
90 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

Repeatable Reverse
Engineering with the Platform
for Architecture-Neutral
Dynamic Analysis
Ryan J. Whelan, Timothy R. Leek, Joshua E. Hodosh,

Patrick A. Hulin, and Brendan Dolan-Gavitt

Billions of lines of computer code direct
the flow of information that drives the
world’s activities. This vast amount of code
powers software programs that instruct

systems to perform tasks as commonplace as word pro-
cessing and as specialized as analyzing DNA sequence
data. However, lurking within this benign software
are critical vulnerabilities that cyber criminals exploit
to steal or corrupt information. In addition, as new
software versions, capabilities, and operating systems
are introduced to the marketplace, older software code
often becomes incompatible with new technology, ren-
dering the software either ineffective or completely
unusable. Although the U.S. government and busi-
nesses annually spend millions of dollars to recover
from attacks that inject malicious software, or malware,
into their computer systems and to keep their software
operational, more effective analysis capabilities are
still needed to enable rapid, successful diagnosis and
resolution of software problems. Lincoln Laboratory
researchers have created an open-source tool, the
Platform for Architecture-Neutral Dynamic Analysis
(PANDA), for analysts to use to quickly develop instru-
mentation that helps answer complex questions about
software and that informs appropriate responses to
malware intrusions.

Many problems brought on by faulty or malicious
software code can be diagnosed through a
reverse engineering technique known as dynamic
analysis, in which analysts study software as it
executes. Researchers at Lincoln Laboratory
developed the Platform for Architecture-Neutral
Dynamic Analysis to facilitate analyses that lead
to profound insight into how software behaves.
This tool was recognized with a 2015 R&D 100
Award for being one of the year’s 100 most
innovative technologies.

»

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 91

RYAN J. WHELAN, TIMOTHY R. LEEK, JOSHUA E. HODOSH, PATRICK A. HULIN, AND BRENDAN DOLAN-GAVITT

Reverse Engineering
PANDA facilitates an analysis technique known as
reverse engineering (RE), i.e., the process of analyzing
a program’s code to discover its undocumented internal
principles. By closely inspecting the binary code that runs
a piece of software, an analyst can study how the program
has been constructed to perform its operations. Reverse
engineering is frequently employed to enable legacy code
to continue functioning, to identify vulnerabilities in
software, and to understand the true purpose and actions
of a software program.

It is common for legacy code to stop working as the
software ecosystem surrounding it evolves. When that
failure happens, and when corporate support for the old
program has also long terminated, RE is the most cost-
effective avenue to revive the functionality of the software.
Using RE, analysts can discover the inputs and outputs
to, and the dependencies and requirements of, a software
program so that they can then develop appropriate fixes that
allow the old code to run in a more modern environment.

Accurately identifying vulnerabilities is usually
impossible without detailed RE knowledge. Analysts
might be able to observe that a software bug exists, but
being able to determine if it is exploitable, and therefore
a critical vulnerability, is a much more difficult problem.
Part of the solution to this problem is the determination
of which specific parts of the program are questionable;
often, source code is not available to help make this deter-
mination. Thus, without either performing RE or making
use of the RE efforts of others, it is difficult to discriminate
between unimportant bugs and serious vulnerabilities.

Vetting software to determine if it does what it is
purported to do and nothing else is an important, compli-
cated task. When the code is believed to be malware, this
determination is usually obvious. However, we believe
there is an increasingly fine distinction between malware
and misbehaving code. Consider a program written by a
legitimate, large U.S. company, and imagine that its code
performs a host of unintended malicious actions, such
as accessing personal information or modifying system
settings. None of this behavior is indicated in the doc-
umentation or advertising literature, nor is it clearly
essential for the primary purpose of the software. How
is this code functionally distinct from malware? This
scenario is not simply a thought experiment: in 2005,
Mark Russinovich, the cofounder of Winternals Software,

discovered that audio CDs produced by Sony BMG Music
Entertainment were installing a rootkit onto millions of
computers [1]. The Sony rootkit recorded information
about users’ computers to send back to Sony and hid every
file on users’ systems with a certain prefix; worse, Sony’s
uninstaller allowed any webpage to download and execute
arbitrary code [2].

