Publications

Refine Results

(Filters Applied) Clear All

Application of a resilience framework to military installations: a methodology for energy resilience business case decisions

Published in:
MIT Lincoln Laboratory Report TR-1216

Summary

The goal of the study was to develop and demonstrate an energy resilience framework at four DoD installations. This framework, predominantly focused on developing a business case, was established for broader application across the DoD. The methodology involves gathering data from an installation on critical energy load requirements, the energy costs and usage, quantifying the cost and performance of the existing energy resilience solution at the installation, and then conducting an analysis of alternatives to look at new system designs. Improvements in data collection at the installation level, as recommended in this report, will further increase the fidelity of future analysis and the accuracy of the recommendations. And most importantly, increased collaboration between the facility personnel and the mission operators at the installation will encourage holistic solutions that improve both the life cycle costs and the resilience of the installation's energy systems and supporting infrastructure.
READ LESS

Summary

The goal of the study was to develop and demonstrate an energy resilience framework at four DoD installations. This framework, predominantly focused on developing a business case, was established for broader application across the DoD. The methodology involves gathering data from an installation on critical energy load requirements, the energy...

READ MORE

Boston community energy study - zonal analysis for urban microgrids

Published in:
MIT Lincoln Laboratory Report TR-1201

Summary

Superstorm Sandy illustrated the economic and human impact that severe weather can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed microgrids in the New York City region remained operational during Sandy, including those at Princeton University, Goldman Sachs, New York University, and Co-op City. The resilience provided by these microgrids sparked renewed interest in pursuing more microgrid deployments as means to increase resiliency throughout the nation and in the face of many potential threats including severe weather events, and potentially terrorism. MIT Lincoln Laboratory has been engaged with the Department of Homeland Security (DHS), the Department of Energy (DoE), and the City of Boston in this Community Energy Study to explore the potential for microgrid deployment within Boston's thriving neighborhoods. Using hourly simulated building energy data for every building in Boston, provided by the Sustainable Design Lab on MIT campus, MIT Lincoln Laboratory was able to develop an approach that can identify zones within the city where microgrids could be implemented with a high return on investment in terms of resiliency, offering both cost savings and social benefit in the face of grid outages. An important part of this approach leverages a microgrid optimization tool developed by Lawrence Berkeley National Laboratory, with whom the MIT Lincoln Laboratory is now collaborating on microgrid modeling work. Using the microgrid optimization tool, along with building energy use data, forty-two community microgrids were identified, including ten multiuser microgrids, ten energy justice microgrids, and twenty-two emergency microgrids.
READ LESS

Summary

Superstorm Sandy illustrated the economic and human impact that severe weather can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed microgrids in the New York City region remained operational during Sandy, including those at Princeton...

READ MORE

Showing Results

1-2 of 2