Publications

Refine Results

(Filters Applied) Clear All

Engineered liquid crystal anchoring energies with nanopatterned surfaces

Published in:
Opt. Express, Vol. 23, No. 2, 26 January 2015, pp. 807-14.

Summary

The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.
READ LESS

Summary

The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid...

READ MORE

Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

Published in:
J. Appl. Phys., Vol. 113. No. 5, 7 February 2013, 053107.

Summary

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ~50 MW/cm^2. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.
READ LESS

Summary

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ~50 MW/cm^2. Due to...

READ MORE

Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy

Published in:
Opt. Express, Vol. 20, No. 11, 21 May 2012, pp. 11953-11966.

Summary

We present an approach for rational design and optimization of plasmonic arrays for ultrasensitive surface enhanced infrared absorption (SEIRA) spectroscopy of specific protein analytes. Motivated by our previous work that demonstrated sub-attomole detection of surface-bound silk fibroin [Proc. Natl. Acad. Sci. U.S.A. 106, 19227 (2009)], we introduce here a general framework that allows for the numerical optimization of metamaterial sensor designs in order to maximize the absorbance signal. A critical feature of our method is the explicit compensation for the perturbative effects of the analyte's refractive index which alters the resonance frequency and line-shape of the metamaterial response, thereby leading to spectral distortion in SEIRA signatures. As an example, we leverage our method to optimize the geometry of periodic arrays of plasmonic nanoparticles on both Si and CaF2 substrates. The optimal geometries result in a three-order of magnitude absorbance enhancement compared to an unstructured Au layer, with the CaF2 substrate offering an additional factor of three enhancement in absorbance over a traditional Si substrate. The latter improvement arises from increase of near-field intensity over the Au nanobar surface for the lower index substrate. Finally, we perform sensitivity analysis for our optimized arrays to predict the effects of fabrication imperfections. We find that
READ LESS

Summary

We present an approach for rational design and optimization of plasmonic arrays for ultrasensitive surface enhanced infrared absorption (SEIRA) spectroscopy of specific protein analytes. Motivated by our previous work that demonstrated sub-attomole detection of surface-bound silk fibroin [Proc. Natl. Acad. Sci. U.S.A. 106, 19227 (2009)], we introduce here a general...

READ MORE

Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy

Summary

Our recent work has showed that diffractively coupled nanoplasmonic arrays for Fourier transform infrared (FTIR) microspectroscopy can enhance the Amide I protein vibrational stretch by up to 105 times as compared to plain substrates. In this work we consider computationally the impact of a microscope objective illumination cone on array performance. We derive an approach for computing angular- and spatially-averaged reflectance for various numerical aperture (NA) objectives. We then use this approach to show that arrays that are perfectly optimized for normal incidence undergo significant response degradation even at modest NAs, whereas arrays that are slightly detuned from the perfect grating condition at normal incidence irradiation exhibit only a slight drop in performance when analyzed with a microscope objective. Our simulation results are in good agreement with microscope measurements of experimentally optimized periodic nanoplasmonic arrays.
READ LESS

Summary

Our recent work has showed that diffractively coupled nanoplasmonic arrays for Fourier transform infrared (FTIR) microspectroscopy can enhance the Amide I protein vibrational stretch by up to 105 times as compared to plain substrates. In this work we consider computationally the impact of a microscope objective illumination cone on array...

READ MORE

A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates

Summary

A highly scalable approach for producing surface-enhanced Raman spectroscopy substrates is introduced. The novel method involves assembling individual nanoparticles in pre-defined templates, one particle per template, forming a high denisity of nanogaps over large areas, while decoupling nanostructure synthesis from placement.
READ LESS

Summary

A highly scalable approach for producing surface-enhanced Raman spectroscopy substrates is introduced. The novel method involves assembling individual nanoparticles in pre-defined templates, one particle per template, forming a high denisity of nanogaps over large areas, while decoupling nanostructure synthesis from placement.

READ MORE

Optical limiting with complex plasmonic nanoparticles

Published in:
J. Optics, Vol. 12, No. 6, 2010, 065001.