Reverse Engineering Through Dynamic Analysis
One approach to RE is static analysis. In this approach,
analysts use tools such as disassemblers and decompilers
to translate binary code into a form more easily read.
Humans painstakingly navigate these representations,
adding extensive annotations to ultimately reassemble
a picture of how code and data operate at various levels
of abstraction. Dynamic analysis is another approach to
RE. In a dynamic analysis, while software executes on the
system, analysts observe its behavior.

PANDA is fundamentally a dynamic analysis tool
that can help analysts gain deep insight into software code
by observing the code’s behaviors across all levels of the
operating system. Figure 1 provides a high-level overview
of PANDA, and its use is depicted in Figure 2. First, an
analyst captures a recording of some whole-system execu-
tion that he or she wishes to understand thoroughly. Then,
the analyst writes analysis code in the form of plugins,
which are modules that add specific capabilities to the
software. Plugins collect data and consult or control other
plugins. They are typically written quickly and iteratively,
running a replay of the previously gathered recording
over and over to construct a deeper understanding of
the important aspects of system execution. For example,
an initial plugin might just get a rough outline of what
processes execute on the system and when key operating
system events happen during the replay. A second analysis
pass over the replay might focus in on the activity of a
particular program or a portion of the replay. Further iter-
ations over the replay might be more complex and allow
analysts to selectively label interesting data and track
those data as they flow around the system; this process is
metaphorically similar to a positron emission tomography
(PET) scan [3], which provides diagnostic scans of organs
and tissues by tracing a radioactive substance as it travels
through the body. We have found that this workflow pow-
erfully enhances RE, as it enables analysts to iteratively
build knowledge about dynamic software executions.

92 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

REPEATABLE REVERSE ENGINEERING WITH THE PLATFORM FOR ARCHITECTURE-NEUTRAL DYNAMIC ANALYSIS

PANDA System
PANDA is largely based upon the open-source whole-
system emulator known as QEMU (Quick Emulator).
QEMU is a robust platform that uses binary translation
to support multiple processor architectures. Utilizing
QEMU allows us to emulate an entire Windows or Linux
desktop, an Android phone, and other embedded systems.

PANDA has four key features: the ability to record
and replay entire software executions, an extensible
plugin architecture, the ability to extend software analyses
across multiple processor architectures, and the ability to
emulate Android systems.

Record and Replay
PANDA’ s record and replay feature is conceptually simple.
At the beginning of recording, we take a snapshot of the
machine state, which includes the contents of registers

and memory. Then, we record to a log all sources of non-
deterministic data entering the system, which primarily
includes the sources of input and output, such as network
traffic and hard-drive data, but also includes other low-
level sources that we have identified in the system. When
any of these inputs comes into the system, we also record
the information needed for us to determine when to
replay the input.

PANDA’ s replay function, which has been tested exten-
sively on two processor architectures (32- and 64-bit x86
and ARM), is quite stable and effective. It can record boot
for a variety of operating systems; this action is challenging
because of the complexity of the boot operation. PANDA
recordings are also fairly compact in size even though our
record log must capture the contents of all inputs into the
system. Table 1 gives the record log sizes for a number of
workflows. The modest size of these files makes them ideal

QEMU whole-system emulator

Lightweight, complete record/replay LLVM program analysis integration

Diverse operating system and processor support

stringsearch bigrams scissors dynamic
taint

analysis

useafterfreeSoftware
analyst

FIGURE 1. This high-level overview of PANDA shows its key features. PANDA has the ability to efficiently record and replay
whole-system executions; the ability to support diverse operating systems, such as Windows, Linux, and Android; and a
modular software design in which each analysis can be implemented as a plugin and the plugins can be used in conjunction
with one another. Plugins can execute a number of diverse tasks according to how they are programmed by the analyst. For
example, they can track information about which processes are executing, enable dynamic searching of data in the system,
perform automated web-traffic decryption for certain algorithms, and perform detailed exploit analysis.

