Publications

Refine Results

(Filters Applied) Clear All

Improving convective weather operations in highly congested airspace with the Corridor Integrated Weather System (CIWS)

Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Reducing thunderstorm-related air traffic delays in congested airspace has become a major objective of the FAA, especially given the recent growth in convective delays. In 2000 and 2001, the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM). Users were given 2-, 4-, and 6-hour collaborative convective weather forecasts, and collaborative traffic routing plans were established via telecons attended by Air Traffic Control (ATC) and airline traffic managers. This "strategic" approach led to difficulties during a large fraction of the weather events because it was not possible to generate forecasts of convective weather at time horizons between 2 and 6 hours that were accurate enough to assess impacts on routes and capacity, and thereby accomplish effective TFM. During convective weather events, traffic managers tend to focus on tactical TFM [Huberdeau, 2004], yet they had relatively inaccurate current weather information and tactical forecasts. The Corridor Integrated Weather System (CIWS) demonstration began in 2001. The objectives of the demonstration are to provide improved tactical air traffic management (ATM) decision support, via improved real time 3D products and accurate short-term convective weather forecasts, and to determine if this support is an operationally useful complement to "strategic" TFM. The current focus of the CIWS initiative is the highly congested airspace containing the Great Lakes and Northeast corridors, since that region offers the greatest potential for delay reduction benefits. In this paper, we describe the current status of CIWS, including initial operational results of Air Traffic Control (ATC) and airline use of the CIWS weather products. We begin with some CIWS background, describing the motivation for the program, the role of CIWS products in the overall convective weather planning process, and the functional domains in which CIWS products can provide operationally significant benefits. We then review the current CIWS capabilities, spatial coverage, sensors used, products, operational users, and integration with ATM systems. Next the detailed CIWS operational benefits study carried out in 2003 is summarized. Finally, we discuss the FAA plans for CIWS and near term enhancements to the system.
READ LESS

Summary

Reducing thunderstorm-related air traffic delays in congested airspace has become a major objective of the FAA, especially given the recent growth in convective delays. In 2000 and 2001, the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM). Users were given 2-, 4-, and...

READ MORE

Multi-radar integration to improve en route aviation operations in severe convective weather

Published in:
19th Int. Conf. of Interactive Info Processing Systems in Meteorology, Oceanography and Hydrology, IIPS, 9-13 February 2003.

Summary

In this paper, we describe a major new FAA initiative, the Corridor Integrated Weather System (CIWS), to improve convective weather decision support for congested en route airspace and the terminals within that airspace through use of a large, heterogeneous network of weather sensing radars as well as many additional sensors. The objective of the CIWS concept exploration is to determine the improvements in NAS performance that could be achieved by providing en route controllers, en route and major terminal traffic flow managers, and airline dispatch with accurate, fully automated high update-rate information on current and near term (0-2 hour) storm locations, severity and vertical structure so that they can achieve more efficient tactical use of the airspace. These "tactical" traffic flow management products will complement the longer-term (2-6 hr) forecasts that are also needed for flight planning and strategic traffic flow management. Since balancing the en route traffic flows in the presence of time varying impacts on sector capacities by convective weather is essential if delays are to be reduced, an important element of the CIWS initiative is interfacing to and, in some cases providing, air traffic flow management (TFM) and airline dispatch decision support tools (DSTs)
READ LESS

Summary

In this paper, we describe a major new FAA initiative, the Corridor Integrated Weather System (CIWS), to improve convective weather decision support for congested en route airspace and the terminals within that airspace through use of a large, heterogeneous network of weather sensing radars as well as many additional sensors...

READ MORE

The Corridor Integrated Weather System (CIWS)

Published in:
10th Conf. on Aviation, Range, and Aerospace Meteorology, 13-16 May 2002, pp. 210-215.

Summary

The FAA Operational Evolution Plan (OEP) identified en route severe weather as one of the four problems that must be addressed if the US. air transportation system is to alleviate the growing gap between the demand for air transportation and the ability of the system to meet that demand. Convective weather in highly congested airspace is of particular concern because many of the delays arise from these corridors. For example, rerouting aircraft around areas of actual or predicted weather can be very difficult when one must be concerned about controller overload in the weather free sectors. When major terminals also underlie the en route airspace, convective weather has even greater adverse impacts. The principal thrust to date in addressing this problem has been "strategic" collaborative routing as exemplified by the "Spring 2000" and "Spring 2001" initiatives. However, success of the strategic approach embodied in these initiatives depends on the ability to accurately forecast convective weather impacts two or more hours in advance. Limitations in the forecast accuracy necessitate development of a companion "tactical" convective weather capability. In this paper, we describe a major new FAA initiative, the Corridor Integrated Weather System (CIWS). The objective of this project, which is currently in the concept exploration phase, is to improve tactical convective weather decision support for congested en route airspace. A real time operational demonstration, which was begun in July 2001 in the Great Lakes corridor, will be extended to the Northeast corridor in 2002. In the sections that follow, we describe the operational needs that motivated the ClWS initiative, the technology under investigation, the concept exploration test bed and summer 2001 operational experience, and the near term plans for the CIWS concept exploration.
READ LESS

Summary

The FAA Operational Evolution Plan (OEP) identified en route severe weather as one of the four problems that must be addressed if the US. air transportation system is to alleviate the growing gap between the demand for air transportation and the ability of the system to meet that demand. Convective...

READ MORE

Showing Results

1-3 of 3