Publications

Refine Results

(Filters Applied) Clear All

Multi-modal audio, video and physiological sensor learning for continuous emotion prediction

Summary

The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the arousal and valence states of emotion as a function of time. It presents the opportunity for investigating multimodal solutions that include audio, video, and physiological sensor signals. This paper provides an overview of our AVEC Emotion Challenge system, which uses multi-feature learning and fusion across all available modalities. It includes a number of technical contributions, including the development of novel high- and low-level features for modeling emotion in the audio, video, and physiological channels. Low-level features include modeling arousal in audio with minimal prosodic-based descriptors. High-level features are derived from supervised and unsupervised machine learning approaches based on sparse coding and deep learning. Finally, a state space estimation approach is applied for score fusion that demonstrates the importance of exploiting the time-series nature of the arousal and valence states. The resulting system outperforms the baseline systems [10] on the test evaluation set with an achieved Concordant Correlation Coefficient (CCC) for arousal of 0.770 vs 0.702 (baseline) and for valence of 0.687 vs 0.638. Future work will focus on exploiting the time-varying nature of individual channels in the multi-modal framework.
READ LESS

Summary

The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the...

READ MORE

How deep neural networks can improve emotion recognition on video data

Published in:
ICIP: 2016 IEEE Int. Conf. on Image Processing, 25-28 September 2016.

Summary

We consider the task of dimensional emotion recognition on video data using deep learning. While several previous methods have shown the benefits of training temporal neural network models such as recurrent neural networks (RNNs) on hand-crafted features, few works have considered combining convolutional neural networks (CNNs) with RNNs. In this work, we present a system that performs emotion recognition on video data using both CNNs and RNNs, and we also analyze how much each neural network component contributes to the system's overall performance. We present our findings on videos from the Audio/Visual+Emotion Challenge (AV+EC2015). In our experiments, we analyze the effects of several hyperparameters on overall performance while also achieving superior performance to the baseline and other competing methods.
READ LESS

Summary

We consider the task of dimensional emotion recognition on video data using deep learning. While several previous methods have shown the benefits of training temporal neural network models such as recurrent neural networks (RNNs) on hand-crafted features, few works have considered combining convolutional neural networks (CNNs) with RNNs. In this...

READ MORE

Showing Results

1-2 of 2