Publications

Refine Results

(Filters Applied) Clear All

Impact of photoacid generator leaching on optics photocontamination in 193-nm immersion lithography

Published in:
J. Micro/Nanolith. MEMS MOEMS, Vol. 6, No. 1, January-March 2007, pp. 013001-1 - 013001-7.

Summary

Leaching of resist components into water has been reported in several studies. Even low dissolution levels of photoacid generator (PAG) may lead to photocontamination of the last optical surface of the projection lens. To determine the impact of this phenomenon on optics lifetime, we initiate a set of controlled studies, where predetermined amounts of PAG are introduced into pure water and the results monitored quantitatively. The study identifies the complex, nonlinear paths leading to photocontamination of the optics. We also discover that spatial contamination patterns of the optics are strongly dependent on the flow geometry. Both bare SiO2 surfaces as well as coated CaF2 optics are studied. We find that for all surfaces, at concentrations typical of leached PAG, below 500 ppb, the in situ self-cleaning processes prevent contamination of the optics.
READ LESS

Summary

Leaching of resist components into water has been reported in several studies. Even low dissolution levels of photoacid generator (PAG) may lead to photocontamination of the last optical surface of the projection lens. To determine the impact of this phenomenon on optics lifetime, we initiate a set of controlled studies...

READ MORE

Immersion patterning down to 27 nm half pitch

Published in:
J. Vac. Sci. Technol. B, Microelectron. Process. Phenon., Vol. 24, No. 6, November/December 2006, pp. 2789-2797 (EIPBN 2006, 30 May-2 June 2006).

Summary

Liquid immersion interference lithography at 157 nm has been used to print gratings of 27 nm half pitch with a fluorine-doped fused silica prism having index of 1.66. In order to achieve these dimensions, new immersion fluids have been designed and synthesized. These are partially fluorinated organosiloxanes with indexes up to 1.5. Their absorbance is on the order of 0.4/um (base 10), enabling the use of liquid films with micron-size thickness. To utilize these semiabsorptive fluids, an immersion interference printer has been designed, built, and implemented for handling micron-scale liquid layers.
READ LESS

Summary

Liquid immersion interference lithography at 157 nm has been used to print gratings of 27 nm half pitch with a fluorine-doped fused silica prism having index of 1.66. In order to achieve these dimensions, new immersion fluids have been designed and synthesized. These are partially fluorinated organosiloxanes with indexes up...

READ MORE

Nanocomposite approaches toward pellicles for 157-nm lithography

Published in:
J. Microlith., Microfab., Microsyst., Vol. 4, No. 1, January-March 2005, pp. 013004-1 - 013004-6.

Summary

Pellicle materials for use at 157 nm must display sufficient transparency at this wavelength and adequate lifetimes to be useful. We blended a leading candidate fluoropolymer with silica nanoparticles to examine the effect on both the transparency and lifetime of the pellicle. It is anticipated that these composite materials may increase the lifetime by perhaps quenching reactive species and/or by dilution, without severely decreasing the 157-nm transmission. Particles surface-modified with fluorinated moieties are also investigated. The additives are introduced as stable nanoparticle dispersions to casting solutions of the fluoropolymers. The properties of these solutions, films, and the radiationinduced darkening rates are reported. The latter are reduced in proportion to the dilution of the polymer, but there is no evidence that the nanoparticles act as radical scavengers.
READ LESS

Summary

Pellicle materials for use at 157 nm must display sufficient transparency at this wavelength and adequate lifetimes to be useful. We blended a leading candidate fluoropolymer with silica nanoparticles to examine the effect on both the transparency and lifetime of the pellicle. It is anticipated that these composite materials may...

READ MORE

Marathon evaluation of optical materials for 157-nm lithography

Published in:
J. Microlithogr., Microfab., Microsyst., Vol. 2, No. 1, January 2003, pp. 19-26.

Summary

We present the methodology and recent results on the longterm evaluation of optical materials for 157-nm lithographic applications. We review the unique metrology capabilities that have been developed for accurately assessing optical properties of samples both online and offline, utilizing VUV spectrophotometry with in situlamp-based cleaning. We describe ultraclean marathon testing chambers that have been designed to decouple effects of intrinsic material degradation from extrinsic ambient effects. We review our experience with lithography-grade 157-nm lasers and detector durability. We review the current status of bulk materials for lenses, such as CaF(2) and BaF(2), and durability results of antireflectance coatings. Finally, we discuss the current state of laser durability of organic pellicles.
READ LESS

Summary

We present the methodology and recent results on the longterm evaluation of optical materials for 157-nm lithographic applications. We review the unique metrology capabilities that have been developed for accurately assessing optical properties of samples both online and offline, utilizing VUV spectrophotometry with in situlamp-based cleaning. We describe ultraclean marathon...

READ MORE