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 93

RYAN J. WHELAN, TIMOTHY R. LEEK, JOSHUA E. HODOSH, PATRICK A. HULIN, AND BRENDAN DOLAN-GAVITT

for sharing and thus for enabling repeatable experiments.
One of this article’s authors has set up a website from
which any of these and a number of other replay files can
be downloaded and analyzed independently.1

Because PANDA allows full repeatability of replays,
it is incredibly useful for dynamic analysis. Traditionally,
manual dynamic analysis involves running a program
inside a debugger and using the debugger to periodi-
cally inspect the program state. However, debuggers
largely cannot execute backwards, so in order to inspect
an earlier program state, an analyst must restart the
program from scratch. This restart not only adds time
to the analysis process but also changes many dynamic
aspects of the program. With PANDA replays, dynamic
information is the same each time, so information about
the state of memory can be built up piece by piece,
greatly accelerating RE.

Plugin Architecture
PANDA plugins take the form of shared libraries that can
be loaded at any time during an analysis. The plugins are
event-driven; that is, they perform tasks in response to
events in the system that are specified by analysts’ instruc-
tions. The analysts perform system instrumentation by
using interfaces that have been made available in PANDA.

Many plugins depend on some common function-
ality. To avoid duplicating functionality throughout
plugins while keeping the core of PANDA simple, we have
implemented a mechanism for plugin-plugin interaction
to allow individual plugins to expose a public interface
that other plugins can utilize. The plugin-plugin inter-
action allows code reuse and reduces the duplication of
specialized code that is used for complex analyses.

Architecture-Neutral Analysis
A number of dynamic analyses that happen at the system
instruction level are invaluable for RE. For instance, in
taint analysis, data in the system are labeled (tainted) and
then tracked to enable a detailed understanding of the
true information-flow patterns around, in, and out of a
system. This analysis can be thought of as a PET scan
for a computer [3]. In order to properly track labels,
one must perform an additional complex analysis along-
side every system instruction. Some of the complexity

1 http://www.rrshare.org

of these additional analyses is due to the differences in
processor architectures of systems. For example, desktop
architectures (such as x86) are more complex than pow-
er-constrained architectures (such as ARM).

PANDA avoids the difficulties associated with sup-
porting multiple processor architectures by performing
analyses in a generic intermediate representation that
is not specific to a particular processor architecture. We
perform dynamic binary translation, which is the process
of translating the code under analysis to the intermediate
representation, to enable the generic analyses. Dynamic
binary translation is the underlying technology that
makes some of our novel analyses possible.

Table 1. Record Log for Various
Replays

REPLAY INSTRUCTIONS
(BILLIONS)

LOG SIZE
(MB)

Operating
system boot 9.3 533.0

Spotify playing
a song snippet 12.0 229.0

Malware
recording 9.1 43.0

User browsing
to a website 8.6 9.4

Record system
execution of

interest

Write/reuse
analysis
plugins

Execute
instrumented

replay

Obtain software
analysis and

understanding

Software analyst

FIGURE 2. In the replay-based reverse engineering (RE)
workflow, PANDA can record and replay whole-system exe-
cutions. This capability is the foundation of PANDA’s use
in RE. To use PANDA, the analyst captures a recording and
then iteratively uses or builds data analyses to incrementally
build RE knowledge.

94 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

REPEATABLE REVERSE ENGINEERING WITH THE PLATFORM FOR ARCHITECTURE-NEUTRAL DYNAMIC ANALYSIS

Android Support
An emulator similar to PANDA is included in Google’s
Android software development kit and contains the nec-
essary emulated hardware to produce a realistic Android
environment. In order to provide Android support to
PANDA, we ported the features necessary to emulate
devices that are unique to Android phones. Significant
additional work was required to fully support modern
Android emulation: integrating telephony, camera,
and Android debug bridge support; integrating secure
digital (SD) memory card support; translating inputs for
graphical interfaces; supporting common formats for the
storage devices; arranging to support PANDA’ s record
and replay mechanism; and employing various other bug
fixes, including one for a graphics bug.

Plugin Details
To date, more than 40 robust analysis plugins that can be
applied to RE have been developed for PANDA by Lincoln
Laboratory researchers, collaborators at a number of uni-
versities, and the open-source community at large. These
plugins are available in our github repository at https://
github.com/moyix/panda. The following novel plugins
have proven particularly useful in RE.

