Publications

Refine Results

(Filters Applied) Clear All

Criteria for sprites and elves based on Schumann resonance observations

Published in:
J. Geophys. Res., Vol. 104, No. D14, 27 July 1999, pp. 16,943-16,964.

Summary

Ground flashes with positive polarity associated with both sprites and elves excite the Earth's Schumann resonances to amplitudes several times greater than the background resonances. Theoretical predictions for dielectric breakdown in the mesosphere are tested using ELF methods to evaluate vertical charge moments of positive ground flashes. Comparisons of the measured time constants for lightning charge transfer with the electrostatic relaxation time at altitudes of nighttime sprite initiation (50-70 km) generally validate the electrostatic assumption in predictions made initially by Wilson [1925]. The measured charge moments (Q dS = 200-2000 C-km) are large in comparison with ordinary negative lightning but are generally insufficient to account for conventional air breakdown at sprite altitudes. The measured charge moments, however, are sufficient to account for electron runaway breakdown, and the long avalanche length in this mechanism also accounts for the exclusive association of sprites with ground flashes of positive polarity. The association of elves with large peak currents (50-200 kA) measured by the National Lightning Detection Network in a band pass beyond the Schumann resonance range is consistent with an electromagnetic pulse mechanism for these events.
READ LESS

Summary

Ground flashes with positive polarity associated with both sprites and elves excite the Earth's Schumann resonances to amplitudes several times greater than the background resonances. Theoretical predictions for dielectric breakdown in the mesosphere are tested using ELF methods to evaluate vertical charge moments of positive ground flashes. Comparisons of the...

READ MORE

Global validation of single-station Schumann resonance lightning location

Published in:
J. Atmos. Sol.-Terr. Phys., Vol. 60, No. 7-9., May-June 1998, pp. 701-712.

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an individual SR transients. An analysis of 40 such transients suggests that single-station techniques can locate lightning globally with an accuracy of 1-2 Mm. This is confirmed by further validation at close ranges from flashes detected by the National Lightning Detection Network (NLDN). Observations with both OTD and SR systems may be useful for globally locating lightning with necessary, if not sufficient, characteristics to trigger mesospheric sprites.
READ LESS

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an...

READ MORE

Showing Results

1-2 of 2