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Department of Defense (DoD) systems, 
e.g., computer networks, are increasingly 
the targets of deliberate, sophisticated 
cyber attacks. To assure successful missions, 

military systems must be secured to perform their 
intended functions, prevent attacks, and operate while 
under attack. The DoD has further directed that cyber 
security technology must be integrated into systems 
because it is too expensive and impractical to secure 
a system after it has been designed [1]. To address 
this directive, Lincoln Laboratory is using a co-design 
approach to systems that meet both security and func-
tionality requirements. The Laboratory is at the research 
and development forefront of system solutions for chal-
lenging critical missions, such as those to collect, process, 
and exchange sensitive information. Many of Lincoln 
Laboratory’s prototype systems must be designed with 
security in mind so that they can be quickly brought into 
compliance with the DoD’s cyber security requirements 
and support field tests and technology transfer.

Many DoD systems require the use of embedded 
computing. An embedded computer system is designed 
for a dedicated function, in contrast to a general-pur-
pose computer system, e.g., a desktop computer, which is 
designed for multiple functions [2]. An ideal design for 
an embedded system optimizes performance, e.g., small 
form factor, low power consumption, and high throughput, 
while providing the specific functionality demanded by the 
system’s purpose, i.e., its mission. Developers must also 
determine the embedded system’s security requirements 
according to mission objectives and a concept of opera-
tions (CONOPS). In general, security should be robust 

Developers seek to seamlessly integrate cyber 
security within U.S. military system software. 
However, added security components can 
impede a system’s functionality. System 
developers need a well-defined approach for 
simultaneously designing functionality and cyber 
security. Lincoln Laboratory’s secure embedded 
system co-design methodology uses a security 
coprocessor to cryptographically ensure system 
confidentiality and integrity while maintaining 
functionality.

»
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enough to prevent attacks, ensuring that a system can suc-
cessfully support a mission. Developers may need to enable 
a system to continue functioning, albeit with possibly 
degraded capabilities, when security fails. The design of 
security for an embedded system is challenging because 
security requirements are rarely accurately identified at the 
start of the design process. As a result, embedded systems’ 
engineers tend to focus on well-understood functional 
capabilities rather than on stringent security requirements. 
In addition, engineers must provide security that causes 
minimal impacts on a system’s size, weight, and power 
(SWaP), usability, cost, and development schedule. 

To meet these challenges, we established a secure 
embedded system development methodology. When 
securing a system, we strive to achieve three goals: con-
fidentiality, integrity, and availability, which are often 
referred to as the CIA triad for information security. The 
CIA triad is defined for embedded systems as follows:
• Confidentiality ensures that an embedded system’s 

critical information, such as application code and sur-
veillance data, cannot be disclosed to unauthorized 
entities.

• Integrity ensures that adversaries cannot alter system 
operation. 

• Availability assures that mission objectives cannot be 
disrupted. 

In this article, we use the example of a hypothetical 
secure unmanned aircraft system (UAS) to illustrate 
how we use cryptography to ensure confidentiality and 
integrity. Using this example, we demonstrate the iden-
tification of potential attack targets by considering the 
CONOPS, the development of countermeasures to these 
attacks, and the design and implementation of a cryptog-
raphy-based security architecture. Because cryptography 
does not directly enable availability, we also provide 
insight into ongoing research that extends our method-
ology to achieve the resilience required to improve the 
availability of embedded systems.

Challenges in Securing Embedded Systems
An embedded system will provide very little, if any, SWaP 
allowance for security; thus, security must not impose 
excessive overheads on the protected system. While the 
DoD has some of the most demanding applications in 
terms of throughput and SWaP, it no longer drives the 
development of processor technology. Therefore, security 

technologies must be compatible with embedded systems 
that use commercial off-the-shelf (COTS) processor 
hardware platforms that the DoD can easily adopt.

As military electronic systems continue to increase in 
sophistication and capability, their cost and development 
time also grow. Each year, the DoD acquires and operates 
numerous embedded systems, ranging from intelligence, 
surveillance, and reconnaissance sensors to electronic 
warfare and electronic signals intelligence systems. 
Depending on their CONOPS, embedded systems have 
different security requirements. Methodologies for 
securing embedded systems must be customizable to 
meet CONOPS needs. 