Tappan Zee (North) Bridge
Reverse engineering tasks often hinge on finding out what
piece of code either implements some high-level function-
ality or handles some particular data. In large programs,
these discoveries can be quite difficult. When the data
are a fixed string embedded in the program, analysts are
usually able to easily determine the function of a piece
of data, but when the data are dynamic, analysts must
laboriously trace the flow of data from some known input
source through a chain of intermediate functions to the
location where it is finally used. Moreover, when the data
sought are some intermediate values not directly derived
from the input, even this approach may fail.

In previous work [4], we developed a system,
Tappan Zee (North) Bridge (TZB), for locating points
at which we can interpose on memory accesses in a
system to monitor events during system execution. We
have since discovered that TZB is also immensely useful
for RE. The central concept behind TZB is that memory
accesses can illuminate the internal details of a system.
As a program runs, functions called from different

contexts read and write input, output, and intermediate
results to memory. By appropriately separating out these
memory accesses according to program and calling
context (Figure 3), we obtain coherent streams of data
that can then be searched and analyzed for information
of interest. These streams of data accessed at a particular
point in a program are called tap points because they are
places in the code where one might “tap” to get useful
information from a system.

In the simplest case, we may wish to find out what part
of a program handles a certain bit of data, such as a string
we type into a program, or what function causes a partic-
ular string to be printed to the console or shown in the user
interface. For such tasks, searching all tap points for some
fixed strings will give us a set of functions that were seen to
read or write data matching our search string. To accom-
plish this type of search, we created the stringsearch
plugin, which tracks all memory accesses made in the
system; splits them up according to the calling context,
program counter, and address space; and then searches
the resulting streams for a list of keywords.

Sometimes, we may not know the exact format of the
data, but we may know some statistical features of it. For
example, if we are searching for a digital rights manage-
ment (DRM) decryption function, we know from previous
work by Wang et al. [5] that the inputs to such functions
have high byte entropy and are statistically random
(according to a test such as Pearson’s chi-squared test), but
their outputs are not random. We recently used Pearson’s
test to locate the DRM decryption function within Spotify
and showed that this function could be used to extract
unencrypted audio files [6].

To support this latter type of search, PANDA can use
appropriately named unigrams and bigrams plugins to
collect unigram and bigram (one- or two-unit sequences in a
string) statistics about each tap point. These functions collect
unigram and bigram histograms for data read or written at
each tap point during an execution. Once these histograms
are gathered, an analyst can write scripts to compute statis-
tical features, such as byte entropy, chi-squared values, or a
distance measure (such as Kullback–Leibler divergence) to
a previously observed distribution.

The ability to search through tap points for data of
interest can allow a reverse engineer to quickly zero in on
the parts of a program of greatest interest or to extract
normally unobservable data from a program as it runs.

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 95

RYAN J. WHELAN, TIMOTHY R. LEEK, JOSHUA E. HODOSH, PATRICK A. HULIN, AND BRENDAN DOLAN-GAVITT

The TZB system depends crucially on PANDA’ s record
and replay functionality: on a live execution, the amount
of compute resources needed to identify and halt on every
memory access and inspect its contents would cause the
operating system to become prohibitively slow and impos-
sible to analyze. In a replayed execution under PANDA,
plugins can have arbitrary performance overhead without
perturbing the events in the replay.

Scissors
One of PANDA’s biggest contributions to RE is its ability
to do offline analysis, that is, to collect a recording of a
system’s execution at normal speed and then replay that
execution with heavyweight analyses running, potentially
over a long period of time. Still, many analyses are too
computationally intensive to be tractable over replays that
have potentially billions of instructions. To address this
issue, we created the scissors plugin, which enables
the user to excise smaller portions of replays and then
analyze just the shortened portion. Combined with the
ability of components such as TZB to rapidly locate
sections of interest in the replay, the scissors plugin
allows analysts to focus their attention on key events
during execution and ignore everything else.

Taint Analysis
As previously mentioned, taint analysis is the process of
tagging data in the system with labels and then tracking
those labels to enable a detailed understanding of the
true information-flow patterns around, into, and out of a
system. We have implemented dynamic taint analysis as
a PANDA plugin that permits precise labeling of data in
a number of ways, such as labeling file contents, network
data, raw memory, and CPU registers. These labels
are then tracked automatically and stored in a shadow
memory that associates tainted memory, registers, and
input/output buffers with label sets.

