Publications

Refine Results

(Filters Applied) Clear All

CoSPA and Traffic Flow Impact Operational Demonstration for the 2017 Convective Season(4.48 MB)

Published in:
Project Report ATC-441, MIT Lincoln Laboratory

Summary

MIT Lincoln Laboratory personnel conducted field observations of the Consolidated Storm Prediction for Aviation (CoSPA) 8-hr deterministic convective forecast, and the decision support tool, Traffic Flow Impact (TFI), from 6 June to 31 October 2017. Four field observations were performed during the demonstration period.
READ LESS

Summary

MIT Lincoln Laboratory personnel conducted field observations of the Consolidated Storm Prediction for Aviation (CoSPA) 8-hr deterministic convective forecast, and the decision support tool, Traffic Flow Impact (TFI), from 6 June to 31 October 2017. Four field observations were performed during the demonstration period.

READ MORE

Report on the 2016 CoSPA and Traffic Flow Impact operational demonstration

Published in:
MIT Lincoln Laboratory Report ATC-433

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 1 June to 31 October 2016. The MIT LL observation team visited three Federal Aviation Administration (FAA) Air Route Traffic Control Centers (ARTCC) and the Air Traffic Control System Command Center (ATCSCC) on three separate convective events covering four days during the summer of 2016. Five commercial airlines were also involved in the observations. Specifically noted were the utilization of the deterministic convective weather forecasting model, Storm Prediction for Aviation (CoSPA), and a newly developed decision support application, Traffic Flow Impact (TFI). These field evaluations were supported via the FAA AJM-334 program.
READ LESS

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 1 June to 31 October 2016. The MIT LL observation team visited three Federal Aviation Administration (FAA) Air Route Traffic Control Centers (ARTCC) and the Air Traffic Control System...

READ MORE

2015 operational observation of CoSPA and traffic flow impact

Published in:
MIT Lincoln Laboratory Report ATC-429

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 13 April to 31 October 2015. Three separate field observations were conducted over four convective weather days across the eastern National Airspace System (NAS) with visits to five separate FAA facilities and five different airline operation centers. Observations of strategic management planning and decision making were documented during these visits. Specifically noted were the utilization of the deterministic convective weather forecasting model, CoSPA, and a newly developed decision support application, Traffic Flow Impact (TFI). These field evaluations were supported via the FAA AJM-334 CoSPA program.
READ LESS

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 13 April to 31 October 2015. Three separate field observations were conducted over four convective weather days across the eastern National Airspace System (NAS) with visits to five separate...

READ MORE

Airspace flow rate forecast algorithms, validation, and implementation

Published in:
MIT Lincoln Laboratory Report ATC-428

Summary

This report summarizes work performed by MIT Lincoln Laboratory during the period 1 February 2015 - 30 November 2015 focused on developing and improving algorithms to estimate the impact of convective weather on air traffic flows. The core motivation for the work is the need to improve strategic traffic flow management decision-making in the National Airspace System. The algorithms developed as part of this work translate multiple weather forecast products into a discrete airspace impact metric called permeability.
READ LESS

Summary

This report summarizes work performed by MIT Lincoln Laboratory during the period 1 February 2015 - 30 November 2015 focused on developing and improving algorithms to estimate the impact of convective weather on air traffic flows. The core motivation for the work is the need to improve strategic traffic flow...

READ MORE

Evaluation of Consolidated Storm Prediction for Aviation (CoSPA) 0-8 hour convective weather forecast using the airspace flow program blockage-based capacity forecast ("The Matrix")

Published in:
MIT Lincoln Laboratory Report ATC-385

Summary

The CoSPA 0-8 hour convective weather forecast provides deterministic forecast products that can be used by strategic traffic management planners, and can be readily translated into forecasts of aviation capacity impacts for use in automated decision support tools. An operational CoSPA prototype was evaluated at several FAA Air Traffic Control facilities during the summer of 2010. As part of this evaluation, CoSPA forecasts were translated into forecasts of capacity impacts on traffic flows through two Flow Constrained Areas (FCAA05 and FCAA08) commonly used to control arrival traffic into the highly congested northeastern United States. This report describes an objective and operationally relevant evaluation of the accurancy of CoSPA-based forecasts of FCA capacity.
READ LESS

Summary

The CoSPA 0-8 hour convective weather forecast provides deterministic forecast products that can be used by strategic traffic management planners, and can be readily translated into forecasts of aviation capacity impacts for use in automated decision support tools. An operational CoSPA prototype was evaluated at several FAA Air Traffic Control...

READ MORE

Use of a high-resolution deterministic weather forecast for strategic air traffic management decision support

Published in:
91st American Meteorological Society Annual Meeting, 22-27 January 2011.

Summary

One of the most significant air traffic challenges is managing the National Airspace System (NAS) in a manner that optimizes efficiency and mitigates avoidable delay, while maintaining safety, when convective weather is present. To do this, aviation planners seek to develop strategic air traffic management (ATM) plans and initiatives that anticipate weather constraints 2-8 hours in the future and identify options and alternatives for efficient operations during the off-nominal NAS conditions. In support of strategic planning, traffic managers currently conduct bi-hourly Strategic Planning Telcons (SPTs) and devise weather impact mitigations plans using the human-generated Collaborative Convective Forecast Product (CCFP). However, most operational decision-makers agree that the quasi-deterministic CCFP "polygons" (accompanied by a "low/high" forecast confidence rating) lack the granularity and temporal resolution to adequately support efficient strategic ATM plans and decisions. Moreover, traffic managers also assert that probabilistic forecasts of convective weather likelihood, while helpful in highlighting regions of possible airspace disruptions, generally lack the ability to resolve specific weather characteristics pertinent to strategic planning. MIT Lincoln Laboratory, NCAR Research Applications Laboratory, and NOAA Earth Systems Research Laboratory (ESRL) have collaborated to develop a high-resolution, rapidly updating 0-8 hour deterministic precipitation and echo tops forecast, known as CoSPA, to aid operational decision-makers in developing strategic plans for weather impact mitigation. In the summer of 2010, a comprehensive field study was conducted to assess potential benefits and the operational performance of CoSPA in the context of strategic ATM planning. The data were gathered by simultaneous real-time observations of I5 FAA and airline operations facilities during 15 convective weather impact days affecting the Northern Plains, Great Lakes, and East Coast regions of the NAS. CoSPA field evaluation results will be presented to demonstrate the various ways aviation planners have utilized the increased spatial and temporal resolution of CoSPA - the ability of CoSPA to resolve storm structure and refine forecasts with high update rates - to make more detailed assessments of potential weather impacts and to determine the subsequent need for airspace management initiatives. Results will also be presented that highlight CoSPA enhancement needs, primarily related to forecast uncertainty, that would improve the operational effectiveness of CoSPA-derived weather impact mitigation plans. Finally, opportunities to translate CoSPA deterministic forecasts into integrated weather-ATM decision support for specific strategic planning tasks will be discussed
READ LESS

Summary

One of the most significant air traffic challenges is managing the National Airspace System (NAS) in a manner that optimizes efficiency and mitigates avoidable delay, while maintaining safety, when convective weather is present. To do this, aviation planners seek to develop strategic air traffic management (ATM) plans and initiatives that...

READ MORE

Showing Results

1-6 of 6