Publications

Refine Results

(Filters Applied) Clear All

Acoustic, phonetic, and discriminative approaches to automatic language identification

Summary

Formal evaluations conducted by NIST in 1996 demonstrated that systems that used parallel banks of tokenizer-dependent language models produced the best language identification performance. Since that time, other approaches to language identification have been developed that match or surpass the performance of phone-based systems. This paper describes and evaluates three techniques that have been applied to the language identification problem: phone recognition, Gaussian mixture modeling, and support vector machine classification. A recognizer that fuses the scores of three systems that employ these techniques produces a 2.7% equal error rate (EER) on the 1996 NIST evaluation set and a 2.8% EER on the NIST 2003 primary condition evaluation set. An approach to dealing with the problem of out-of-set data is also discussed.
READ LESS

Summary

Formal evaluations conducted by NIST in 1996 demonstrated that systems that used parallel banks of tokenizer-dependent language models produced the best language identification performance. Since that time, other approaches to language identification have been developed that match or surpass the performance of phone-based systems. This paper describes and evaluates three...

READ MORE

Phonetic speaker recognition with support vector machines

Published in:
Adv. in Neural Information Processing Systems 16, 2003 Conf., 8-13 December 2003, p. 1377-1384.

Summary

A recent area of significant progress in speaker recognition is the use of high level features-idiolect, phonetic relations, prosody, discourse structure, etc. A speaker not only has a distinctive acoustic sound but uses language in a characteristic manner. Large corpora of speech data available in recent years allow experimentation with long term statistics of phone patterns, word patterns, etc. of an individual. We propose the use of support vector machines and term frequency analysis of phone sequences to model a given speaker. To this end, we explore techniques for text categorization applied to the problem. We derive a new kernel based upon a linearization of likelihood ratio scoring. We introduce a new phone-based SVM speaker recognition approach that halves the error rate of conventional phone-based approaches.
READ LESS

Summary

A recent area of significant progress in speaker recognition is the use of high level features-idiolect, phonetic relations, prosody, discourse structure, etc. A speaker not only has a distinctive acoustic sound but uses language in a characteristic manner. Large corpora of speech data available in recent years allow experimentation with...

READ MORE