Unlike other existing taint analysis systems, our
system is independent of the underlying processor archi-
tecture and has been used to analyze replays based on the
x86, x86-64, and ARM processor architectures. We can
also easily extend our taint analysis system to all of the
architectures that our system emulator supports.

Our system includes query mechanisms that allow an
analyst to ask if data are tainted at some replay point and to
examine the set of associated taint labels. These mechanisms
permit the analyst to ask very detailed questions about the
software they are analyzing: If I mark incoming network
traffic as tainted, where does it flow through the system? Is

(a)

(b)

00a3bdgoogle.comr2ab.tmpa2bc

strcpy

memcpy

google.comr2ab.tmp

00a3bda2bc

(c)
strcpy←open_url

memcpy

google.com

strcpy←open_file r2ab.tmp

00a3bda2bc

FIGURE 3. Memory accesses are made by a program with varying amounts of context: (a) presented as a single stream of
information from the CPU to memory, (b) split up according to program, and (c) split up according to program, location within
the program, and calling context.

96 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

REPEATABLE REVERSE ENGINEERING WITH THE PLATFORM FOR ARCHITECTURE-NEUTRAL DYNAMIC ANALYSIS

any of this traffic interacting with vulnerable code that could
potentially be exploited by an adversary? If I mark sensitive
files as tainted, are they ever unknowingly exfiltrated? How
much control does a potential adversary have over untrusted
data at various points in the execution of a program?

Many of the specifics of how this subsystem was
designed and implemented have been described in
our previous work [7]. Here we describe some salient
features of PANDA that enable analysts to observe
software in detail:
• Whole-system support—PANDA’ s taint analysis tracks

labels even if they flow between different processes and
privilege levels.

• Input/output support—Because our shadow memory
includes the hard drive, network card, and associated
input/output buffers, an analyst can precisely intro-
spect into how data propagate through the system
at a low level and can properly track how data move
through these devices.

• Replay-based taint analysis—Our taint analysis plugin
uses a record and replay system to turn an intractable
online analysis into a tractable offline analysis. For
many platforms, such as Android, even pure emula-
tor-based execution is barely fast enough to prevent
operating system and networking timeouts during taint
analyses, which are typically computationally intensive.

• Detail and fidelity—Taint analysis in PANDA focuses
primarily on the detail that can be obtained from the
analysis. For instance, a file can be labeled such that
every byte in the file gets a different label. Further,
computation is modeled with high fidelity by tracking
detailed metadata with each byte of memory, allowing
an analyst to measure how much the tainted data have
changed since they were originally labeled.

• Interface—Taint labeling and querying can be either
driven by events (through callbacks registered with
the taint plugin) or invoked by a call to the interface
exposed by the plugin. This choice of approaches
provides flexibility to the analyst.

Case Studies
The following three RE use cases for PANDA illustrate
the system’s capabilities. In the first example, we revived
an old version of the game StarCraft for which the CD
key had been lost; with PANDA’ s plugins, we were able to
rapidly locate the key verification code and harness it to

produce keys on demand. In the second, PANDA’ s whole-
system replay function enabled us to perform an in-depth
diagnosis of a Windows Internet Explorer vulnerability to
characterize this vulnerability as a use-after-free bug (i.e.,
an attempt to access previously deallocated memory). In
the third, an Android chat client suspected of censoring
messages was quickly determined to be doing so via a
censorship blacklist that was readily extracted. Note that,
while we used some of the plugins that were mentioned
earlier in this article, we did not apply all of them to our
use cases; rather, we allowed the task at hand to drive the
choice of plugins to employ.

Reviving Legacy Code
StarCraft is a science fiction video game released in 1998
by Blizzard Entertainment. Each of the game’s discs
comes with a unique CD key that identifies the copy and
permits both installation and online play. Originally,
CD keys were 13 numbers, but Blizzard revised later
copies of the game to use keys consisting of 26 alphanu-
meric characters. The original 13-number format was
very simple to reverse engineer; however, if you legally
purchased a newer copy of the game and lost your
26-character CD key, you would be unable to install and
play the game.

