Publications

Refine Results

(Filters Applied) Clear All

Automatic detection of influential actors in disinformation networks

Summary

The weaponization of digital communications and social media to conduct disinformation campaigns at immense scale, speed, and reach presents new challenges to identify and counter hostile influence operations (IO). This paper presents an end-to-end framework to automate detection of disinformation narratives, networks, and influential actors. The framework integrates natural language processing, machine learning, graph analytics, and a novel network causal inference approach to quantify the impact of individual actors in spreading IO narratives. We demonstrate its capability on real-world hostile IO campaigns with Twitter datasets collected during the 2017 French presidential elections, and known IO accounts disclosed by Twitter. Our system detects IO accounts with 96% precision, 79% recall, and 96% area-under-the-PR-curve, maps out salient network communities, and discovers high-impact accounts that escape the lens of traditional impact statistics based on activity counts and network centrality. Results are corroborated with independent sources of known IO accounts from U.S. Congressional reports, investigative journalism, and IO datasets provided by Twitter.
READ LESS

Summary

The weaponization of digital communications and social media to conduct disinformation campaigns at immense scale, speed, and reach presents new challenges to identify and counter hostile influence operations (IO). This paper presents an end-to-end framework to automate detection of disinformation narratives, networks, and influential actors. The framework integrates natural language...

READ MORE

Influence estimation on social media networks using causal inference

Published in:
Proc. IEEE Statistical Signal Processing (SSP) Workshop, 10-13 June 2018.

Summary

Estimating influence on social media networks is an important practical and theoretical problem, especially because this new medium is widely exploited as a platform for disinformation and propaganda. This paper introduces a novel approach to influence estimation on social media networks and applies it to the real-world problem of characterizing active influence operations on Twitter during the 2017 French presidential elections. The new influence estimation approach attributes impact by accounting for narrative propagation over the network using a network causal inference framework applied to data arising from graph sampling and filtering. This causal framework infers the difference in outcome as a function of exposure, in contrast to existing approaches that attribute impact to activity volume or topological features, which do not explicitly measure nor necessarily indicate actual network influence. Cramér-Rao estimation bounds are derived for parameter estimation as a step in the causal analysis, and used to achieve geometrical insight on the causal inference problem. The ability to infer high causal influence is demonstrated on real-world social media accounts that are later independently confirmed to be either directly affiliated or correlated with foreign influence operations using evidence supplied by the U.S. Congress and journalistic reports.
READ LESS

Summary

Estimating influence on social media networks is an important practical and theoretical problem, especially because this new medium is widely exploited as a platform for disinformation and propaganda. This paper introduces a novel approach to influence estimation on social media networks and applies it to the real-world problem of characterizing...

READ MORE

Showing Results

1-2 of 2