To meet application-specific requirements while 
also reducing technology costs and development time, 
developers have started to use open-systems architec-
tures (OSA). Because OSAs use nonproprietary system 
architectural standards in which various payloads can be 
shared among various platforms, technology upgrades are 
easy to access and implement. The DoD has thus directed 
all DoD agencies to adopt OSA in electronic systems [3]. 
However, adding security to OSA could interfere with its 
openness. As most current security approaches are ad 
hoc, proprietary, and expensive, they are incompatible 
with OSA principles, especially when each payload devel-
oper individually implements and manages the payload 
security. Therefore, developing a system-level secure 
embedded system architecture that will seamlessly work 
with various OSA components is a challenge. 

Design Process
Embedded system CONOPS are developed from mission 
objectives and are used to derive both functional and 
security requirements. Researchers create, evaluate, 
and implement an initial system design, codeveloping 
functionality and security while minimizing security 
interference during functionality testing by decoupling 
security and functionality requirements. Several design 
iterations may be required before the mission objectives 
are met. Figure 1 captures the ideal process of designing a 
secure embedded system; the steps dedicated to security 
are highlighted in green. 

To illustrate the secure embedded system design 
process, we use the design of a hypothetical UAS for a 
video surveillance application. The CONOPS of this 
example UAS application is as follows: At startup, the 
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UAS loads its long-term credentials for identification 
and authentication purposes. Mission-specific informa-
tion—e.g., software, firmware, and data—is loaded into 
the respective memories. The system is then booted up 
and prepared for mission execution.

Figure 2 illustrates the UAS embedded system in 
its execution phase. Under the command of a ground 
control station, the UAS takes off, flies to its destination, 
and then collects video data. Video data containing target 
information are encrypted and broadcast to authorized 
ground stations (GT1 and GT2) via a radio. Raw video 
data are also saved for further processing after the UAS 
lands. When the UAS is shut down, both raw and pro-
cessed video data are considered sensitive and must be 
saved securely. Any persistent-state data, such as long-
term credentials, must also be protected.

Figure 3 shows a high-level functional architecture ini-
tially designed for the example UAS embedded system. The 
architecture consists of a central processing unit (CPU) and 
a field-programmable gate array (FPGA) interconnected 
with a backplane network. The FPGA typically performs 
advanced video signal processing (e.g., for target detection 
and identification). The CPU handles command-and-con-
trol communications received from the ground control 
station and manages information (e.g., for target tracking). 

Processing elements, such as the CPU and FPGA, 
must be chosen to securely deliver the UAS functionality 
requirements. This UAS application involves sophisti-
cated signal processing and requires high throughput 
(measured by the number of floating-point operations 
per second) with a stringent SWaP allowance. 

To support a complicated signal processing algorithm, 
the CPU needs a large memory and storage capacity. A 
popular mainstream processor likely has a variety of COTS 
software libraries that can be used in application develop-
ment, but it may not have the security features desired for 
the CONOPS. On the other hand, a secure processor with 
built-in security features may simplify system development 
but may not possess the appropriate processing power or 
support the large memory space required for the applica-
tion. We must consider system openness and upgradability 
before choosing a secure processor over a mainstream CPU. 

Many popular FPGAs are built with embedded 
security features [4]. Developers should select these 
devices on the basis of their ability to encrypt and authen-
ticate configuration bitstreams, incorporate security 

monitors to detect attacks, and erase decryption keys (a 
process known as zeroization) to protect critical informa-
tion when attacks are detected. 

Threat Analysis
The first step in designing a secure system is to analyze 
the potential attacks that the system may be subjected to 
when deployed. Adversaries seek to sabotage and develop 
countermeasures against U.S. missions, so the CONOPS 
determines not only functional requirements but also 
potential adversary attacks. The attacks depend on the 
adversary’s capability (e.g., a nation state’s sophisticated 
knowledge) and objectives (e.g., to exfiltrate information).