We used PANDA to find and rapidly reverse
engineer the 26-character CD key validation algorithm
for StarCraft. First, we collected a recording of the
StarCraft installer rejecting a random sequence of letters
and numbers. We then provided both this incorrect key
sequence and the text of the rejection dialog as searches to
PANDA’s TZB, which promptly found both in the replay.
This discovery focused our attention on about 200,000
instructions out of the 60 million in the complete replay
(a 300-fold reduction). We then used the scissors
plugin to extract just this operative segment containing
the validation algorithm.

Through manual static analysis of the code in the
remaining replay segment, we ascertained that the
installer decrypts the CD key and checks the high-order
bits of the resulting 120-bit integer against a fixed value.
This “magic number” is not immediately apparent in
the code’s disassembly, but a simple PANDA plugin was
rapidly written that printed the magic number out when
it was read from memory through the use of a concept
similar to the stringsearch plugin. Our analysis

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 97

RYAN J. WHELAN, TIMOTHY R. LEEK, JOSHUA E. HODOSH, PATRICK A. HULIN, AND BRENDAN DOLAN-GAVITT

showed that the fixed value was 23. Manual RE from
there easily revealed the complete key-computation algo-
rithm. Some additional mathematical analysis indicated
a very low key density: only 1 in 27,000 of the possible CD
keys are actually valid.

We then used the Hex-Rays decompiler to
recreate source code of interest identified by the
stringsearch plugin. The extracted code was har-
nessed as a decoder in a small program that was fed
random keys to determine which ones were valid. Overall,
this RE effort was very successful. PANDA allowed us to
reduce the replay to a size at which a complicated analysis
was immediately tractable with the scissors plugin,
rapidly locate the code of interest for key validation with
the stringsearch plugin, and ultimately to play our
StarCraft game again by using a validated CD key gener-
ated by our extracted test harness.

Deep Vulnerability Diagnosis
Software vulnerabilities often have deep causes, with the
underlying bug occurring well before a potential crash or
exploit. One classic example is the use-after-free bug that
exploits a program’s retention of information referencing
invalid, deallocated memory. When a program accesses
this invalid memory, the program may crash because its
data structures have been corrupted; however, the crash
itself will give no hint about its underlying cause—e.g.,
where the bug was created, when the memory was freed,
or even if the bug involved a use-after-free exploit.

As an experiment to test the effectiveness of PANDA
in finding deep vulnerabilities, we had a team member
prepare a replay containing a known triggered vulnera-
bility. This replay was then given out with no information
other than the fact of an application’s crash and the
standard Windows error message, “Application has
stopped working.” First, we used the replaymovie
plugin to make a series of captures from the screen and
to then stitch them together into a video of replay exe-
cution. This video indicated that the failing process was
Internet Explorer and that the vulnerability was trig-
gered by loading a malicious website. We then used TZB
to search for “<HTML” and “has stopped working”; this
search gave us temporal bounds in the replay for the bug’s
location. The scissors plugin enabled us to reduce the
size of the replay and conduct more heavyweight analyses.
Using TZB again, we extracted all further output at the

<HTML tap point, which was exactly the full webpage
that triggered the bug. The webpage indicated that the
vulnerability was probably a use-after-free bug.

We then wrote a custom PANDA plugin called
useafterfree to detect use-after-free memory cor-
ruption situations. This plugin was written for a Windows
operating system, but it could easily be adapted for other
systems. It tracks calls to Windows’ low-level memory allo-
cation functions, and it maintains shadow lists of valid and
invalid memory. When a pointer to invalid memory is used,
a use-after-free has occurred and the plugin detects it.

In this case study that highlights the iterative
approach analysts often take while performing RE tasks
with PANDA, the repeatability of PANDA replays was a
key advantage. Writing custom plugins to target a specific
replay is easier than writing plugins that generalize over a
broad set of situations.

