Publications

Refine Results

(Filters Applied) Clear All

Engineered liquid crystal anchoring energies with nanopatterned surfaces

Published in:
Opt. Express, Vol. 23, No. 2, 26 January 2015, pp. 807-14.

Summary

The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.
READ LESS

Summary

The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid...

READ MORE

Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

Published in:
J. Appl. Phys., Vol. 113. No. 5, 7 February 2013, 053107.

Summary

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ~50 MW/cm^2. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.
READ LESS

Summary

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ~50 MW/cm^2. Due to...

READ MORE

Retroreflectors for remote readout of colorimetric sensors

Published in:
Sensors and Actuators B-Chemical, Vol. 160, No. 1, 15 December 2011, pp. 1244-1249.

Summary

We have developed a remote detection system consisting of commercially available retroreflective material coated with an analyte-specific colorimetric dye. Quantitative performance modeling predicts that, given the appropriate indicator dye, a system with a 10 cm optic and eye-safe illumination should be capable of detecting small droplets of contamination at kilometer ranges. We have synthesized new colorimetric dyes specific to organophosphate contamination and, with these dyes, demonstrated detection of 1um of liquid malathion at over 150 m with less than 20 mW of laser illumination.
READ LESS

Summary

We have developed a remote detection system consisting of commercially available retroreflective material coated with an analyte-specific colorimetric dye. Quantitative performance modeling predicts that, given the appropriate indicator dye, a system with a 10 cm optic and eye-safe illumination should be capable of detecting small droplets of contamination at kilometer...

READ MORE

A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates

Summary

A highly scalable approach for producing surface-enhanced Raman spectroscopy substrates is introduced. The novel method involves assembling individual nanoparticles in pre-defined templates, one particle per template, forming a high denisity of nanogaps over large areas, while decoupling nanostructure synthesis from placement.
READ LESS

Summary

A highly scalable approach for producing surface-enhanced Raman spectroscopy substrates is introduced. The novel method involves assembling individual nanoparticles in pre-defined templates, one particle per template, forming a high denisity of nanogaps over large areas, while decoupling nanostructure synthesis from placement.

READ MORE

A roadmap for optical lithography

Published in:
Optics & Photonics News, Vol. 21, No. 6, June 2010, pp. 26-31.

Summary

The International Technology Roadmap for Semiconductors is the go-to standard for predicting future technology requirements and driving global research and development in the semiconductor industry. This article serves as your roadmap to what it all means for optical lithography over the next 10 to 15 years.
READ LESS

Summary

The International Technology Roadmap for Semiconductors is the go-to standard for predicting future technology requirements and driving global research and development in the semiconductor industry. This article serves as your roadmap to what it all means for optical lithography over the next 10 to 15 years.

READ MORE

Optical limiting with complex plasmonic nanoparticles

Published in:
J. Optics, Vol. 12, No. 6, 2010, 065001.

Summary

Optical limiting by suspensions of Au nanoparticles is enhanced by several orders of magnitude with the use of complex plasmonic shapes, such as spined "nanourchins," instead of nanospheres. Similar enhancements are observed by changing the material of nanospheres from Au to Ag. The experiments, measuring intensity-dependent transmission over a wavelength range from 450 to 650 nm for a 6 ns pulsed laser, are analyzed in terms of an effective nonlinear extinction coefficient, which we relate to the local, plasmonically enhanced electric field. FDTD simulations reveal a large electric field enhancement inside the nanospined structures and qualitatively confirm the plasmonic trends, where Ag nanospheres and Au nanourchins are more effective than Au nanospheres. These results suggest that designing nanostructures for the maximum plasmonic enhancement provides a roadmap to materials and geometries with optimized optical limiting behavior.
READ LESS

Summary

Optical limiting by suspensions of Au nanoparticles is enhanced by several orders of magnitude with the use of complex plasmonic shapes, such as spined "nanourchins," instead of nanospheres. Similar enhancements are observed by changing the material of nanospheres from Au to Ag. The experiments, measuring intensity-dependent transmission over a wavelength...

READ MORE

Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence

Published in:
Opt. Express, Vol. 18, No. 6, 15 March 2010, pp. 5399-5406.

Summary

Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (~7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced fluorescence. PD-LIF excitation and emission spectra indicate the creation of NO in vibrationally-excited states with significant rotational energy, useful for low-background detection of the parent compound. The results for homemade explosives are compared to one another and 2,6- dinitrotoluene, a component present in many military explosives.
READ LESS

Summary

Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (~7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced...

READ MORE

A novel method for remotely detecting trace explosives

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 27-40.

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in a noninvasive standoff manner would serve as an indicator for attempts at concealed assembly or transport of explosive materials and devices. We are investigating the use of a fluorescence-based technique to achieve the necessary detection sensitivity.
READ LESS

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in...

READ MORE

Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation

Published in:
Appl. Opt., Vol. 47, No. 31, 1 November 2008, pp. 5767-5776.

Summary

We investigate the remote detection of explosives via a technique that vaporizes and photodissociates the condensed-phase material and detects the resulting vibrationally excited NO fragments via laser-induced fluorescence. The technique utilizes a single 7 ns pulse of a tunable laser near 236:2nm to perform these multiple processes. The resulting blue-shifted fluorescence (226 nm) is detected using a photomultiplier and narrowband filter that strongly block the scatter of the pump laser off the solid media while passing the shorter wavelength photons. Various nitro-bearing compounds, including 2,6-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) were detected with a signal-to-noise of 25 dB. The effects of laser fluence, wavelength, and sample morphology were examined.
READ LESS

Summary

We investigate the remote detection of explosives via a technique that vaporizes and photodissociates the condensed-phase material and detects the resulting vibrationally excited NO fragments via laser-induced fluorescence. The technique utilizes a single 7 ns pulse of a tunable laser near 236:2nm to perform these multiple processes. The resulting blue-shifted...

READ MORE

Experimental demonstration of remote optical detection of trace explosives.

Published in:
SPIE Vol. 6954, Chemical, Biologica, Radiological, Nuclear and Explosives (CBRNE) Sensing IX, 18-20 March 2008, 695407.

Summary

MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at 236 nm yields narrowband fluorescence at the shorter wavelength of 226 nm. With proper optical filtering, these photons provide a highly sensitive explosives signature that is not susceptible to interference from traditional optical clutter sources (e.g., red-shifted fluorescence). Quantitative measurements of trace residues of TNT have been performed demonstrating this technique using a breadboard system, which relies upon a pulsed optical parametric oscillator (OPO) based laser. Based on these results, performance projections for a fieldable system are made.
READ LESS

Summary

MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at...

READ MORE