In the UAS example, we assume that there is a high 
probability of equipment loss resulting from the small size 
of the UAS and its operation in hostile areas. The examples 
of UAS attack targets in Figure 4 portray three logical 

FIGURE 1. In an ideal secure embedded system design 
process, functionality (gray) and security (green) are 
co-designed, yet they are appropriately decoupled during 
testing so that security does not interfere with functionality. 
This co-design is often difficult to achieve because function-
ality and security are two very different disciplines.
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attack surfaces—boot process, system data, and software—
and one physical attack surface, its physical system, that 
adversaries may attack to exfiltrate information. 

During the CPU boot process, a secure system must 
establish a root of trust, which consists of hardware and 
software components that are inherently trusted, to 
protect and authenticate software components. Current 
practice uses the trusted platform module (TPM), an 
international standard secure processor that facilitates 
secure cryptographic key generation, remote attestation, 
encryption, decryption, and sealed storage [5]. Each TPM 
chip includes a unique secret key, allowing the chip to 
perform platform and hardware device authentication.

When creating the TPM, developers make a number 
of compromises that address cost and privacy concerns 
to ensure commercial adoptability of the module by 
vendors. The TPM must be inexpensive and cause 
as little disruption to the processing architecture as 
possible. Consumer privacy concerns dealing with user 
identification force module usage to be an optional and 
passive part of a processing system’s operations. These 
compromises lead to a low-performance module that 
lacks adequate physical protection. In the “Architecture 
and Enabling Technologies” section, we will explain 
Lincoln Laboratory’s security coprocessor that is 
equipped with a physical unclonable function, which 
was developed to address the TPM security inadequacy 
in tactical operations.

Despite a system’s incorporation of an effective TPM, 
adversaries may exploit latent vulnerabilities within an 
authorized software component to access critical data or 
gain control of the platform itself. Even authorized users 
could deliberately or negligently introduce threats onto a 
system via untrusted software (e.g., malware) or unwanted 
functionality via third-party intellectual property. 

A secure system must be designed to prevent com-
promised software from giving an attacker unrestricted 
system access. Some developers are starting to address 
access issues on commercial systems. For example, 
software developers use separation kernels to establish 
and isolate individual computing processes, control 
information flow between the processes, and prevent 
unauthorized information access. On the hardware side, 
researchers are developing architectures that enforce 
isolations between processing threads executing on the 
same processor [6]. 

FIGURE 2. In this example of an unmanned aircraft 
system (UAS) application in its execution phase, the intelli-
gence collected by the UAS needs to be shared by coalition 
partners yet protected from adversaries. Cryptography is 
the key technology enabling this operation. 

FIGURE 3. This example of an unmanned aircraft system’s 
embedded system functional architecture includes the 
central processing unit (CPU) that is supplied with a basic 
input/output system (BIOS), operating system (OS), and 
mission-specific application code (Apps). The field-pro-
grammable gate array (FPGA) has its configuration stored in 
a firmware memory. In addition to a video camera payload, 
the system has a random-access memory, a hard drive for 
storage, and a radio, all of which are accessible by the CPU 
and/or FPGA through a backplane network.
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Because the UAS is built with minimal system 
software for dedicated purposes, the exploitation of 
software vulnerabilities may be less likely than that for 
a general-purpose computer. The UAS has a strictly con-
trolled provisioning environment accessible by a very 
limited number of authorized users, reducing the risk 
of introducing unverified and untrusted software into 
the UAS. However, one should always assume that an 
adversary will attempt to eavesdrop on wireless commu-
nication; thus, data protection is a high security priority. 

Developers must also consider physical attacks 
because there is a high probability that adversaries will 
gain physical access to a UAS device, allowing enemies 
to reverse engineer the device or modify sensitive com-
ponents in order to leapfrog their own technology or to 
gain unauthorized access to intellectual property. The 
most popular protection technique to date is the use of 
a strong protective enclosure equipped with electronic 
sensors to detect unauthorized accesses. However, 
because some systems are deployed and unattended for 
extended periods of time, it is challenging to maintain 
the standby power necessary for intrusion detection 
and response. 