Uncovering Censorship Blacklists
We cannot always trust that the software we use is acting in
our interests. For example, it is not uncommon for instant
messaging clients to actively censor the conversations
of their users [8, 9]. Such censorship can either be per-
formed on server-side operations or be accomplished by
a client-side blacklist that is periodically updated. In the
former case, PANDA can be of no help because there is no
code available to run and examine in vivo; however, in the
latter, PANDA can extract a list of censored words from
the client. To test PANDA’ s ability to uncover such a list,
we examined the free LINE messenger client for Android.
Analysts from the Citizen Lab at the University of Toronto’s
Munk School of Global Affairs had previously investigated
LINE to determine that it censors certain users [10].

For our analysis, we created a recording in which
we launched the LINE messenger and sent an instant
message to another user. The sent message did not include
any content we thought might be censored. Simply by
sending the instant message, we supposed that LINE
would still have to load its list of censored words and
check our message against it, thus leaving the list open to
extraction by PANDA.

To find the encrypted wordlist, we employed the TZB
plugin, supplying some guesses as to words that might
be subject to censorship and then searching all memory
reads and writes made by LINE for these words. This
process gave us a set of tap points that contained the

98 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 1, 2016

REPEATABLE REVERSE ENGINEERING WITH THE PLATFORM FOR ARCHITECTURE-NEUTRAL DYNAMIC ANALYSIS

sensitive words. As we suspected, the words we sought
were indeed included in LINE’s list of censored words. By
the end of our analysis, we discovered 536 specific words
that LINE was censoring in a completely automated
fashion. PANDA expedited our LINE analysis far beyond
the level of time and effort we would have expended had
we used a more manual approach.

Future Directions
We have been actively using PANDA for the past three
years to quickly reverse engineer large, real-world
software systems without the availability of source code.
In most case studies during this time, we have found
PANDA to be invaluable for speeding up RE, either by
entirely obviating the need for manual analysis or by pre-
cisely directing human attention to the critical portions
of a large code base.

In the near term, we are planning to enhance
several key aspects of PANDA: performance, architec-
ture support, and analysis capabilities. Performance can
potentially be improved in our recording infrastructure
and in many of our plugin implementations. PANDA is
processor architecture–neutral in principle, but a number
of features have not yet been ported to all supported pro-
cessor architectures. For deep operating system analysis
capabilities, we plan to create new plugins that encapsu-
late the domain-specific knowledge necessary to retrieve
useful information about various operating systems.

In the long term, we wish to make this a tool that can
be used by anyone to reverse engineer complex systems.
We have released PANDA as an open-source tool to the
cyber security community, and we have transitioned
PANDA technology to several other programs within
Lincoln Laboratory’s Cyber System Assessments Group
and to their respective sponsors within the Department
of Defense. We hope that continued development by the
open-source community and technical staff at Lincoln
Laboratory will make this a common tool for dynamic
software analysis and RE. 

References
1. M. Russinovich, “Sony, Rootkits and Digital Rights

Management Gone Too Far,” Microsoft Server & Tools Blogs,
31 Oct. 2005, available at http://blogs.technet.com/b/
markrussinovich/archive/2005/10/31/sony-rootkits-and-
digital-rights-management-gone-too-far.aspx.

2. J.A. Halderman and E. Felten, “Sony’s Web-Based
Uninstaller Opens a Big Security Hole; Sony to Recall Discs,”
Freedom to Tinker blog, 15 Nov. 2005, available at https://
freedom-to-tinker.com/blog/felten/sonys-web-based- unin-
staller-opens-big-security-hole-sony-recall-discs/.

3. S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood,
“Understanding and Visualizing Full Systems with Data
Flow Tomography,” Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2008, pp. 211–221.

4. B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee,
“Tappan Zee (North) Bridge: Mining Memory Accesses
for Introspection,” Proceedings of the 2013 Association
for Computing Machinery Special Interest Group on
Security, Audit and Control, Conference on Computer and
Communications Security, 2013, pp. 839–850.

5. R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Steal
This Movie: Automatically Bypassing DRM Protection in
Streaming Media Services,” Proceedings of the 22nd USENIX
Conference on Security, 2013, pp. 687–702.

6. B. Dolan-Gavitt, “Breaking Spotify DRM with PANDA,” Push
the Red Button blog, 3 July 2014, available at http://moyix.
blogspot.com/2014/07/breaking-spotify-drm-with-panda.
html.

