope that continued development by the 
open-source community and technical staff at Lincoln 
Laboratory will make this a common tool for dynamic 
software analysis and RE. 
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