Developers must consider all threats and protect 
the confidentiality and integrity of the UAS data 
existing in three forms: data in use, data at rest, and 
data in transit. Various hardware and software solu-
tions, most based on cryptography, are available à la 
carte. However, cryptographic technology must be fully 
integrated with the processor for efficient data protec-
tion via secure key management. 

Security Metrics
Specifying and measuring security requirements for 
embedded system development are difficult. The 
requirements of the CIA triad for embedded systems 
are excellent objectives but are too abstract to be used 
as measurable security metrics to evaluate an embedded 
system during the design process. We have thus created 
three practical security metrics to facilitate the design of 
a secure embedded system: trustworthiness, protection, 
and usability. These metrics do not support absolute mea-
surements but provide parameters to guide the design 
of embedded system security as the system’s mission 
functionality architecture evolves. In addition, multiple 
system architectures can be qualitatively evaluated and 
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FIGURE 4. Example unmanned aircraft system (UAS) attack targets illustrate the vulnerabilities and sources of a threat 
scenario with three attack surfaces (boot process, system data, and software) and one physical attack surface (physical system).
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compared to determine relatively how well they provide 
security. Because these metrics are qualitative and sub-
jective, each security decision must include sufficient 
justification and documentation. Developers evaluate 
each metric by analyzing system functionality and security 
against a specific CONOPS. For example, developers will 
measure trustworthiness and protection on the basis of 
the system’s current defense mechanisms compared with 
the level of defense that the CONOPS requires. If the 
system is lacking in defense, it will be less trustworthy 
and unable to adequately protect information.

Trustworthiness is a qualitative analysis of the 
system’s effectiveness in defending against potential 
threats relevant to its CONOPS. On the basis of current 
system design and system information fidelity, developers 
have a certain level of trust in system behavior during an 
attack. For example, if a system is equipped with a defense 
mechanism against a certain threat, the system’s security 
and trustworthiness likely improve. While unpatched 
system vulnerabilities reduce security, understanding 
those vulnerabilities enables developers to add protection 
technology to the design. 

The protection metric is a qualitative analysis of the 
system’s capability to support added-in protection technol-
ogies and address vulnerabilities identified in a CONOPS. 
Together, the trustworthiness and protection metrics can 
be used to measure how well a system’s security addresses 
confidentiality and integrity requirements. 

Usability is a qualitative analysis of the system’s 
suitability to a task. A system that is highly secure but 
incapable of delivering the required functionality is not 
designed well. Usability metrics evaluate a system’s design 
by considering the system’s throughput, resilience, porta-
bility, upgradability, SWaP, and other similar parameters.

A system’s processing requirements, threats, and 
protection needs vary during the course of a system’s 
operation. To evaluate a system during operation, we 
examine four phases: 
1. Startup: The system is being booted into a state suitable 

for operations; a trusted computing base (TCB), the set 
of components that provide the system with a secure 
environment, is established. 

2. Execution: The system is in the operational state and 
performs functions required by the mission. 

3. Shutdown: The system is in the process of turning off. 
4. Off: The system is powered down. 

Architecture and Enabling Technologies
Because the critical information of a COTS-based 
embedded system is mostly in the system’s software 
and firmware, cryptography is the foundation of the 
system’s overall security. Many efficient, secure building 
blocks, such as the National Security Agency–approved 
Suite B cryptography [7], can be implemented with 
software, firmware, or hardware and are often obtain-
able as open-source intellectual property. However, 
simply using standard cryptographic primitives cannot 
guarantee the adequate implementation of security 
functions. Encryption effectiveness is based on the 
manner in which the cryptographic primitives (low-level 
cryptographic algorithms) are assembled and coordinated 
into the desired application-specific security functions. 
Encryption effectiveness also depends on key manage-
ment, which includes the generation, distribution, and 
protection of keys. 