7. R. Whelan, T. Leek, and D. Kaeli, “Architecture-Independent
Dynamic Information Flow Tracking,” Proceedings of the
22nd International Conference on Compiler Construction,
2013, pp. 144–163.

8. J. Knockel, J.R. Crandall, and J. Saia, “Three Researchers,
Five Conjectures: An Empirical Analysis of TOM-Skype
Censorship and Surveillance,” Proceedings of IEEE
Symposium on Foundations of Computational Intelligence,
2011.

9. A. Senft, A. Sinpeng, A. Hilts, et al., “Asia Chats: Analyzing
Information Controls and Privacy in Asian Messaging
Applications,” The Citizen Lab’s Reports and Briefings,
14 Nov. 2013, available at https://citizenlab.org/2013/11/
asia-chats-analyzing-information-controls-priva-
cy-asian-messaging-applications/.

10. S. Hardy, “Asia Chats: Investigating Regionally-Based
Keyword Censorship in LINE,” The Citizen Lab’s Reports
and Briefings, 19 Nov. 2013, available at https://citizenlab.
org/2013/11/asia-chats-investigating-regionally-based-key-
word-censorship-line/.

 VOLUME 22, NUMBER 1, 2016 n LINCOLN LABORATORY JOURNAL 99

RYAN J. WHELAN, TIMOTHY R. LEEK, JOSHUA E. HODOSH, PATRICK A. HULIN, AND BRENDAN DOLAN-GAVITT

About the Authors
Ryan J. Whelan is a member of the
technical staff in the Cyber System
Assessments Group at Lincoln Laboratory.
He currently conducts research in the
areas of static and dynamic program
analysis and transformation, compiler
design and implementation, malware
analysis, software reverse engineering,

vulnerability discovery, and instrumentation techniques for cyber
security. Prior to joining the Laboratory, he earned bachelor’s
and master’s degrees in computer engineering from Northeastern
University. During that time, he completed several cyber security
internships at Lincoln Laboratory.

Timothy R. Leek is a member of the
technical staff in the Cyber System
Assessments Group. He is currently
researching automated techniques for
finding errors in programs by using a
combination of static and dynamic analysis
and some machine learning. He joined
Lincoln Laboratory in 2001 as a member

of the Ballistic Missile Defense System Integration Group, where
he investigated machine learning techniques for building decision
architectures. Prior to joining the Laboratory, he worked as a
technical writer for U.S. Surgical Corporation, as a scientific pro-
grammer at Yale University, and as a systems administrator at the
Salk Institute for Biological Studies in La Jolla, California. After
earning a master’s degree in computer science at the University of
California, San Diego, he joined Bolt Beranek and Newman, where
he applied statistical methods to information retrieval, topic detec-
tion and tracking, machine translation, and summarization. He also
holds bachelor’s degrees in physics and English from the University
of Connecticut.

Joshua E. Hodosh is a member of
the technical staff in the Cyber System
Assessments Group and has been at
Lincoln Laboratory since 2010. He holds
a bachelor’s degree in computer science
from Rensselaer Polytechnic Institute and
a master’s degree in computer science
from Northeastern University.

Patrick A. Hulin joined the Cyber System
Assessments Group in 2014. His current
research lies primarily in the areas of
virtual machine introspection, automated
software reverse engineering, dynamic
program analysis, and vulnerability under-
standing. He holds a bachelor’s degree in
mathematics from MIT.

Brendan Dolan-Gavitt is an assistant
professor of computer science at the New
York University Polytechnic School of
Engineering. Previously, he worked as a
postdoctoral researcher in the Intrusion
Detection Systems Lab at Columbia
University. His research interests lie in
the area of systems security, particularly

in the development of automated techniques for understanding
computing systems and the application of that understanding to the
creation of novel defenses. He is also active in the rapidly growing
field of memory forensics and has published papers on extracting
forensically relevant information from images of RAM. He received
his doctoral degree from the Georgia Institute of Technology and
his bachelor’s degree in mathematics and computer science from
Wesleyan University. He also spent two years working as an infor-
mation security analyst and researcher for the MITRE Corporation.