Summary

Optical limiting by suspensions of Au nanoparticles is enhanced by several orders of magnitude with the use of complex plasmonic shapes, such as spined "nanourchins," instead of nanospheres. Similar enhancements are observed by changing the material of nanospheres from Au to Ag. The experiments, measuring intensity-dependent transmission over a wavelength range from 450 to 650 nm for a 6 ns pulsed laser, are analyzed in terms of an effective nonlinear extinction coefficient, which we relate to the local, plasmonically enhanced electric field. FDTD simulations reveal a large electric field enhancement inside the nanospined structures and qualitatively confirm the plasmonic trends, where Ag nanospheres and Au nanourchins are more effective than Au nanospheres. These results suggest that designing nanostructures for the maximum plasmonic enhancement provides a roadmap to materials and geometries with optimized optical limiting behavior.
READ LESS

Summary

Optical limiting by suspensions of Au nanoparticles is enhanced by several orders of magnitude with the use of complex plasmonic shapes, such as spined "nanourchins," instead of nanospheres. Similar enhancements are observed by changing the material of nanospheres from Au to Ag. The experiments, measuring intensity-dependent transmission over a wavelength...

READ MORE

Impact of photoacid generator leaching on optics photocontamination in 193-nm immersion lithography

Published in:
J. Micro/Nanolith. MEMS MOEMS, Vol. 6, No. 1, January-March 2007, pp. 013001-1 - 013001-7.

Summary

Leaching of resist components into water has been reported in several studies. Even low dissolution levels of photoacid generator (PAG) may lead to photocontamination of the last optical surface of the projection lens. To determine the impact of this phenomenon on optics lifetime, we initiate a set of controlled studies, where predetermined amounts of PAG are introduced into pure water and the results monitored quantitatively. The study identifies the complex, nonlinear paths leading to photocontamination of the optics. We also discover that spatial contamination patterns of the optics are strongly dependent on the flow geometry. Both bare SiO2 surfaces as well as coated CaF2 optics are studied. We find that for all surfaces, at concentrations typical of leached PAG, below 500 ppb, the in situ self-cleaning processes prevent contamination of the optics.
READ LESS

Summary

Leaching of resist components into water has been reported in several studies. Even low dissolution levels of photoacid generator (PAG) may lead to photocontamination of the last optical surface of the projection lens. To determine the impact of this phenomenon on optics lifetime, we initiate a set of controlled studies...

READ MORE

Nanocomposite approaches toward pellicles for 157-nm lithography

Published in:
J. Microlith., Microfab., Microsyst., Vol. 4, No. 1, January-March 2005, pp. 013004-1 - 013004-6.

Summary

Pellicle materials for use at 157 nm must display sufficient transparency at this wavelength and adequate lifetimes to be useful. We blended a leading candidate fluoropolymer with silica nanoparticles to examine the effect on both the transparency and lifetime of the pellicle. It is anticipated that these composite materials may increase the lifetime by perhaps quenching reactive species and/or by dilution, without severely decreasing the 157-nm transmission. Particles surface-modified with fluorinated moieties are also investigated. The additives are introduced as stable nanoparticle dispersions to casting solutions of the fluoropolymers. The properties of these solutions, films, and the radiationinduced darkening rates are reported. The latter are reduced in proportion to the dilution of the polymer, but there is no evidence that the nanoparticles act as radical scavengers.
READ LESS

Summary

Pellicle materials for use at 157 nm must display sufficient transparency at this wavelength and adequate lifetimes to be useful. We blended a leading candidate fluoropolymer with silica nanoparticles to examine the effect on both the transparency and lifetime of the pellicle. It is anticipated that these composite materials may...

READ MORE

Marathon evaluation of optical materials for 157-nm lithography

Published in:
J. Microlithogr., Microfab., Microsyst., Vol. 2, No. 1, January 2003, pp. 19-26.

Summary

We present the methodology and recent results on the longterm evaluation of optical materials for 157-nm lithographic applications. We review the unique metrology capabilities that have been developed for accurately assessing optical properties of samples both online and offline, utilizing VUV spectrophotometry with in situlamp-based cleaning. We describe ultraclean marathon testing chambers that have been designed to decouple effects of intrinsic material degradation from extrinsic ambient effects. We review our experience with lithography-grade 157-nm lasers and detector durability. We review the current status of bulk materials for lenses, such as CaF(2) and BaF(2), and durability results of antireflectance coatings. Finally, we discuss the current state of laser durability of organic pellicles.
READ LESS

Summary

We present the methodology and recent results on the longterm evaluation of optical materials for 157-nm lithographic applications. We review the unique metrology capabilities that have been developed for accurately assessing optical properties of samples both online and offline, utilizing VUV spectrophotometry with in situlamp-based cleaning. We describe ultraclean marathon...

READ MORE