Lincoln Laboratory has developed a solution 
to address encryption key management: Lincoln 
Open Cryptographic Key Management Architecture 
(LOCKMA), a highly portable, modular, open software 
library of key management and cryptographic algorithms 
that are suitable for embedded system uses. Designed to 
secure systems used in a wide range of missions, LOCKMA 
provides user, identity, and key management functions, as 
well as support for hardware and software cryptographic 
primitives, including the Suite B cryptographic prim-
itives. LOCKMA has an intuitive front-end application 
programming interface (API) so developers can easily 
access LOCKMA ’ s core functionality. To use LOCKMA, 
developers are not required to have advanced knowl-
edge of the cryptography or key management algorithms 
implemented by LOCKMA ’ s core modules; instead, they 
simply use the API to create security functions. LOCKMA 
handles the processing of key management messages and 
makes extensive use of cryptographic primitives available 
in several commercial and open-source libraries. Figure 5 
shows LOCKMA ’ s interfaces as high-level security func-
tions and low-level cryptographic primitives.

Because software-implemented security functions may 
not meet extreme SWaP requirements, Lincoln Laboratory 
has implemented LOCKMA in a security coprocessor 
(S-COP), which applies cryptographic primitives in 
hardware. The benefits of hardware implementation over 
software implementation include much faster computation 
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times, lower power consumption, hardware separation, 
and thus protection of sensitive keys from nonsensitive 
data and code. 

Figure 6 shows the UAS embedded system architec-
ture, previously shown in Figure 3, in which the CPU is 
secured with an S-COP and a physical unclonable function 
(PUF), which is a unique function that can be easily eval-
uated but hard to duplicate. The S-COP employs dynamic 
key management and accelerated Suite B cryptography 
for the authentication steps necessary to securely boot the 
CPU. The PUF provides an inviolable root of trust from 
which a unique cryptographic key is derived. 

Lincoln Laboratory researchers have developed 
an optical PUF that can be implemented on a fully 
fabricated printed circuit board (PCB). As illustrated 
in Figure 7, the PUF is constructed by adding one or 
more light-emitting diodes (LED) and an imager to the 
PCB, which is then coated with a thin polymer planar 
waveguide. Upon powering up, the S-COP derives a 
unique numerical code from the imager, which receives 
light that is emitted by the LEDs and travels through 
the waveguide. This code is then used for device iden-
tification and key derivation. Manufacturing variations 
ensure a unique identification code for each PCB. 
Invasive attempts to learn about the PUF code (e.g., for 

cloning or other unauthorized actions), even when the 
PCB is unpowered, will disturb and damage the coating 
and irreversibly destroy the PUF code. 

Because many environmental conditions, such as 
temperature and aging, can cause the PUF reading to 
vary, a technique called fuzzy extraction is employed to 
ensure that the same key will be derived from the PUF 
under various conditions [8]. This technique allows 
the S-COP to secure the boot process, load only trusted 
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FIGURE 5. The LOCKMA software provides a front-end application programming interface (API) for high-level security 
functions that application developers can use directly. Complicated cryptographic algorithms are captured as core modules, 
which are hidden from application developers. The back-end API supports the use of low-level cryptographic kernels imple-
mented in either hardware or software. 

FIGURE 6. A security coprocessor (S-COP) is used along 
with a physical unclonable function (PUF) to secure a com-
mercial off-the-shelf central processing unit (CPU).
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software, and confirm that the unique identity is intact 
before, during, and after the boot process. In addition 
to protecting data at rest with cryptography, the S-COP 
uses key management to support secure communications 
between subsystems to protect data in transit.

This S-COP–based secure embedded architecture 
allows software applications to be developed and tested 
initially without invoking security features. When a system 
is provisioned for deployment, developers apply the PUF 
to its PCB and load the finalized software code encrypted 
with the PUF-derived key. An incorrect PUF code will 
cause a failed software decryption, and the system will not 
start. The decoupling of the S-COP and the CPU allows 
DoD embedded systems to leverage mainstream CPUs, 
enhancing system usability and upgradability.

Figure 8 shows a test bed that we have developed 
to evaluate the S-COP–based secure architecture. In 
an unsecured architecture, the CPU reads in the basic 
input/output system (BIOS) and bootstraps the operating 
system (OS). Without authentication, the CPU is vulner-
able to a maliciously modified BIOS and OS. 

The S-COP–based secure architecture addresses this 
vulnerability by authenticating the BIOS, OS, and appli-
cations, as illustrated in Figure 9. When the embedded 
system powers up, the S-COP halts the CPU while the 
S-COP performs authentication. S-COP first reads the PUF 
and derives a key, which is used to decrypt the BIOS. If the 
decryption is successful, the CPU is released to execute the 
BIOS. The S-COP then authenticates and decrypts the OS 
and boots the system. Encrypted applications are loaded 
and handled in the same manner. In addition to associ-
ating an application with a designated system, the system 
can use LOCKMA key management to dynamically and 
seamlessly adjust the authorization of application execu-
tion (e.g., in time-specific and/or location-specific modes). 

Figure 10 shows data-at-rest and data-in-transit pro-
tection enabled by the S-COP. In System 1 and System 
2, the S-COP encrypts the CPU-generated data before 
they are stored, thus protecting them from unautho-
rized access. Likewise, the S-COP decrypts stored data 
before sending them to the CPU. Figure 10 also shows 
the concept of using S-COPs to protect data in transit 
between two systems by establishing an encrypted com-
munication channel over which encrypted data can flow. 

Evaluation
In terms of the CIA triad, the S-COP addresses confiden-
tiality and integrity by protecting the boot process, data, 
and communication channel from unauthorized access 
and alteration. The S-COP itself does not fully ensure a 
system’s availability, but the decoupling of functionality 
and security, which allows for the use of a mainstream 

FIGURE 8. A secure processing environment integrates 
a central processing unit (CPU), a security coprocessor 
(S-COP), and a physical unclonable function (PUF).  
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function (PUF) is implemented with a wave-
guide. An operating concept illustration is 
shown in (a); implementation of the concept 
on a fully fabricated printed circuit board is 
shown in (b).
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CPU, results in improved system usability. The system 
can be adapted to support other agility and resilience 
measures, such as moving target technologies [9]. As an 
example, we evaluate the hypothetical UAS embedded 
system with an S-COP–based secure architecture by 
using the same three security metrics: trustworthiness, 
protection, and usability. 

A mainstream unsecured CPU receives low trust-
worthiness ratings during all system operation phases, 
as we assume that it needs an inherently large trusted 
computing base (TCB) and lacks hardware-enforced boot 
attestation. The security of such a CPU enhanced with 
an S-COP dramatically increases across all system opera-
tional phases, earning the CPU increased trustworthiness 
ratings. However, during the execution phase, the user still 
needs to trust the OS, which may have inherent vulner-
abilities. The trusted boot does not completely eliminate 

the risk of running untrusted or unverified codes that 
could potentially be exploited by attackers to escalate user 
privileges on the system or exfiltrate information.

If a CPU has no explicit support for physical protection, 
it will receive low protection ratings during the boot phase. 
Although the integration of a CPU with a TPM provides key 
storage and security measurements, the OS still needs to 
obtain, use, and revoke cryptographic keys, thus increasing 
the number of security components in the TCB. A lack of 
overall support for physical protection or for hardware- 
enforced encryption of code and data allows attackers to 
snoop or modify memory in the execution phase. During 
the off phase, the TPM could be physically replaced, and 
thus a new set of measurements could be inserted into the 
system. The S-COP–based secure architecture mitigates 
these deficiencies by creating a root of trust with a PUF and 
can be used to support physical protection.
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Because the S-COP can be adapted to secure a main-
stream CPU, the usability of the secure UAS embedded 
architecture rates high; the architecture can leverage all 
the benefits of a COTS CPU, such as high performance 
(e.g., for signal processing), large cache and memory 
support, and widely supported software libraries. 

Open-Systems Architecture Security
The use of OSAs can improve the development and 
life-cycle efficiency of system assets. Typically, OSAs 
incorporate several buses with well-defined interfaces for 
communication between components. A system can then 
be adapted to different needs by providing proper compo-
nents and defining system interconnections.

Besides securing the CPU, LOCKMA is being devel-
oped into a cryptography-based secure framework that has 
been successfully demonstrated in OSA embedded system 
protection. The framework employs LOCKMA to provide 
encryption of data in use, data in transit, and data at rest to 
prevent eavesdropping, probing, and unauthorized access. 
In addition, developers can enforce a trusted configuration 
by accepting only predetermined payloads and preventing 
unauthorized hardware and/or software substitutes. 

Figure 11 illustrates an example configuration 
that consists of several payloads and processors and a 
LOCKMA security manager (LSM).  A digitally signed 
configuration (config) file that specifies authorized 
payloads, acceptable combinations of payloads, and 
secure communication channels establishes the autho-
rized mission configuration. Figure 12 shows an example 
config file that has three sections: principals, constraints, 
and channels. The authorized subsystems are listed under 
the principals section; authorized configurations are 

noted under the constraints section; and authorized com-
munication channels are specified in the channels section. 
In this example, the system can contain subsystems A, B, 
C, and D, among others. An authorized configuration is 
one that includes subsystem A or subsystem B with both 
subsystems A and D present. Subsystem A is given the role 
of a publisher (pub) and subsystems D and E are assigned 
the role of subscriber (sub). A digital signature is created 
for the config file so that its integrity can be verified.

At startup, the LSM verifies the digital signature of 
the config file and ensures that it is unaltered. Using the 
config file, the LSM collects subsystem credentials and 
confirms the absence of unexpected system payloads, 
leading to authorized system configuration. The system 
then starts and the LSM continues to set up secure com-
munication channels. 

Figure 13 illustrates how LOCKMA enables each 
subsystem with a key management (KM) function and 
an Advanced Encryption Standard (AES) encryption 
and decryption function. Subsystem A creates a key 
wrap containing a symmetric cryptographic key that is 

Radar

A

Camera

B

Weapon

C

Processor

D

Processor

E

Communications bus

Subsystems LOCKMA
Security Manager

Configuration 
file

FIGURE 11. In a LOCKMA-based open-systems architecture security framework, the LOCKMA security manager (LSM) 
checks subsystem credentials against a config file to ensure that the configuration is authorized.

FIGURE 12. A security 
config file, an example of 
which is shown at left, is 
used to enforce payload 
authorization and secure 
communication channels.

# Principals
A, B, C, D, ...

# Constraints
A or B
A and D
...

# Channels
Channel 1:
Pub: A
Sub: D, E
...

Digital 
signature
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only accessible by authorized subsystems D and E, and 
establishes a communication channel. The channel users 
retrieve the common secret session key and use it for 
encrypted communications. The system is then ready to 
perform its mission objectives. 

Ongoing Work
Security has an asymmetric nature—an attacker can 
compromise a system by discovering a single, unex-
pected vulnerability, while a defender must defend 
against all vulnerabilities. Because it is impossible 
to correctly predict every future attack, securing an 
embedded system to prevent attacks is not a guarantee 
of mission assurance. Being secure is not adequate; 
systems must also be resilient. Lincoln Laboratory is 
vigorously pursuing an answer to the essential mis-
sion-assurance question: If an attacker is successful 

despite implemented defenses, what can be done so the 
mission can continue until completion? 

Our objective is to define a standardized reference 
secure and resilient architecture for DoD embedded 
systems. We want to ensure that systems continue to 
function when a situation does not go as we expect. Our 
work is guided by the four stages of actions involved with 
the resiliency of an embedded system against cyber attacks: 
anticipate, withstand, recover, and evolve [10]. Our current 
research and development focuses on approaches that 
enable a system to defend against threats, withstand attacks 
and complete mission goals, recover from a degraded state 
and return to a normal state, and evolve to improve defense 
and resilience against further threats.

Our ongoing work also includes the development of 
mission-level resiliency metrics to answer the following 
question: Is the mission more likely to be successful 
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FIGURE 13. In a LOCKMA security framework, a publisher (e.g., subsystem A) sends a key wrap only accessible by intended sub-
scribers (e.g., subsystems D and E) to retrieve a session key (a). The publisher and subscribers are then able to carry out encrypted 
communication (b). Each subsystem contains an Advanced Encryption Standard (AES) and a key management (KM) function.
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when our system is used? A system specification such as 
system restart time is a good design objective, but by itself 
does not provide information about system availability 
and mission assurance. We are developing a systematic 
approach to connect mission-level resiliency metrics to 
system specifications. 
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